Weak Hypotensive Effect of Chronic Administration of the Dual FAAH/MAGL Inhibitor JZL195 in Spontaneously Hypertensive Rats as Revealed by Area under the Curve Analysis
Abstract
:1. Introduction
2. Results
2.1. General
2.2. Influence of Single Administration of JZL195 (1, 10 and 100 mg/kg) on BP and HR in Conscious Unrestrained SHR and WKY Measured via the Radiotelemetry Method
2.3. Influence of Chronic Administration of JZL195 (10 mg/kg) on BP and HR in Conscious Unrestrained SHR and WKY Measured via the Radiotelemetry Method
2.4. Influence of Chronic Administration of JZL195 (10 mg/kg) on BP and HR in Conscious Restrained SHR and WKY Measured via the Tail-Cuff Method
2.5. Influence of Chronic Administration of JZL195 (10 mg/kg) on Body and Organ Weight, Blood Glucose Level, Rectal Temperature and Oxidative Stress Markers in SHR and WKY
3. Discussion
3.1. Effects of Single Administration of JZL195 on Hemodynamic Parameters
3.2. Effects of Chronic Administration of JZL 195 on Hemodynamic Parameters
3.3. The Influence of Chronic Administration of JZL195 on Body and Organ Weights, Blood Glucose Level, Rectal Temperature and Plasma Oxidative Stress Markers
3.4. Limitations of the Study
4. Materials and Methods
4.1. Animals
4.2. Experimental Groups and Protocol
- SHR + JZL195—hypertensive rats treated with JZL195 (1, 10 or 100 mg/kg, i.p., corresponding to 2.3 × 10−4, 2.3 × 10−5 and 2.3 × 10−6 mol/kg, respectively);
- SHR + vehicle (veh)—hypertensive rats treated i.p. with vehicle for JZL195;
- WKY + JZL195—normotensive rats treated with JZL195 (1, 10 or 100 mg/kg; i.p.);
- WKY + veh—normotensive rats treated i.p. with vehicle for JZL195.
4.3. Measurement of BP and HR in Conscious Unrestrained Rats via the Radiotelemetry Method
4.4. Measurement of BP and HR in Conscious Restrained Rats via the Tail-Cuff Method
4.5. Measurement of Blood Glucose Level, Rectal Temperature, Organ Weights and Oxidative Stress Markers
4.6. Drugs
4.7. Calculations and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brant, L.C.C.; Passaglia, L.G.; Pinto-Filho, M.M.; de Castilho, F.M.; Ribeiro, A.L.P.; Nascimento, B.R. The burden of resistant hypertension across the world. Curr. Hypertens. Rep. 2022, 24, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Brouwers, S.; Sudano, I.; Kokubo, Y.; Sulaica, E.M. Arterial hypertension. Lancet 2021, 398, 249–261. [Google Scholar] [CrossRef]
- Krzemińska, J.; Wronka, M.; Młynarska, E.; Franczyk, B.; Rysz, J. Arterial hypertension-oxidative stress and inflammation. Antioxidants 2022, 11, 172. [Google Scholar] [CrossRef]
- Malinowska, B.; Toczek, M.; Pędzińska-Betiuk, A.; Schlicker, E. Cannabinoids in arterial, pulmonary and portal hypertensio–mechanisms of action and potential therapeutic significance. Br. J. Pharmacol. 2019, 176, 1395–1411. [Google Scholar] [CrossRef] [PubMed]
- Remiszewski, P.; Malinowska, B. Why multitarget vasodilatory (endo)cannabinoids are not effective as antihypertensive compounds after chronic administration: Comparison of their effects on systemic and pulmonary hypertension. Pharmaceuticals 2022, 15, 1119. [Google Scholar] [CrossRef] [PubMed]
- Wheal, A.J.; Randall, M.D. Effects of hypertension on vasorelaxation to endocannabinoids in vitro. Eur. J. Pharmacol. 2009, 603, 79–85. [Google Scholar] [CrossRef]
- Ho, W.S.; Randall, M.D. Endothelium-dependent metabolism by endocannabinoid hydrolases and cyclooxygenases limits vasorelaxation to anandamide and 2-arachidonoylglycerol. Br. J. Pharmacol. 2007, 150, 641–651. [Google Scholar] [CrossRef]
- Bátkai, S.; Pacher, P.; Osei-Hyiaman, D.; Radaeva, S.; Liu, J.; Harvey-White, J.; Offertáler, L.; Mackie, K.; Rudd, M.A.; Bukoski, R.D.; et al. Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. Circulation 2004, 110, 1996–2002. [Google Scholar] [CrossRef] [Green Version]
- Godlewski, G.; Alapafuja, S.O.; Batkai, S.; Nikas, S.P.; Cinar, R.; Offertaler, L.; Osei-Hyiaman, D.; Liu, J.; Mukhopadhyay, B.; Harvey-White, J.; et al. Inhibitor of fatty acid amide hydrolase normalizes cardiovascular function in hypertension without adverse metabolic effects. Chem. Biol. 2010, 17, 1256–1266. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Kaminski, N.E.; Wang, D.H. Anandamide-induced depressor effect in spontaneously hypertensive rats: Role of the vanilloid receptor. Hypertension 2003, 41, 757–762. [Google Scholar] [CrossRef] [Green Version]
- Martín Giménez, V.M.; Mocayar Marón, F.J.; García, S.; Mazzei, L.; Guevara, M.; Yunes, R.; Manucha, W. Central nervous system, peripheral and hemodynamic effects of nanoformulated anandamide in hypertension. Adv. Med. Sci. 2021, 66, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.S. Modulation by 17β-estradiol of anandamide vasorelaxation in normotensive and hypertensive rats: A role for TRPV1 but not fatty acid amide hydrolase. Eur. J. Pharmacol. 2013, 701, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Ho, W.S.; Gardiner, S.M. Acute hypertension reveals depressor and vasodilator effects of cannabinoids in conscious rats. Br. J. Pharmacol. 2009, 156, 94–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheal, A.J.; Bennett, T.; Randall, M.D.; Gardiner, S.M. Cardiovascular effects of cannabinoids in conscious spontaneously hypertensive rats. Br. J. Pharmacol. 2007, 152, 717–724. [Google Scholar] [CrossRef] [Green Version]
- Wheal, A.J.; Bennett, T.; Randall, M.D.; Gardiner, S.M. Effects of chronic nitric oxide synthase inhibition on the cardiovascular responses to cannabinoids in vivo and in vitro. Br. J. Pharmacol. 2007, 150, 662–671. [Google Scholar] [CrossRef]
- Pędzińska-Betiuk, A.; Weresa, J.; Toczek, M.; Baranowska-Kuczko, M.; Kasacka, I.; Harasim-Symbor, E.; Malinowska, B. Chronic inhibition of fatty acid amide hydrolase by URB597 produces differential effects on cardiac performance in normotensive and hypertensive rats. Br. J. Pharmacol. 2017, 174, 2114–2129. [Google Scholar] [CrossRef] [Green Version]
- Dócs, K.; Mészár, Z.; Gonda, S.; Kiss-Szikszai, A.; Holló, K.; Antal, M.; Hegyi, Z. The ratio of 2-AG to its isomer 1-AG as an intrinsic fine tuning mechanism of CB1 receptor activation. Front. Cell. Neurosci. 2017, 11, 39. [Google Scholar] [CrossRef] [Green Version]
- Járai, Z.; Wagner, J.A.; Goparaju, S.K.; Wang, L.; Razdan, R.K.; Sugiura, T.; Zimmer, A.M.; Bonner, T.I.; Zimmer, A.; Kunos, G. Cardiovascular effects of 2-arachidonoyl glycerol in anesthetized mice. Hypertension 2000, 35, 679–684. [Google Scholar] [CrossRef] [Green Version]
- Baranowska-Kuczko, M.; Kozłowska, H.; Kloza, M.; Harasim-Symbor, E.; Biernacki, M.; Kasacka, I.; Malinowska, B. Beneficial changes in rat vascular endocannabinoid system in primary hypertension and under treatment with chronic inhibition of fatty acid amide hydrolase by URB597. Int. J. Mol. Sci. 2021, 22, 4833. [Google Scholar] [CrossRef]
- Rudź, R.; Schlicker, E.; Baranowska, U.; Marciniak, J.; Karabowicz, P.; Malinowska, B. Acute myocardial infarction inhibits the neurogenic tachycardic and vasopressor response in rats via presynaptic cannabinoid type 1 receptor. J. Pharmacol. Exp. Ther. 2012, 343, 198–205. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Romero, A.; Galera-López, L.; Ortiz-Romero, P.; Llorente-Ovejero, A.; de Los Reyes-Ramírez, L.; Bengoetxea de Tena, I.; Garcia-Elias, A.; Mas-Stachurska, A.; Reixachs-Solé, M.; Pastor, A.; et al. Cannabinoid signaling modulation through JZL184 restores key phenotypes of a mouse model for Williams-Beuren syndrome. eLife 2022, 11, e72560. [Google Scholar] [CrossRef]
- Toczek, M.; Malinowska, B. Enhanced endocannabinoid tone as a potential target of pharmacotherapy. Life Sci. 2018, 204, 20–45. [Google Scholar] [CrossRef]
- Biernacki, M.; Malinowska, B.; Timoszuk, M.; Toczek, M.; Jastrząb, A.; Remiszewski, P.; Skrzydlewska, E. Hypertension and chronic inhibition of endocannabinoid degradation modify the endocannabinoid system and redox balance in rat heart and plasma. Prostaglandins Other Lipid Mediat. 2018, 138, 54–63. [Google Scholar] [CrossRef]
- Remiszewski, P.; Jarocka-Karpowicz, I.; Biernacki, M.; Jastrząb, A.; Schlicker, E.; Toczek, M.; Harasim-Symbor, E.; Pędzińska-Betiuk, A.; Malinowska, B. Chronic cannabidiol administration fails to diminish blood pressure in rats with primary and secondary hypertension despite its effects on cardiac and plasma endocannabinoid system, oxidative stress and lipid metabolism. Int. J. Mol. Sci. 2020, 21, 1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Chen, B.M.; Peng, J.; Zhang, Y.S.; Li, X.H.; Yuan, Q.; Hu, C.P.; Deng, H.W.; Li, Y.J. Role of anandamide transporter in regulating calcitonin gene-related peptide production and blood pressure in hypertension. J. Hypertens. 2009, 27, 1224–1232. [Google Scholar] [CrossRef]
- Biernacki, M.; Ambrozewicz, E.; Gegotek, A.; Toczek, M.; Bielawska, K.; Skrzydlewska, E. Redox system and phospholipid metabolism in the kidney of hypertensive rats after FAAH inhibitor URB597 administration. Redox Biol. 2018, 15, 41–50. [Google Scholar] [CrossRef]
- Weis, F.; Beiras-Fernandez, A.; Sodian, R.; Kaczmarek, I.; Reichart, B.; Beiras, A.; Schelling, G.; Kreth, S. Substantially altered expression pattern of cannabinoid receptor 2 and activated endocannabinoid system in patients with severe heart failure. J. Mol. Cell. Cardiol. 2010, 48, 1187–1193. [Google Scholar] [CrossRef]
- Long, J.Z.; Nomura, D.K.; Vann, R.E.; Walentiny, D.M.; Booker, L.; Jin, X.; Burston, J.J.; Sim-Selley, L.J.; Lichtman, A.H.; Wiley, J.L.; et al. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc. Natl. Acad. Sci. USA 2009, 106, 20270–20275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamson Barnes, N.S.; Mitchell, V.A.; Kazantzis, N.P.; Vaughan, C.W. Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine neuropathic pain model. Br. J. Pharmacol. 2016, 173, 77–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakin, Y.S.; Dogrul, A.; Ilkaya, F.; Seyrek, M.; Ulas, U.H.; Gulsen, M.; Bagci, S. The effect of FAAH, MAGL, and dual FAAH/MAGL inhibition on inflammatory and colorectal distension-induced visceral pain models in rodents. Neurogastroenterol. Motil. 2015, 27, 936–944. [Google Scholar] [CrossRef]
- Greco, R.; Demartini, C.; Francavilla, M.; Zanaboni, A.M.; Tassorelli, C. Dual inhibition of FAAH and MAGL counteracts migraine-like pain and behavior in an animal model of migraine. Cells 2021, 10, 2543. [Google Scholar] [CrossRef] [PubMed]
- Limebeer, C.L.; Abdullah, R.A.; Rock, E.M.; Imhof, E.; Wang, K.; Lichtman, A.H.; Parker, L.A. Attenuation of anticipatory nausea in a rat model of contextually elicited conditioned gaping by enhancement of the endocannabinoid system. Psychopharmacology 2014, 231, 603–612. [Google Scholar] [CrossRef] [PubMed]
- Sticht, M.A.; Limebeer, C.L.; Rafla, B.R.; Abdullah, R.A.; Poklis, J.L.; Ho, W.; Niphakis, M.J.; Cravatt, B.F.; Sharkey, K.A.; Lichtman, A.H.; et al. Endocannabinoid regulation of nausea is mediated by 2-arachidonoylglycerol (2-AG) in the rat visceral insular cortex. Neuropharmacology 2016, 102, 92–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yesilyurt, O.; Cayirli, M.; Sakin, Y.S.; Seyrek, M.; Akar, A.; Dogrul, A. Systemic and spinal administration of FAAH, MAGL inhibitors and dual FAAH/MAGL inhibitors produce antipruritic effect in mice. Arch. Dermatol. Res. 2016, 308, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Fucich, E.A.; Stielper, Z.F.; Cancienne, H.L.; Edwards, S.; Gilpin, N.W.; Molina, P.E.; Middleton, J.W. Endocannabinoid degradation inhibitors ameliorate neuronal and synaptic alterations following traumatic brain injury. J. Neurophysiol. 2020, 123, 707–717. [Google Scholar] [CrossRef]
- Bajaj, S.; Zameer, S.; Jain, S.; Yadav, V.; Vohora, D. Effect of the MAGL/FAAH dual inhibitor JZL-195 on streptozotocin-induced Alzheimer’s disease-like sporadic dementia in mice with an emphasis on Aβ, HSP-70, neuroinflammation, and oxidative stress. ACS Chem. Neurosci. 2022, 13, 920–932. [Google Scholar] [CrossRef]
- Abohalaka, R.; Karaman, Y.; Recber, T.; Onder, S.C.; Nemutlu, E.; Bozkurt, T.E. Endocannabinoid metabolism inhibition ameliorates ovalbumin-induced allergic airway inflammation and hyperreactivity in Guinea pigs. Life Sci. 2022, 306, 120808. [Google Scholar] [CrossRef]
- Papa, A.; Pasquini, S.; Contri, C.; Gemma, S.; Campiani, G.; Butini, S.; Varani, K.; Vincenzi, F. Polypharmacological approaches for CNS diseases: Focus on endocannabinoid degradation inhibition. Cells 2022, 11, 471. [Google Scholar] [CrossRef]
- Lillich, F.F.; Imig, J.D.; Proschak, E. Multi-target approaches in metabolic syndrome. Front. Pharmacol. 2020, 11, 554961. [Google Scholar] [CrossRef]
- Jama, H.A.; Muralitharan, R.R.; Xu, C.; O’Donnell, J.A.; Bertagnolli, M.; Broughton, B.R.S.; Head, G.A.; Marques, F.Z. Rodent models of hypertension. Br. J. Pharmacol. 2022, 179, 918–937. [Google Scholar] [CrossRef]
- Kicman, A.; Toczek, M. The effects of cannabidiol, a non-intoxicating compound of Cannabis, on the cardiovascular system in health and disease. Int. J. Mol. Sci. 2020, 21, 6740. [Google Scholar] [CrossRef] [PubMed]
- Irvine, R.J.; White, J.; Chan, R. The influence of restraint on blood pressure in the rat. J. Pharmacol. Toxicol. Methods 1997, 38, 157–162. [Google Scholar] [CrossRef]
- Burgess, K.; Jovanović, S.; Sudhir, R.; Jovanović, A. Area under the curve analysis of blood pressure reveals increased spontaneous locomotor activity in SPAK knock-in mice: Relevance for hypotension induced by SPAK inhibition? Physiol. Rep. 2019, 7, e13997. [Google Scholar] [CrossRef] [Green Version]
- Nobre, F.; Mion, D., Jr. Is the area under blood pressure curve the best parameter to evaluate 24-h ambulatory blood pressure monitoring data? Blood Press Monit. 2005, 10, 263–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reagan-Shaw, S.; Nihal, M.; Ahmad, N. Dose translation from animal to human studies revisited. FASEB J. 2008, 22, 659–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiskerke, J.; Irimia, C.; Cravatt, B.F.; De Vries, T.J.; Schoffelmeer, A.N.; Pattij, T.; Parsons, L.H. Characterization of the effects of reuptake and hydrolysis inhibition on interstitial endocannabinoid levels in the brain: An in vivo microdialysis study. ACS Chem. Neurosci. 2012, 3, 407–417. [Google Scholar] [CrossRef] [Green Version]
- Weresa, J.; Pędzińska-Betiuk, A.; Mińczuk, K.; Malinowska, B.; Schlicker, E. Why do marijuana and synthetic cannabimimetics induce acute myocardial infarction in healthy young people? Cells 2022, 11, 1142. [Google Scholar] [CrossRef]
- van Egmond, N.; Straub, V.M.; van der Stelt, M. Targeting endocannabinoid signaling: FAAH and MAG lipase inhibitors. Annu. Rev. Pharmacol. Toxicol. 2021, 61, 441–463. [Google Scholar] [CrossRef]
- Pędzińska-Betiuk, A.; Weresa, J.; Schlicker, E.; Harasim-Symbor, E.; Toczek, M.; Kasacka, I.; Gajo, B.; Malinowska, B. Chronic cannabidiol treatment reduces the carbachol-induced coronary constriction and left ventricular cardiomyocyte width of the isolated hypertensive rat heart. Toxicol. Appl. Pharmacol. 2021, 411, 115368. [Google Scholar] [CrossRef]
- Higashino, H.; Maeda, K.; Kawamoto, M.; Endo, H.; Lee, W.H. Beneficial effects of long-term administration of ONO-3144, a free radical scavenger, on stroke-prone SHR. Acta Pharmacol. Sin. 2002, 23, 393–398. [Google Scholar]
- Marcus, D.J.; Zee, M.L.; Davis, B.J.; Haskins, C.P.; Andrews, M.J.; Amin, R.; Henderson-Redmond, A.N.; Mackie, K.; Czyzyk, T.A.; Morgan, D.J. Mice expressing a “hyper-sensitive” form of the cannabinoid receptor 1 (CB1) are neither obese nor diabetic. PLoS ONE 2016, 11, e0160462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horn, H.; Bohme, B.; Dietrich, L.; Koch, M. Endocannabinoids in body weight control. Pharmaceuticals 2018, 11, 55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greaney, J.L.; Darling, A.M.; Mogle, J.; Saunders, E.F.H. Microvascular β-adrenergic receptor-mediated vasodilation is attenuated in adults with major depressive disorder. Hypertension 2022, 79, 1091–1100. [Google Scholar] [CrossRef] [PubMed]
Parameter | SHR + veh | SHR + JZL195 | WKY + veh | WKY + JZL195 | |
---|---|---|---|---|---|
Final body weight (BW; g) | 283 ± 7 *** | 302 ± 5 *** | 372 ± 3 | 379 ± 10 | |
Tibia length (TL; mm) | 33.6 ± 0.4 *** | 33.7 ± 0.3 *** | 37.9 ± 0.3 | 38.2 ± 1.0 | |
Heart | Heart/BW (mg/g) | 3.5 ± 0.3 ** | 3.5 ± 0.1 ** | 2.7 ± 0.1 | 2.7 ± 0.04 |
Heart/TL (mg/mm) | 29.6 ± 1.6 | 31.5 ± 1.1 * | 26.6 ± 0.7 | 27.1 ± 0.3 | |
Left ventricle (LV) | LV + septum/BW (mg/g) | 2.7 ± 0.3 ** | 2.7 ± 0.1 ** | 1.9 ± 0.02 | 2.0 ± 0.04 |
LV + septum/TL (mg/mm) | 22.7 ± 1.6 | 23.9 ± 1.1 ** | 19.0 ± 0.1 | 20.1 ± 0.4 | |
Right ventricle (RV) | RV/BW (mg/g) | 0.7 ± 0.04 | 0.7 ± 0.1 | 0.7 ± 0.1 | 0.7 ± 0.04 |
RV/TL (mg/mm) | 6.0 ± 0.3 | 6.4 ± 0.6 | 6.6 ± 0.8 | 6.5 ± 0.4 | |
Kidney | Kidney/BW (mg/g) | 3.5 ± 0.1 | 3.4 ± 0.04 | 3.5 ± 0.1 | 3.5 ± 0.04 |
Kidney/TL (mg/mm) | 29.0 ± 0.4 *** | 30.7 ± 0.4 *** | 33.9 ± 0.7 | 35.1 ± 0.3 | |
Liver | Liver/BW (mg/g) | 38.3 ± 0.8 | 37.1 ± 1.5 | 36.4 ± 0.5 | 36.4 ± 0.5 |
Liver/TL (mg/mm) | 323.8 ± 13.4 | 332.6 ± 14.4 | 357.1 ± 4.6 | 361.8 ± 8.1 | |
Lungs | Lungs/BW (mg/g) | 4.6 ± 0.1 | 4.5 ± 0.1 | 4.1 ± 0.1 | 4.1 ± 0.2 |
Lungs/TL (mg/mm) | 38.5 ± 0.8 | 40.6 ± 1.0 | 40.0 ± 1.3 | 40.9 ± 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toczek, M.; Ryszkiewicz, P.; Remiszewski, P.; Schlicker, E.; Krzyżewska, A.; Kozłowska, H.; Malinowska, B. Weak Hypotensive Effect of Chronic Administration of the Dual FAAH/MAGL Inhibitor JZL195 in Spontaneously Hypertensive Rats as Revealed by Area under the Curve Analysis. Int. J. Mol. Sci. 2023, 24, 10942. https://doi.org/10.3390/ijms241310942
Toczek M, Ryszkiewicz P, Remiszewski P, Schlicker E, Krzyżewska A, Kozłowska H, Malinowska B. Weak Hypotensive Effect of Chronic Administration of the Dual FAAH/MAGL Inhibitor JZL195 in Spontaneously Hypertensive Rats as Revealed by Area under the Curve Analysis. International Journal of Molecular Sciences. 2023; 24(13):10942. https://doi.org/10.3390/ijms241310942
Chicago/Turabian StyleToczek, Marek, Piotr Ryszkiewicz, Patryk Remiszewski, Eberhard Schlicker, Anna Krzyżewska, Hanna Kozłowska, and Barbara Malinowska. 2023. "Weak Hypotensive Effect of Chronic Administration of the Dual FAAH/MAGL Inhibitor JZL195 in Spontaneously Hypertensive Rats as Revealed by Area under the Curve Analysis" International Journal of Molecular Sciences 24, no. 13: 10942. https://doi.org/10.3390/ijms241310942
APA StyleToczek, M., Ryszkiewicz, P., Remiszewski, P., Schlicker, E., Krzyżewska, A., Kozłowska, H., & Malinowska, B. (2023). Weak Hypotensive Effect of Chronic Administration of the Dual FAAH/MAGL Inhibitor JZL195 in Spontaneously Hypertensive Rats as Revealed by Area under the Curve Analysis. International Journal of Molecular Sciences, 24(13), 10942. https://doi.org/10.3390/ijms241310942