Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine Sulfonamides as an Important Scaffold for Anticancer Drug Discovery—In Vitro and In Silico Evaluation
Abstract
:1. Introduction
2. Results
2.1. Biological Studies
2.1.1. Neutral Red Uptake Assay
2.1.2. Reactive Oxygen Species (ROS) Formation
2.1.3. Caspase 3/7/8/9 Detection
2.1.4. Bromodeoxyuridine (BrdU) Incorporation Assay
2.1.5. Clonogenic Assay
2.1.6. Cell Cycle Analysis with Propidium Iodide (PI) Staining
2.1.7. DNA Laddering
2.1.8. Gene Expression Analysis
2.2. Computational Analysis
2.2.1. Density Functional Theory (DFT) Calculations
2.2.2. Molecular Docking Studies of MM-Compounds
2.2.3. Prime MM-GBSA Calculations
Compound | ΔGcoulomb a | ΔGvdw b | ΔGcovalent c | ΔGsolv d | ΔGsolvlipo e | ΔGbind f |
---|---|---|---|---|---|---|
MM134 | 91.46 | −46.61 | 4.15 | −76.13 | −19.14 | −46.50 |
MM136 | 159.19 | −40.97 | 6.37 | −150.91 | −16.10 | −45.90 |
MM137 | 119.93 | −44.90 | 7.51 | −91.23 | −16.14 | −25.15 |
MM139 | 153.58 | −42.90 | 1.23 | −134.11 | −18.26 | −41.19 |
2.2.4. Molecular Dynamics of MM-Compounds–AKT2 Complexes
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Cell Culture
4.3. Neutral Red Uptake Assay
4.4. Oxidative Stress
4.5. Caspase 3/7 Detection
4.6. Caspase 8/9 Detection
4.7. Bromodeoxyuridine (BrdU) Incorporation Assay
4.8. Clonogenic Assay
4.9. Cell Cycle Analysis
4.10. Apoptotic DNA Fragmentation
4.11. Gene Expression Analysis
4.11.1. RNA Extraction and cDNA Preparation
4.11.2. RT2 Profiler PCR Array Assay
4.12. Computational Analysis
4.12.1. Density Functional Theory (DFT) Calculations
4.12.2. Molecular Docking Studies of MM-Compounds
4.12.3. Prime MM-GBSA Calculations
4.12.4. Molecular Dynamic Simulation of MM-Compounds and AKT2
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABL | tyrosine-protein kinase ABL |
ADMET | absorption, distribution, metabolism, excretion, and toxicity |
AIFM1 | apoptosis-inducing factor, mitochondrion-associated, 1 |
AKT | serine/threonine-protein kinase AKT |
AO/EB | acridine orange/ethidium bromide |
APAF-1 | apoptotic protease-activating factor 1 |
BAD | BCL2-associated agonist of cell death |
BAG1 | BCL2-associated athanogene |
BCL10 | B-cell CLL/lymphoma 10 |
BCL2L10 | BCL2-like 10 (apoptosis facilitator) |
BE | binding energy |
BIRC5 | baculoviral IAP repeat containing 5 |
BNIP3 | BCL2/adenovirus E1B 19 kDa interacting protein 3 |
BNIP3L | BCL2/adenovirus E1B 19 kDa interacting protein 3-like |
BrdU | Bromodeoxyuridine |
BSA | bovine serum albumin |
BTK | Bruton’s tyrosine kinase |
CAs | carbonic anhydrases |
CASP1 | caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta, convertase) |
CASP14 | caspase 14, apoptosis-related cysteine peptidase |
CASP2 | caspase 2, apoptosis-related cysteine peptidase |
CASP6 | caspase 6, apoptosis-related cysteine peptidase |
CARD | caspase recruitment domain |
CDKs | cyclin-dependent kinases |
CD27 | CD27 molecule |
CD70 | CD70 molecule |
CHK1 | serine/threonine-protein kinase CHK1 |
CIDEA/B | Cell death-inducing DFFA-like effector A/B |
CLL | chronic lymphocytic leukemia |
CRADD | CASP2 and RIPK1 domain containing adaptor with death domain |
CYP | cytochrome |
DCF | 2′,7′-dichlorofluorescein |
DCFH2 | 2′,7′-dichlorodihydrofluorescein |
DCFH-DA | 2,7-dichlorodihydrofluorescein diacetate |
DFFA | DNA fragmentation factor, 45 kDa, alpha polypeptide |
DISC | death-inducing signaling complex |
DPT | developmental toxicity potential |
EMM | molecular mechanic’s energies |
ESP | electrostatic potential |
FADD | FAS-associated death domain protein |
FAS | Fas (TNF receptor superfamily, member 6) |
FBS | fetal bovine serum |
GADD45α | growth arrest and DNA-damage-inducible, alpha |
GB/SA | generalized Born/Surface continuum solvent model |
GNP | non-polar solvation |
HCl | hydrochloric acid |
HLG | HOMO-LUMO energy gap |
HOMO | highest occupied molecular orbital |
LD50 | 50% lethal dose |
LOAEL | lowest observable adverse effects level |
LUMO | lowest occupied molecular orbital |
MCL | mantle cell lymphoma |
MD | molecular dynamics |
MESP | molecular electrostatic potential |
MLKL | mixed lineage kinase domain like pseudokinase |
MMP | mitochondrial membrane potential |
mTOR | mammalian target of rapamycin kinase |
NAIP | NLR family, apoptosis inhibitory protein |
NF-κB | nuclear factor kappa-B |
NOD1 | nucleotide-binding oligomerization domain containing 1 |
OPLS-AA | optimized potential liquid solvation-all atom |
OPS | optimal prediction space |
PBS | phosphate-buffered saline |
P21 | Cyclin-dependent kinase inhibitor 1 (also known as Waf1/Cip1) |
PD-1 | programmed cell death protein 1 |
PD-L1 | programmed death-ligand 1 |
PHA | Paraformaldehyde |
PI | propidium iodide |
PPB | plasma protein binding |
PS | phosphatidylserine |
PYCARD | PYD and CARD domain containing |
QSAR | quantitative structure-activity relationship |
RFU | relative fluorescence units |
RIPK2 | receptor-interacting serine-threonine kinase 2 |
RMSD | trajectory root mean square deviation |
RMSF | root mean square fluctuation |
ROS | reactive oxygen species |
SASA | solvent accessible surface area |
sICAM-1 | soluble intercellular adhesion molecule-1 |
SMILES | simplified molecular input line entry system |
TOPKAT | toxicity prediction by computer-aided technology |
TNF | tumor necrosis factor |
TNFRSF10B | tumor necrosis factor receptor superfamily, member 10b |
TNFRSF11B | tumor necrosis factor receptor superfamily, member 11b |
TNFRSF1A | tumor necrosis factor receptor superfamily, member 1A |
TNFSF10 | tumor necrosis factor (ligand) superfamily, member 10 |
TP53 | cellular tumor antigen p53 |
TRADD | tumor necrosis factor receptor type 1-associated DEATH domain |
TRAF2 | TNF receptor-associated factor 2 |
TRAIL | tumor necrosis factor-related apoptosis inducing ligand |
λem | emission wavelength |
λex | excitation wavelength |
References
- Eckhardt, S. Recent Progress in the Development of Anticancer Agents. Curr. Med. Chem. Anticancer Agents 2002, 2, 419–439. [Google Scholar] [CrossRef]
- Ali, R.; Mirza, Z.; Ashraf, G.M.D.; Kamal, M.A.; Ansari, S.A.; Damanhouri, G.A.; Abuzenadah, A.M.; Chaudhary, A.G.; Sheikh, I.A. New Anticancer Agents: Recent Developments in Tumor Therapy. Anticancer Res. 2012, 32, 2999–3005. [Google Scholar]
- Martins, P.; Jesus, J.; Santos, S.; Raposo, L.R.; Roma-Rodrigues, C.; Baptista, P.V.; Fernandes, A.R. Heterocyclic Anticancer Compounds: Recent Advances and the Paradigm Shift towards the Use of Nanomedicine’s Tool Box. Molecules 2015, 20, 16852–16891. [Google Scholar] [CrossRef] [Green Version]
- Lang, D.K.; Kaur, R.; Arora, R.; Saini, B.; Arora, S. Nitrogen-Containing Heterocycles as Anticancer Agents: An Overview. Anticancer Agents Med. Chem. 2020, 20, 2150–2168. [Google Scholar] [CrossRef]
- Cascioferro, S.; Parrino, B.; Spanò, V.; Carbone, A.; Montalbano, A.; Barraja, P.; Diana, P.; Cirrincione, G. An Overview on the Recent Developments of 1,2,4-Triazine Derivatives as Anticancer Compounds. Eur. J. Med. Chem. 2017, 142, 328–375. [Google Scholar] [CrossRef]
- Bernat, Z.; Szymanowska, A.; Kciuk, M.; Kotwica-Mojzych, K.; Mojzych, M. Review of the Synthesis and Anticancer Properties of Pyrazolo[4,3-e][1,2,4]triazine Derivatives. Molecules 2020, 25, 3948. [Google Scholar] [CrossRef]
- Bukowski, K.; Marciniak, B.; Kciuk, M.; Mojzych, M.; Kontek, R. Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine Sulfonamides as Novel Potential Anticancer Agents: Cytotoxic and Genotoxic Activities In Vitro. Molecules 2022, 27, 3761. [Google Scholar] [CrossRef] [PubMed]
- Kciuk, M.; Mujwar, S.; Marciniak, B.; Gielecińska, A.; Bukowski, K.; Mojzych, M.; Kontek, R. Genotoxicity of Novel Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine Sulfonamides in Normal and Cancer Cells In Vitro. Int. J. Mol. Sci. 2023, 24, 4053. [Google Scholar] [CrossRef] [PubMed]
- Gornowicz, A.; Szymanowska, A.; Mojzych, M.; Bielawski, K.; Bielawska, A. The Effect of Novel 7-Methyl-5-phenyl-pyrazolo[4,3-e]tetrazolo[4,5-b][1,2,4]triazine Sulfonamide Derivatives on Apoptosis and Autophagy in DLD-1 and HT-29 Colon Cancer Cells. Int. J. Mol. Sci. 2020, 21, 5221. [Google Scholar] [CrossRef] [PubMed]
- Hermanowicz, J.M.; Szymanowska, A.; Sieklucka, B.; Czarnomysy, R.; Pawlak, K.; Bielawska, A.; Bielawski, K.; Kalafut, J.; Przybyszewska, A.; Surazynski, A.; et al. Exploration of Novel Heterofused 1,2,4-Triazine Derivative in Colorectal Cancer. J. Enzym. Inhib. Med. Chem. 2021, 36, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Kciuk, M.; Mujwar, S.; Szymanowska, A.; Marciniak, B.; Bukowski, K.; Mojzych, M.; Kontek, R. Preparation of Novel Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine Sulfonamides and Their Experimental and Computational Biological Studies. Int. J. Mol. Sci. 2022, 23, 5892. [Google Scholar] [CrossRef]
- Hermanowicz, J.M.; Pawlak, K.; Sieklucka, B.; Czarnomysy, R.; Kwiatkowska, I.; Kazberuk, A.; Surazynski, A.; Mojzych, M.; Pawlak, D. MM-129 as a Novel Inhibitor Targeting PI3K/AKT/MTOR and PD-L1 in Colorectal Cancer. Cancers 2021, 13, 3203. [Google Scholar] [CrossRef] [PubMed]
- Reiniers, M.J.; van Golen, R.F.; Bonnet, S.; Broekgaarden, M.; van Gulik, T.M.; Egmond, M.R.; Heger, M. Preparation and Practical Applications of 2′,7′-Dichlorodihydrofluorescein in Redox Assays. Anal. Chem. 2017, 89, 3853–3857. [Google Scholar] [CrossRef] [PubMed]
- Franken, N.A.P.; Rodermond, H.M.; Stap, J.; Haveman, J.; van Bree, C. Clonogenic Assay of Cells in Vitro. Nat. Protoc. 2006, 1, 2315–2319. [Google Scholar] [CrossRef] [PubMed]
- Riccardi, C.; Nicoletti, I. Analysis of Apoptosis by Propidium Iodide Staining and Flow Cytometry. Nat. Protoc. 2006, 1, 1458–1461. [Google Scholar] [CrossRef] [PubMed]
- Crowley, L.C.; Chojnowski, G.; Waterhouse, N.J. Measuring the DNA Content of Cells in Apoptosis and at Different Cell-Cycle Stages by Propidium Iodide Staining and Flow Cytometry. Cold Spring Harb. Protoc. 2016, 2016, pdb-prot08724. [Google Scholar] [CrossRef]
- Matassov, D.; Kagan, T.; Leblanc, J.; Sikorska, M.; Zakeri, Z. Measurement of Apoptosis by DNA Fragmentation. Methods Mol. Biol. 2004, 282, 1–17. [Google Scholar] [CrossRef]
- Majtnerová, P.; Roušar, T. An Overview of Apoptosis Assays Detecting DNA Fragmentation. Mol. Biol. Rep. 2018, 45, 1469–1478. [Google Scholar] [CrossRef] [Green Version]
- Amati, M.; Stoia, S.; Baerends, E.J. The Electron Affinity as the Highest Occupied Anion Orbital Energy with a Sufficiently Accurate Approximation of the Exact Kohn-Sham Potential. J. Chem. Theory Comput. 2020, 16, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Curpăn, R.; Avram, S.; Vianello, R.; Bologa, C. Exploring the Biological Promiscuity of High-Throughput Screening Hits through DFT Calculations. Bioorg. Med. Chem. 2014, 22, 2461–2468. [Google Scholar] [CrossRef]
- Hermanowicz, J.M.; Kalaska, B.; Pawlak, K.; Sieklucka, B.; Miklosz, J.; Mojzych, M.; Pawlak, D. Preclinical Toxicity and Safety of MM-129-First-in-Class BTK/PD-L1 Inhibitor as a Potential Candidate against Colon Cancer. Pharmaceutics 2021, 13, 1222. [Google Scholar] [CrossRef] [PubMed]
- Freeman-Cook, K.D.; Autry, C.; Borzillo, G.; Gordon, D.; Barbacci-Tobin, E.; Bernardo, V.; Briere, D.; Clark, T.; Corbett, M.; Jakubczak, J.; et al. Design of Selective, ATP-Competitive Inhibitors of Akt. J. Med. Chem. 2010, 53, 4615–4622. [Google Scholar] [CrossRef] [PubMed]
- Heerding, D.A.; Rhodes, N.; Leber, J.D.; Clark, T.J.; Keenan, R.M.; Lafrance, L.V.; Li, M.; Safonov, I.G.; Takata, D.T.; Venslavsky, J.W.; et al. Identification of 4-(2-(4-Amino-1,2,5-oxadiazol-3-yl)-1-ethyl-7-{[(3S)-3-piperidinylmethyl]oxy}-1H-imidazo[4,5-c]pyridin-4-yl)-2-methyl-3-butyn-2-ol (GSK690693), a Novel Inhibitor of AKT Kinase. J. Med. Chem. 2008, 51, 5663–5679. [Google Scholar] [CrossRef] [PubMed]
- Marcotte, D.J.; Liu, Y.-T.; Arduini, R.M.; Hession, C.A.; Miatkowski, K.; Wildes, C.P.; Cullen, P.F.; Hong, V.; Hopkins, B.T.; Mertsching, E.; et al. Structures of Human Bruton’s Tyrosine Kinase in Active and Inactive Conformations Suggest a Mechanism of Activation for TEC Family Kinases. Protein Sci. 2010, 19, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Reader, J.C.; Matthews, T.P.; Klair, S.; Cheung, K.-M.J.; Scanlon, J.; Proisy, N.; Addison, G.; Ellard, J.; Piton, N.; Taylor, S.; et al. Structure-Guided Evolution of Potent and Selective CHK1 Inhibitors through Scaffold Morphing. J. Med. Chem. 2011, 54, 8328–8342. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Jiang, X.; Li, B.; Yang, H.J.; Miller, M.; Yang, A.; Dhar, A.; Pavletich, N.P. Mechanisms of MTORC1 Activation by RHEB and Inhibition by PRAS40. Nature 2017, 552, 368–373. [Google Scholar] [CrossRef]
- Butera, R.; Ważyńska, M.; Magiera-Mularz, K.; Plewka, J.; Musielak, B.; Surmiak, E.; Sala, D.; Kitel, R.; de Bruyn, M.; Nijman, H.W.; et al. Design, Synthesis, and Biological Evaluation of Imidazopyridines as PD-1/PD-L1 Antagonists. ACS Med. Chem. Lett. 2021, 12, 768–773. [Google Scholar] [CrossRef]
- Qu, X.; Dong, L.; Zhang, J.; Si, Y.; Wang, B. Systematic Improvement of the Performance of Machine Learning Scoring Functions by Incorporating Features of Protein-Bound Water Molecules. J. Chem. Inf. Model 2022, 62, 4369–4379. [Google Scholar] [CrossRef]
- de Beer, S.B.A.; Vermeulen, N.P.E.; Oostenbrink, C. The Role of Water Molecules in Computational Drug Design. Curr. Top Med. Chem. 2010, 10, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Mitusińska, K.; Raczyńska, A.; Bzówka, M.; Bagrowska, W.; Góra, A. Applications of Water Molecules for Analysis of Macromolecule Properties. Comput. Struct. Biotechnol. J. 2020, 18, 355–365. [Google Scholar] [CrossRef]
- Rao, S.N.; Head, M.S.; Kulkarni, A.; LaLonde, J.M. Validation Studies of the Site-Directed Docking Program LibDock. J. Chem. Inf. Model 2007, 47, 2159–2171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, A.N. Scoring Functions for Protein-Ligand Docking. Curr. Protein Pept. Sci. 2006, 7, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Krammer, A.; Kirchhoff, P.D.; Jiang, X.; Venkatachalam, C.M.; Waldman, M. LigScore: A Novel Scoring Function for Predicting Binding Affinities. J. Mol. Graph. Model 2005, 23, 395–407. [Google Scholar] [CrossRef]
- Krovat, E.M.; Langer, T. Impact of Scoring Functions on Enrichment in Docking-Based Virtual Screening: An Application Study on Renin Inhibitors. J. Chem. Inf. Comput. Sci. 2004, 44, 1123–1129. [Google Scholar] [CrossRef] [PubMed]
- Muegge, I.; Martin, Y.C. A General and Fast Scoring Function for Protein-Ligand Interactions: A Simplified Potential Approach. J. Med. Chem. 1999, 42, 791–804. [Google Scholar] [CrossRef]
- Zerroug, E.; Belaidi, S.; Chtita, S. Artificial Neural Network-Based Quantitative Structure–Activity Relationships Model and Molecular Docking for Virtual Screening of Novel Potent Acetylcholinesterase Inhibitors. J. Chin. Chem. Soc. 2021, 68, 1379–1399. [Google Scholar] [CrossRef]
- Shah, K.; Mujwar, S.; Gupta, J.K.; Shrivastava, S.K.; Mishra, P. Molecular Docking and In Silico Cogitation Validate Mefenamic Acid Prodrugs as Human Cyclooxygenase-2 Inhibitor. Assay Drug Dev. Technol. 2019, 17, 285–291. [Google Scholar] [CrossRef]
- Shin, S.Y.; Kim, C.G.; Jung, Y.J.; Lim, Y.; Lee, Y.H. The UPR Inducer DPP23 Inhibits the Metastatic Potential of MDA-MB-231 Human Breast Cancer Cells by Targeting the Akt-IKK-NF-ΚB-MMP-9 Axis. Sci. Rep. 2016, 6, 34134. [Google Scholar] [CrossRef] [Green Version]
- Vala, R.M.; Tandon, V.; Nicely, L.G.; Guo, L.; Gu, Y.; Banerjee, S.; Patel, H.M. Synthesis of N-(4-chlorophenyl) substituted pyrano[2,3-c]pyrazoles enabling PKBβ/AKT2 inhibitory and in vitro anti-glioma activity. Ann. Med. 2022, 54, 2549–2561. [Google Scholar] [CrossRef]
- Balasubramanian, P.K.; Balupuri, A.; Cho, S.J. Molecular Modeling Studies on Series of Btk Inhibitors Using Docking, Structure-Based 3D-QSAR and Molecular Dynamics Simulation: A Combined Approach. Arch. Pharm. Res. 2016, 39, 328–339. [Google Scholar] [CrossRef]
- Zhao, X.; Xin, M.; Wang, Y.; Huang, W.; Jin, Q.; Tang, F.; Wu, G.; Zhao, Y.; Xiang, H. Discovery of Thieno[3,2-c]pyridin-4-amines as Novel Bruton’s Tyrosine Kinase (BTK) Inhibitors. Bioorg. Med. Chem. 2015, 23, 6059–6068. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Wang, J.; Shi, Y.; Qian, H.; Liu, P. Inhibitors Targeting Bruton’s Tyrosine Kinase in Cancers: Drug Development Advances. Leukemia 2021, 35, 312–332. [Google Scholar] [CrossRef]
- Mortier, J.; Rakers, C.; Bermudez, M.; Murgueitio, M.S.; Riniker, S.; Wolber, G. The Impact of Molecular Dynamics on Drug Design: Applications for the Characterization of Ligand-Macromolecule Complexes. Drug Discov. Today 2015, 20, 686–702. [Google Scholar] [CrossRef]
- Bender, O.; Shoman, M.E.; Ali, T.F.S.; Dogan, R.; Celik, I.; Mollica, A.; Hamed, M.I.A.; Aly, O.M.; Alamri, A.; Alanazi, J.; et al. Discovery of Oxindole-Based FLT3 Inhibitors as a Promising Therapeutic Lead for Acute Myeloid Leukemia Carrying the Oncogenic ITD Mutation. Arch. Pharm. 2023, 356, e2200407. [Google Scholar] [CrossRef] [PubMed]
- Celik, I.; Çevik, U.A.; Karayel, A.; Işık, A.; Kayış, U.; Gül, Ü.D.; Bostancı, H.E.; Konca, S.F.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis, Molecular Docking, Dynamics, Quantum-Chemical Computation, and Antimicrobial Activity Studies of Some New Benzimidazole-Thiadiazole Hybrids. ACS Omega 2022, 7, 47015–47030. [Google Scholar] [CrossRef] [PubMed]
- Vanillin-Based Indolin-2-One Derivative Bearing a Pyridyl Moiety as a Promising Anti-Breast Cancer Agent via Anti-Estrogenic Activity|ACS Omega. Available online: https://pubs.acs.org/doi/10.1021/acsomega.2c07793 (accessed on 5 May 2023).
- Celik, I.; Tallei, T.E. A Computational Comparative Analysis of the Binding Mechanism of Molnupiravir’s Active Metabolite to RNA-Dependent RNA Polymerase of Wild-Type and Delta Subvariant AY.4 of SARS-CoV-2. J. Cell Biochem. 2022, 123, 807–818. [Google Scholar] [CrossRef] [PubMed]
- Celik, I.; Khan, A.; Dwivany, F.M.; Fatimawali; Wei, D.-Q.; Tallei, T.E. Computational Prediction of the Effect of Mutations in the Receptor-Binding Domain on the Interaction between SARS-CoV-2 and Human ACE2. Mol. Divers 2022, 26, 3309–3324. [Google Scholar] [CrossRef]
- Doganc, F.; Celik, I.; Eren, G.; Kaiser, M.; Brun, R.; Goker, H. Synthesis, in Vitro Antiprotozoal Activity, Molecular Docking and Molecular Dynamics Studies of Some New Monocationic Guanidinobenzimidazoles. Eur. J. Med. Chem. 2021, 221, 113545. [Google Scholar] [CrossRef]
- Lim, F.P.L.; Dolzhenko, A.V. 1,3,5-Triazine-Based Analogues of Purine: From Isosteres to Privileged Scaffolds in Medicinal Chemistry. Eur. J. Med. Chem. 2014, 85, 371–390. [Google Scholar] [CrossRef]
- Kumar, R.; Sirohi, T.S.; Singh, H.; Yadav, R.; Roy, R.K.; Chaudhary, A.; Pandeya, S.N. 1,2,4-Triazine Analogs as Novel Class of Therapeutic Agents. Mini Rev. Med. Chem. 2014, 14, 168–207. [Google Scholar] [CrossRef]
- Mojzych, M.; Šubertová, V.; Bielawska, A.; Bielawski, K.; Bazgier, V.; Berka, K.; Gucký, T.; Fornal, E.; Kryštof, V. Synthesis and Kinase Inhibitory Activity of New Sulfonamide Derivatives of Pyrazolo[4,3-e][1,2,4]triazines. Eur. J. Med. Chem. 2014, 78, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Mojzych, M.; Ceruso, M.; Bielawska, A.; Bielawski, K.; Fornal, E.; Supuran, C.T. New Pyrazolo[4,3-e][1,2,4]triazine Sulfonamides as Carbonic Anhydrase Inhibitors. Bioorg. Med. Chem. 2015, 23, 3674–3680. [Google Scholar] [CrossRef] [PubMed]
- Mojzych, M.; Bielawska, A.; Bielawski, K.; Ceruso, M.; Supuran, C.T. Pyrazolo[4,3-e][1,2,4]triazine Sulfonamides as Carbonic Anhydrase Inhibitors with Antitumor Activity. Bioorg. Med. Chem. 2014, 22, 2643–2647. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.J.; Yu, L.; Bäckesjö, C.-M.; Vargas, L.; Faryal, R.; Aints, A.; Christensson, B.; Berglöf, A.; Vihinen, M.; Nore, B.F.; et al. Bruton’s Tyrosine Kinase (Btk): Function, Regulation, and Transformation with Special Emphasis on the PH Domain. Immunol. Rev. 2009, 228, 58–73. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.A. Bruton Tyrosine Kinase Inhibitors: Present and Future. Cancer J. 2019, 25, 386–393. [Google Scholar] [CrossRef]
- Gornowicz, A.; Szymanowska, A.; Mojzych, M.; Czarnomysy, R.; Bielawski, K.; Bielawska, A. The Anticancer Action of a Novel 1,2,4-Triazine Sulfonamide Derivative in Colon Cancer Cells. Molecules 2021, 26, 2045. [Google Scholar] [CrossRef]
- Wang, L.; Guo, Y.; Huang, W.J.; Ke, X.; Poyet, J.L.; Manji, G.A.; Merriam, S.; Glucksmann, M.A.; DiStefano, P.S.; Alnemri, E.S.; et al. Card10 Is a Novel Caspase Recruitment Domain/Membrane-Associated Guanylate Kinase Family Member That Interacts with BCL10 and Activates NF-κB. J. Biol. Chem. 2001, 276, 21405–21409. [Google Scholar] [CrossRef] [Green Version]
- Yui, D.; Yoneda, T.; Oono, K.; Katayama, T.; Imaizumi, K.; Tohyama, M. Interchangeable Binding of Bcl10 to TRAF2 and CIAPs Regulates Apoptosis Signaling. Oncogene 2001, 20, 4317–4323. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Wu, J.; Zou, J.; Cao, Y.; He, Y.; Ling, H.; Zeng, T. BCL10 in Cell Survival after DNA Damage. Clin. Chim. Acta 2019, 495, 301–308. [Google Scholar] [CrossRef]
- Micheau, O. Regulation of TNF-Related Apoptosis-Inducing Ligand Signaling by Glycosylation. Int. J. Mol. Sci. 2018, 19, 715. [Google Scholar] [CrossRef] [Green Version]
- Nahacka, Z.; Svadlenka, J.; Peterka, M.; Ksandrova, M.; Benesova, S.; Neuzil, J.; Andera, L. TRAIL Induces Apoptosis but Not Necroptosis in Colorectal and Pancreatic Cancer Cells Preferentially via the TRAIL-R2/DR5 Receptor. Biochim. Biophys. Acta Mol. Cell Res. 2018, 1865, 522–531. [Google Scholar] [CrossRef]
- Shlyakhtina, Y.; Pavet, V.; Gronemeyer, H. Dual Role of DR5 in Death and Survival Signaling Leads to TRAIL Resistance in Cancer Cells. Cell Death Dis. 2017, 8, e3025. [Google Scholar] [CrossRef] [PubMed]
- Micheau, O.; Tschopp, J. Induction of TNF Receptor I-Mediated Apoptosis via Two Sequential Signaling Complexes. Cell 2003, 114, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Dhuriya, Y.K.; Sharma, D. Necroptosis: A Regulated Inflammatory Mode of Cell Death. J. Neuroinflamm. 2018, 15, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.Y.; Ha, S.E.; Vetrivel, P.; Kim, H.H.; Bhosale, P.B.; Abusaliya, A.; Kim, G.S. Differences of Key Proteins between Apoptosis and Necroptosis. Biomed. Res. Int. 2021, 2021, 3420168. [Google Scholar] [CrossRef]
- Zargarian, S.; Shlomovitz, I.; Erlich, Z.; Hourizadeh, A.; Ofir-Birin, Y.; Croker, B.A.; Regev-Rudzki, N.; Edry-Botzer, L.; Gerlic, M. Phosphatidylserine Externalization, “Necroptotic Bodies” Release, and Phagocytosis during Necroptosis. PLoS Biol. 2017, 15, e2002711. [Google Scholar] [CrossRef]
- Shlomovitz, I.; Speir, M.; Gerlic, M. Flipping the Dogma—Phosphatidylserine in Non-Apoptotic Cell Death. Cell Commun. Signal 2019, 17, 139. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Qiu, J.; Pan, J.; Pan, J.-P. Pyroptosis and Its Role in Cervical Cancer. Cancers 2022, 14, 5764. [Google Scholar] [CrossRef]
- Tamura, R.E.; de Vasconcellos, J.F.; Sarkar, D.; Libermann, T.A.; Fisher, P.B.; Zerbini, L.F. GADD45 Proteins: Central Players in Tumorigenesis. Curr. Mol. Med. 2012, 12, 634–651. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Mazzacurati, L.; Zhu, X.; Tong, T.; Song, Y.; Shujuan, S.; Petrik, K.L.; Rajasekaran, B.; Wu, M.; Zhan, Q. Gadd45a Contributes to P53 Stabilization in Response to DNA Damage. Oncogene 2003, 22, 8536–8540. [Google Scholar] [CrossRef] [PubMed]
- Carrier, F.; Smith, M.L.; Bae, I.; Kilpatrick, K.E.; Lansing, T.J.; Chen, C.Y.; Engelstein, M.; Friend, S.H.; Henner, W.D.; Gilmer, T.M. Characterization of Human Gadd45, a P53-Regulated Protein. J. Biol. Chem. 1994, 269, 32672–32677. [Google Scholar] [CrossRef]
- Zhan, Q.; Fan, S.; Smith, M.L.; Bae, I.; Yu, K.; Alamo, I.; O’Connor, P.M.; Fornace, A.J. Abrogation of P53 Function Affects Gadd Gene Responses to DNA Base-Damaging Agents and Starvation. DNA Cell Biol. 1996, 15, 805–815. [Google Scholar] [CrossRef]
- Nakayama, K.; Hara, T.; Hibi, M.; Hirano, T.; Miyajima, A. A Novel Oncostatin M-Inducible Gene OIG37 Forms a Gene Family with MyD118 and GADD45 and Negatively Regulates Cell Growth. J. Biol. Chem. 1999, 274, 24766–24772. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Tong, T.; Fan, W.; Fan, F.; Antinore, M.J.; Zhu, X.; Mazzacurati, L.; Li, X.; Petrik, K.L.; Rajasekaran, B.; et al. GADD45-Induced Cell Cycle G2-M Arrest Associates with Altered Subcellular Distribution of Cyclin B1 and Is Independent of P38 Kinase Activity. Oncogene 2002, 21, 8696–8704. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Q.; Antinore, M.J.; Wang, X.W.; Carrier, F.; Smith, M.L.; Harris, C.C.; Fornace, A.J. Association with Cdc2 and Inhibition of Cdc2/Cyclin B1 Kinase Activity by the P53-Regulated Protein Gadd45. Oncogene 1999, 18, 2892–2900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vairapandi, M.; Balliet, A.G.; Hoffman, B.; Liebermann, D.A. GADD45b and GADD45g Are Cdc2/CyclinB1 Kinase Inhibitors with a Role in S and G2/M Cell Cycle Checkpoints Induced by Genotoxic Stress. J. Cell Physiol. 2002, 192, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.-S.; Ren, W.; Korchin, B.; Lahat, G.; Dicker, A.; Lu, Y.; Mills, G.; Pollock, R.E.; Lev, D. Soft Tissue Sarcoma Are Highly Sensitive to AKT Blockade: A Role for P53 Independent Up-Regulation of GADD45α. Cancer Res. 2008, 68, 2895–2903. [Google Scholar] [CrossRef] [Green Version]
- Da Violante, G.; Zerrouk, N.; Richard, I.; Provot, G.; Chaumeil, J.C.; Arnaud, P. Evaluation of the Cytotoxicity Effect of Dimethyl Sulfoxide (DMSO) on Caco2/TC7 Colon Tumor Cell Cultures. Biol. Pharm. Bull 2002, 25, 1600–1603. [Google Scholar] [CrossRef] [Green Version]
- Repetto, G.; del Peso, A.; Zurita, J.L. Neutral Red Uptake Assay for the Estimation of Cell Viability/Cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A Web-Based Graphical User Interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Kasavajhala, K.; Belfon, K.A.A.; Raguette, L.; Huang, H.; Migues, A.N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q.; et al. Ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16, 528–552. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, M.; Bilal, M.; Rahdar, A.; Barani, M.; Arshad, R.; Behl, T.; Brisc, C.; Banica, F.; Bungau, S. Nanomaterials for Diagnosis and Treatment of Brain Cancer: Recent Updates. Chemosensors. 2020, 8, 117. [Google Scholar] [CrossRef]
- Patra, P.K.; Bhattacharya, B. Nonergodicity of the Nose-Hoover Chain Thermostat in Computationally Achievable Time. Phys. Rev. E Stat Nonlin. Soft Matter Phys. 2014, 90, 043304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidler, D.; Riniker, S. Fast Nosé-Hoover Thermostat: Molecular Dynamics in Quasi-Thermodynamic Equilibrium. Phys. Chem. Chem. Phys. 2019, 21, 6059–6070. [Google Scholar] [CrossRef] [Green Version]
- Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Kumari, R.; Kumar, R.; Open Source Drug Discovery Consortium; Lynn, A. G_mmpbsa—A GROMACS Tool for High-Throughput MM-PBSA Calculations. J. Chem. Inf. Model 2014, 54, 1951–1962. [Google Scholar] [CrossRef]
Gene Symbol | Description | Fold Regulation | p-Value |
---|---|---|---|
BCL10 | B-cell CLL/lymphoma 10 | 2.50 | 0.019800 |
GADD45A | Growth arrest and DNA-damage-inducible, alpha | 6.24 | 0.000393 |
RIPK2 | Receptor-interacting serine-threonine kinase 2 | 2.83 | 0.002422 |
TNF | Tumor necrosis factor | 2.96 | 0.042660 |
TNFRSF10B | Tumor necrosis factor receptor superfamily, member 10b | 4.36 | 0.001260 |
TNFRSF1A | Tumor necrosis factor receptor superfamily, member 1A | 2.18 | 0.018576 |
ABL1 | C-abl oncogene 1, non-receptor tyrosine kinase | −2.65 | 0.006966 |
AIFM1 | Apoptosis-inducing factor, mitochondrion-associated, 1 | −2.48 | 0.001081 |
APAF1 | Apoptotic peptidase activating factor 1 | −2.74 | 0.002161 |
BAD | BCL2-associated agonist of cell death | −2.36 | 0.006358 |
BAG1 | BCL2-associated athanogene | −2.11 | 0.006014 |
BCL2L10 | BCL2-like 10 (apoptosis facilitator) | −2.38 | 0.019800 |
BIRC5 | Baculoviral IAP repeat containing 5 | −5.01 | 0.003025 |
BNIP3 | BCL2/adenovirus E1B 19kDa interacting protein 3 | −2.04 | 0.009433 |
BNIP3L | BCL2/adenovirus E1B 19kDa interacting protein 3-like | −2.01 | 0.005716 |
CASP1 | Caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta, convertase) | −3.76 | 0.033341 |
CASP14 | Caspase 14, apoptosis-related cysteine peptidase | −2.83 | 0.000610 |
CASP2 | Caspase 2, apoptosis-related cysteine peptidase | −2.63 | 0.009949 |
CASP6 | Caspase 6, apoptosis-related cysteine peptidase | −2.87 | 0.016235 |
CD27 | CD27 molecule | −3.05 | 0.001928 |
CD70 | CD70 molecule | −3.67 | 0.000879 |
CIDEA | Cell death-inducing DFFA-like effector a | −2.03 | 0.001025 |
CIDEB | Cell death-inducing DFFA-like effector b | −2.15 | 0.002795 |
CRADD | CASP2 and RIPK1 domain containing adaptor with death domain | −3.37 | 0.001127 |
DFFA | DNA fragmentation factor, 45kDa, alpha polypeptide | −2.34 | 0.020318 |
FADD | Fas (TNFRSF6)-associated via death domain | −3.68 | 0.000243 |
FAS | Fas (TNF receptor superfamily, member 6) | −5.41 | 0.000181 |
NAIP | NLR family, apoptosis inhibitory protein | −6.35 | 0.025237 |
NOD1 | Nucleotide-binding oligomerization domain containing 1 | −3.13 | 0.000604 |
PYCARD | PYD and CARD domain containing | −2.41 | 0.010219 |
TNFRSF11B | Tumor necrosis factor receptor superfamily, member 11b | −3.85 | 0.000160 |
TNFSF10 | Tumor necrosis factor (ligand) superfamily, member 10 | −6.25 | 0.000372 |
TP53 | Tumor protein p53 | −3.84 | 0.023076 |
Compound ID | HOMO (eV) | LUMO (eV) | HLG (eV) |
---|---|---|---|
MM134 | −0.238 | −0.224 | −0.014 |
MM136 | −0.239 | −0.208 | −0.030 |
MM137 | −0.243 | −0.220 | −0.022 |
MM139 | −0.250 | −0.201 | −0.049 |
Drug Target (PDB Code) | Docking Conditions | Binding Energy (BE) b of Inhibitors | ||||
---|---|---|---|---|---|---|
Explicit Water a | Scoring Function | MM134 | MM136 | MM137 | MM139 | |
AKT2 (3D0E) | Absent | Ligscore1 | −70.158 | −96.359 | −52.722 | −15.722 |
BTK (3GEN) | Present | Ligscore2 | −7.85 | −15.726 | −32.198 | −48.185 |
CHK1 (2YM8) | Present | Ligscore2 | −31.609 | −10.281 | −22.055 | −9.749 |
PD-L1 (7BEA) | Absent | Ligscore2 | −60.955 | −8.811 | −24.089 | −4.587 |
Parameters (Energy) | AKT2–MM134 (kJ/mol) | AKT2–MM136 (kJ/mol) | AKT2–MM137 (kJ/mol) | AKT2–MM139 (kJ/mol) | AKT2–G39 (kJ/mol) |
---|---|---|---|---|---|
Van der Waals | 226.8 ± 16.3 | −198.8 ± 11.3 | −145.9 ± 16.4 | −105.2 ± 19.4 | −221.7 ± 15.5 |
Electrostatic | −58.3 ± 15.5 | −11.6 ± 10.8 | −43.6 ± 19.1 | −29.3 ± 17.1 | −86.1 ± 16.2 |
Polar solvation | 221.5 ± 38.2 | 96.9 ± 22.8 | 155.9 ± 33.2 | 70.7 ± 27.7 | 181.5 ± 32.0 |
SASA | −21.1 ± 1.1 | −16.6 ± 0.9 | −15.6 ± 1.6 | −10.9 ± 2.3 | −20.5 ± 1.1 |
Binding free | −84.7 ± 23.5 | −130.1 ± 20.6 | −49.2 ± 25.9 | −74.7 ± 16.6 | −146.9 ± 38.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kciuk, M.; Marciniak, B.; Celik, I.; Zerroug, E.; Dubey, A.; Sundaraj, R.; Mujwar, S.; Bukowski, K.; Mojzych, M.; Kontek, R. Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine Sulfonamides as an Important Scaffold for Anticancer Drug Discovery—In Vitro and In Silico Evaluation. Int. J. Mol. Sci. 2023, 24, 10959. https://doi.org/10.3390/ijms241310959
Kciuk M, Marciniak B, Celik I, Zerroug E, Dubey A, Sundaraj R, Mujwar S, Bukowski K, Mojzych M, Kontek R. Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine Sulfonamides as an Important Scaffold for Anticancer Drug Discovery—In Vitro and In Silico Evaluation. International Journal of Molecular Sciences. 2023; 24(13):10959. https://doi.org/10.3390/ijms241310959
Chicago/Turabian StyleKciuk, Mateusz, Beata Marciniak, Ismail Celik, Enfale Zerroug, Amit Dubey, Rajamanikandan Sundaraj, Somdutt Mujwar, Karol Bukowski, Mariusz Mojzych, and Renata Kontek. 2023. "Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine Sulfonamides as an Important Scaffold for Anticancer Drug Discovery—In Vitro and In Silico Evaluation" International Journal of Molecular Sciences 24, no. 13: 10959. https://doi.org/10.3390/ijms241310959
APA StyleKciuk, M., Marciniak, B., Celik, I., Zerroug, E., Dubey, A., Sundaraj, R., Mujwar, S., Bukowski, K., Mojzych, M., & Kontek, R. (2023). Pyrazolo[4,3-e]tetrazolo[1,5-b][1,2,4]triazine Sulfonamides as an Important Scaffold for Anticancer Drug Discovery—In Vitro and In Silico Evaluation. International Journal of Molecular Sciences, 24(13), 10959. https://doi.org/10.3390/ijms241310959