Mass Spectrometry as a Quantitative Proteomic Analysis Tool for the Search for Temporal Lobe Epilepsy Biomarkers: A Systematic Review
Abstract
:1. Introduction
2. Methods and Research Design
2.1. Inclusion Criteria
Study Material
- -
- Mass-spectrometry (MALDI; MALDI/TOF: MALDI/TOF-TOF; ESI; etc.) with and without labels.
- -
- Two-dimensional gel-electrophoresis + mass-spectrometry.
- -
- Western blot + mass-spectrometry.
2.2. Exclusion Criteria
3. Results and Discussion
3.1. Tissues Profiling
3.2. Experimental Models
3.3. Circulating Proteins
3.4. Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cascino, G.D. Temporal Lobe Epilepsy: More than Hippocampal Pathology. Epilepsy Curr. 2005, 5, 187–189. [Google Scholar] [CrossRef] [Green Version]
- Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in adults. Lancet 2019, 393, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Mathern, G.W.; Pretorius, J.K.; Babb, T.L. Influence of the type of initial precipitating injury and at what age it occurs on course and outcome in patients with temporal lobe seizures. J. Neurosurg. 1995, 82, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Mathern, G.W.; Babb, T.L.; Leite, J.P.; Pretorius, K.; Yeoman, K.M.; Kuhlman, P.A. The pathogenic and progressive features of chronic human hippocampal epilepsy. Epilepsy Res. 1996, 26, 151–161. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Carrel, A.J.; Cruz Del Angel, Y.; Carlsen, J.; Thomas, A.X.; González, M.I.; Gardiner, K.J.; Brooks-Kayal, A. Altered Protein Profiles During Epileptogenesis in the Pilocarpine Mouse Model of Temporal Lobe Epilepsy. Front. Neurol. 2021, 12, 654606. [Google Scholar] [CrossRef]
- Ptkänen, A.; Lukasiuk, K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol. 2011, 10, 173–186. [Google Scholar] [CrossRef]
- Meriaux, C.; Franck, J.; Park, D.B.; Quanico, J.; Kim, Y.H.; Chung, C.K.; Park, Y.M.; Steinbusch, H.; Salzet, M.; Fournier, I. Human temporal lobe epilepsy analyses by tissue proteomics. Hippocampus 2014, 24, 628–642. [Google Scholar] [CrossRef] [PubMed]
- Kamphuis, W.; Mamber, C.; Moeton, M.; Kooijman, L.; Sluijs, J.A.; Jansen, A.H.P.; Verveer, M.; de Groot, L.R.; Smith, V.D.; Rangarajan, S.; et al. GFAP Isoforms in Adult Mouse Brain with a Focus on Neurogenic Astrocytes and Reactive Astrogliosis in Mouse Models of Alzheimer Disease. PLoS ONE 2012, 7, e42823. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Wen, F.; Yang, J.; Chen, L.; Wei, Y.-Q. A review of current applications of mass spectrometry for neuroproteomics in epilepsy. Mass Spectrom. Rev. 2009, 29, 197–246. [Google Scholar] [CrossRef]
- Liu, Y.; Beyer, A.; Aebersold, R. On the Dependency of Cellular Protein Levels on mRNA Abundance. Cell 2016, 165, 535–550. [Google Scholar] [CrossRef] [Green Version]
- Ong, S.-E.; Mann, M. Mass spectrometry–based proteomics turns quantitative. Nat. Chem. Biol. 2005, 1, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Meleady, P. Two-Dimensional Gel Electrophoresis and 2D-DIGE. Methods Mol. Biol. 2018, 1664, 3–14. [Google Scholar] [PubMed]
- Patterson, S.D. How Much of the Proteome Do We See with Discovery-Based Proteomics Methods and How Much Do We Need to See? Curr. Proteom. 2004, 1, 3–12. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, S.; Stenoien, D.L.; Paša-Tolić, L. High-throughput proteomics. Annu. Rev. Anal. Chem. 2014, 7, 427–454. [Google Scholar] [CrossRef] [Green Version]
- Aebersold, R.; Mann, M. Mass spectrometry-based proteomics. Nature 2003, 422, 198–207. [Google Scholar] [CrossRef]
- Schubert, O.T.; Röst, H.L.; Collins, B.C.; Rosenberger, G.; Aebersold, R. Quantitative proteomics: Challenges and opportunities in basic and applied research. Nat. Protoc. 2017, 12, 1289–1294. [Google Scholar] [CrossRef] [Green Version]
- Bantscheff, M.; Schirle, M.; Sweetman, G.; Rick, J.; Kuster, B. Quantitative mass spectrometry in proteomics: A critical review. Anal. Bioanal. Chem. 2007, 389, 1017–1031. [Google Scholar] [CrossRef] [Green Version]
- Cokol, M.; Iossifov, I.; Weinreb, C.; Rzhetsky, A. Emergent behavior of growing knowledge about molecular interactions. Nat. Biotechnol. 2005, 23, 1243–1247. [Google Scholar] [CrossRef]
- Bitsika, V.; Duveau, V.; Simon-Areces, J.; Mullen, W.; Roucard, C.; Makridakis, M.; Mermelekas, G.; Savvopoulos, P.; Depaulis, A.; Vlahou, A. High-Throughput LC–MS/MS Proteomic Analysis of a Mouse Model of Mesiotemporal Lobe Epilepsy Predicts Microglial Activation Underlying Disease Development. J. Proteome Res. 2016, 15, 1546–1562. [Google Scholar] [CrossRef] [Green Version]
- Keck, M.; Androsova, G.; Gualtieri, F.; Walker, A.; von Rüden, E.-L.; Russmann, V.; Deeg, C.A.; Hauck, S.M.; Krause, R.; Potschka, H. A systems level analysis of epileptogenesis-associated proteome alterations. Neurobiol. Dis. 2017, 105, 164–178. [Google Scholar] [CrossRef]
- Panina, Y.S.; Timechko, E.E.; Usoltseva, A.A.; Yakovleva, K.D.; Kantimirova, E.A.; Dmitrenko, D.V. Biomarkers of Drug Resistance in Temporal Lobe Epilepsy in Adults. Metabolites 2023, 13, 83. [Google Scholar] [CrossRef]
- Liu, J.Y.W.; Dzurova, N.; Al-Kaaby, B.; Mills, K.; Sisodiya, S.M.; Thom, M. Granule Cell Dispersion in Human Temporal Lobe Epilepsy: Proteomics Investigation of Neurodevelopmental Migratory Pathways. Front. Cell. Neurosci. 2020, 14, 53. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Jia, Y.; Zhao, Y.; Ma, C.; Bao, X.; Meng, X.; Dou, W.; Wang, X.; Ge, W. Proteomic profiling of sclerotic hippocampus revealed dysregulated packaging of vesicular neurotransmitters in temporal lobe epilepsy. Epilepsy Res. 2020, 166, 106412. [Google Scholar] [CrossRef] [PubMed]
- Xiao, W.; Yang, Z.; Yan, X.; Feng, L.; Long, L.; Tu, T.; Deng, N.; Chen, W.; Xiao, B.; Long, H.; et al. iTRAQ-Based Proteomic Analysis of Dentate Gyrus in Temporal Lobe Epilepsy with Hippocampal Sclerosis. Front. Neurol. 2021, 11, 626013. [Google Scholar] [CrossRef]
- Kitaura, H.; Shirozu, H.; Masuda, H.; Fukuda, M.; Fujii, Y.; Kakita, A. Pathophysiological Characteristics Associated with Epileptogenesis in Human Hippocampal Sclerosis. EBioMedicine 2018, 29, 38–46. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wang, Q.; He, J.; Pu, H.; Yang, W.; Ji, J. Proteomic analysis and comparison of the biopsy and autopsy specimen of human brain temporal lobe. Proteomics 2006, 6, 4987–4996. [Google Scholar] [CrossRef]
- Leandro, K.; Bicker, J.; Alves, G.; Falcão, A.; Fortuna, A. ABC transporters in drug-resistant epilepsy: Mechanisms of upregulation and therapeutic approaches. Pharmacol. Res. 2019, 144, 357–376. [Google Scholar] [CrossRef]
- Lee, D.A.; Lee, H.-J.; Kim, H.C.; Park, K.M. Temporal lobe epilepsy with or without hippocampal sclerosis: Structural and functional connectivity using advanced MRI techniques. J. Neuroimaging 2021, 31, 973–980. [Google Scholar] [CrossRef]
- Mukai, T.; Kinboshi, M.; Nagao, Y.; Shimizu, S.; Ono, A.; Sakagami, Y.; Okuda, A.; Fujimoto, M.; Ito, H.; Ikeda, A.; et al. Antiepileptic Drugs Elevate Astrocytic Kir4.1 Expression in the Rat Limbic Region. Front. Pharmacol. 2018, 9, 845. [Google Scholar] [CrossRef]
- Grewal, G.K.; Kukal, S.; Kanojia, N.; Madan, K.; Saso, L.; Kukreti, R. In Vitro Assessment of the Effect of Antiepileptic Drugs on Expression and Function of ABC Transporters and Their Interactions with ABCC2. Molecules 2017, 22, 1484. [Google Scholar] [CrossRef] [Green Version]
- Asai, Y.; Sakakibara, Y.; Nadai, M.; Katoh, M. Effect of carbamazepine on expression of UDP-glucuronosyltransferase 1A6 and 1A7 in rat brain. Drug Metab. Pharmacokinet. 2017, 32, 286–292. [Google Scholar] [CrossRef]
- Eun, J.-P.; Choi, H.-Y.; Kwak, Y.-G. Proteomic analysis of human cerebral cortex in epileptic patients. Exp. Mol. Med. 2004, 36, 185–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haapasalo, H.; Kyläniemi, M.; Paunu, N.; Kinnula, V.L.; Soini, Y. Expression of Antioxidant Enzymes in Astrocytic Brain Tumors. Brain Pathol. 2006, 13, 155–164. [Google Scholar] [CrossRef]
- Majercikova, Z.; Dibdiakova, K.; Gala, M.; Horvath, D.; Murin, R.; Zoldak, G.; Hatok, J. Different Approaches for the Profiling of Cancer Pathway-Related Genes in Glioblastoma Cells. Int. J. Mol. Sci. 2022, 23, 10883. [Google Scholar] [CrossRef]
- Yang, J.W.; Czech, T.; Felizardo, M.; Baumgartner, C.; Lubec, G. Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy. Amino Acids 2006, 30, 477–493. [Google Scholar] [CrossRef] [PubMed]
- Persike, D.S.; Marques-Carneiro, J.E.; Stein, M.L.d.L.; Yacubian, E.M.T.; Centeno, R.; Canzian, M.; Fernandes, M.J.d.S. Altered Proteins in the Hippocampus of Patients with Mesial Temporal Lobe Epilepsy. Pharmaceuticals 2018, 11, 95. [Google Scholar] [CrossRef] [Green Version]
- Keren-Aviram, G.; Dachet, F.; Bagla, S.; Balan, K.; Loeb, J.A.; Dratz, E.A. Proteomic analysis of human epileptic neocortex predicts vascular and glial changes in epileptic regions. PLoS ONE 2018, 13, e0195639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusuzawa, S.; Honda, T.; Fukata, Y.; Fukata, M.; Kanatani, S.; Tanaka, D.H.; Nakajima, K. Leucine-rich glioma inactivated 1 (Lgi1), an epilepsy-related secreted protein, has a nuclear localization signal and localizes to both the cytoplasm and the nucleus of the caudal ganglionic eminence neurons. Eur. J. Neurosci. 2012, 36, 2284–2292. [Google Scholar] [CrossRef]
- Das, A.B. Disease association of human tumor suppressor genes. Mol. Genet. Genom. 2019, 294, 931–940. [Google Scholar] [CrossRef]
- da Costa Neves, R.S.; Jardim, A.P.; Caboclo, L.O.; Lancellotti, C.; Marinho, T.F.; Hamad, A.P.; Marinho, M.; Centeno, R.; Cavalheiro, E.A.; Scorza, C.A.; et al. Granule cell dispersion is not a predictor of surgical outcome in temporal lobe epilepsy with mesial temporal sclerosis. Clin. Neuropathol. 2013, 32, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Thom, M.; Liagkouras, I.; Elliot, K.J.; Martinian, L.; Harkness, W.; McEvoy, A.; Caboclo, L.O.; Sisodiya, S.M. Reliability of patterns of hippocampal sclerosis as predictors of postsurgical outcome. Epilepsia 2010, 51, 1801–1808. [Google Scholar] [CrossRef]
- Wolfe, C.M.; Fitz, N.F.; Nam, K.N.; Lefterov, I.; Koldamova, R. The Role of APOE and TREM2 in Alzheimer′s Disease—Current Understanding and Perspectives. Int. J. Mol. Sci. 2018, 20, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, A.J. Review: Animal models of acquired epilepsy: Insights into mechanisms of human epileptogenesis. Neuropathol. Appl. Neurobiol. 2018, 44, 112–129. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-Y.; Yang, J.-L.; Chen, L.-J.; Zhang, Y.; Yang, M.-L.; Wu, Y.-Y.; Li, F.-Q.; Tang, M.-H.; Liang, S.-F.; Wei, Y.-Q. Comparative proteomics and correlated signaling network of rat hippocampus in the pilocarpine model of temporal lobe epilepsy. Proteomics 2008, 8, 582–603. [Google Scholar] [CrossRef]
- Araujo, B.; Torres, L.; Stein, M.; Cabral, F.R.; Herai, R.; Okamoto, O.; Cavalheiro, E. Decreased expression of proteins involved in energy metabolism in the hippocampal granular layer of rats submitted to the pilocarpine epilepsy model. Neurosci. Lett. 2014, 561, 46–51. [Google Scholar] [CrossRef]
- Bramanti, V.; Tomassoni, D.; Avitabile, M.; Amenta, F.; Avola, R. Biomarkers of glial cell proliferation and differentiation in culture. Front. Biosci. 2010, 2, 558–570. [Google Scholar] [CrossRef] [Green Version]
- Walker, A.; Russmann, V.; Deeg, C.A.; von Toerne, C.; Kleinwort, K.J.; Szober, C.; Rettenbeck, M.L.; von Rüden, E.-L.; Goc, J.; Ongerth, T.; et al. Proteomic profiling of epileptogenesis in a rat model: Focus on inflammation. Brain Behav. Immun. 2016, 53, 138–158. [Google Scholar] [CrossRef]
- Xu, W.; Zhang, S.; Feng, Y.; Zhang, C.; Xiao, Y.; Tian, F. iTRAQ-based proteomic analysis of the hippocampus of pentylenetetrazole-kindled epileptic rats. Int. J. Dev. Neurosci. 2020, 81, 125–141. [Google Scholar] [CrossRef]
- Sadeghi, L.; Rizvanov, A.A.; Dabirmanesh, B.; Salafutdinov, I.I.; Sayyah, M.; Shojaei, A.; Zahiri, J.; Mirnajafi-Zadeh, J.; Khorsand, B.; Khajeh, K.; et al. Proteomic profiling of the rat hippocampus from the kindling and pilocarpine models of epilepsy: Potential targets in calcium regulatory network. Sci. Rep. 2021, 11, 8252. [Google Scholar] [CrossRef]
- Qian, X.; Ding, J.-Q.; Zhao, X.; Sheng, X.-W.; Wang, Z.-R.; Yang, Q.-X.; Zheng, J.-J.; Zhong, J.-G.; Zhang, T.-Y.; He, S.-Q.; et al. Proteomic Analysis Reveals the Vital Role of Synaptic Plasticity in the Pathogenesis of Temporal Lobe Epilepsy. Neural Plast. 2022, 2022, 8252. [Google Scholar] [CrossRef]
- Hampel, H.; O’Bryant, S.E.; Molinuevo, J.L.; Zetterberg, H.; Masters, C.L.; Lista, S.; Kiddle, S.J.; Batrla, R.; Blennow, K. Blood-based biomarkers for Alzheimer disease: Mapping the road to the clinic. Nat. Rev. Neurol. 2018, 14, 639–652. [Google Scholar] [CrossRef] [PubMed]
- Lewczuk, P.; Riederer, P.; O’Bryant, S.E.; Verbeek, M.M.; Dubois, B.; Visser, P.J.; Jellinger, K.A.; Engelborghs, S.; Ramirez, A.; Parnetti, L.; et al. Cerebrospinal fluid and blood biomarkers for neurodegenerative dementias: An update of the Consensus of the Task Force on Biological Markers in Psychiatry of the World Federation of Societies of Biological Psychiatry. World J. Biol. Psychiatry 2018, 19, 244–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, N.L.; Anderson, N.G. The Human Plasma Proteome: History, character, and diagnostic prospects. Mol. Cell. Proteom. 2002, 1, 845–867, Erratum in Mol. Cell. Proteom. 2003, 2, 50.. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, F.; Chen, D.; Lu, Y.; Xiao, Z.; Guan, L.-F.; Yuan, J.; Wang, L.; Xi, Z.-Q.; Wang, X.-F. Proteomic analysis of cerebrospinal fluid from patients with idiopathic temporal lobe epilepsy. Brain Res. 2009, 1255, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Banote, R.K.; Larsson, D.; Berger, E.; Kumlien, E.; Zelano, J. Quantitative proteomic analysis to identify differentially expressed proteins in patients with epilepsy. Epilepsy Res. 2021, 174, 106674. [Google Scholar] [CrossRef]
- Parvareshi Hamrah, M.; Rezaei Tavirani, M.; Movahedi, M.; Ahmadi Karvigh, S. Identification of Serum Biomarkers for Differentiating Epileptic Seizures from Psychogenic Attacks Using a Proteomic Approach; a Comparative study. Arch. Acad. Emerg. Med. 2020, 8, e87. [Google Scholar]
- Sun, J.; Jiang, T.; Gu, F.; Ma, D.; Liang, J. TMT-Based Proteomic Analysis of Plasma from Children with Rolandic Epilepsy. Dis. Markers 2020, 2020, 8840482. [Google Scholar] [CrossRef]
- Ravizza, T.; Kostoula, C.; Vezzani, A. Immunity Activation in Brain Cells in Epilepsy: Mechanistic Insights and Pathological Consequences. Neuropediatrics 2013, 44, 330–335. [Google Scholar] [CrossRef]
- Marchi, N.; Granata, T.; Janigro, D. Inflammatory pathways of seizure disorders. Trends Neurosci. 2014, 37, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Tong, F.; Zhang, Y.; Cai, Y.; Ding, J.; Wang, Q.; Wang, X. Neuropilin-2 Signaling Modulates Mossy Fiber Sprouting by Regulating Axon Collateral Formation Through CRMP2 in a Rat Model of Epilepsy. Mol. Neurobiol. 2022, 59, 6817–6833. [Google Scholar] [CrossRef]
- Hainmueller, T.; Bartos, M. Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories. Nat. Rev. Neurosci. 2020, 21, 153–168. [Google Scholar] [CrossRef]
- Tran, T.S.; Rubio, M.E.; Clem, R.L.; Johnson, D.; Case, L.; Tessier-Lavigne, M.; Huganir, R.L.; Ginty, D.D.; Kolodkin, A.L. Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature 2009, 462, 1065–1069. [Google Scholar] [CrossRef] [Green Version]
- Gant, J.C.; Thibault, O.; Blalock, E.M.; Yang, J.; Bachstetter, A.; Kotick, J.; Schauwecker, P.E.; Hauser, K.F.; Smith, G.M.; Mervis, R.; et al. Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: Implications for autism and epilepsy. Epilepsia 2009, 50, 629–645. [Google Scholar] [CrossRef]
- Eisenberg, C.B. The Role of Neuropilin-2 in Excitatory and Inhibitory Neuron Development, Morphogenesis and Function. Ph.D. Thesis, Rutgers University-Graduate School-Newark, Newark, NJ, USA, 2022. [Google Scholar]
- Assous, M.; Martinez, E.; Eisenberg, C.; Shah, F.; Kosc, A.; Varghese, K.; Espinoza, D.; Bhimani, S.; Tepper, J.M.; Shiflett, M.W.; et al. Neuropilin 2 Signaling Mediates Corticostriatal Transmission, Spine Maintenance, and Goal-Directed Learning in Mice. J. Neurosci. 2019, 39, 8845–8859. [Google Scholar] [CrossRef]
- Morimura, R.; Nozawa, K.; Tanaka, H.; Ohshima, T. Phosphorylation of Dpsyl2 (CRMP2) and Dpsyl3 (CRMP4) is required for positioning of caudal primary motor neurons in the zebrafish spinal cord. Dev. Neurobiol. 2013, 73, 911–920. [Google Scholar] [CrossRef]
- Castegna, A.; Aksenov, M.; Thongboonkerd, V.; Klein, J.B.; Pierce, W.M.; Booze, R.; Markesbery, W.R.; Butterfield, D.A. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: Dihydropyrimidinase-related protein 2, α-enolase and heat shock cognate 71. J. Neurochem. 2002, 82, 1524–1532. [Google Scholar] [CrossRef] [Green Version]
- Curia, G.; Lucchi, C.; Vinet, J.; Gualtieri, F.; Marinelli, C.; Torsello, A.; Biagini, G. Pathophysiogenesis of Mesial Temporal Lobe Epilepsy: Is Prevention of Damage Antiepileptogenic? Curr. Med. Chem. 2014, 21, 663–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.-J.; Nai, A.-T.; He, G.-C.; Xiao, F.; Li, Z.-M.; Tang, S.-Y.; Liu, Y.-P.; Ai, X.-H. DPYSL2 as potential diagnostic and prognostic biomarker linked to immune infiltration in lung adenocarcinoma. World J. Surg. Oncol. 2021, 19, 274. [Google Scholar] [CrossRef] [PubMed]
- Jurga, A.M.; Paleczna, M.; Kadluczka, J.; Kuter, K.Z. Beyond the GFAP-Astrocyte Protein Markers in the Brain. Biomolecules 2021, 11, 1361. [Google Scholar] [CrossRef]
- Hayatdavoudi, P.; Hosseini, M.; Hajali, V.; Hosseini, A.; Rajabian, A. The role of astrocytes in epileptic disorders. Physiol. Rep. 2022, 10, e15239. [Google Scholar] [CrossRef] [PubMed]
- Bettcher, B.M.; Olson, K.E.; Carlson, N.E.; McConnell, B.V.; Boyd, T.; Adame, V.; Solano, D.A.; Anton, P.; Markham, N.; Thaker, A.A.; et al. Astrogliosis and episodic memory in late life: Higher GFAP is related to worse memory and white matter microstructure in healthy aging and Alzheimer’s disease. Neurobiol. Aging 2021, 103, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Abdelhak, A.; Huss, A.; Kassubek, J.; Tumani, H.; Otto, M. Serum GFAP as a biomarker for disease severity in multiple sclerosis. Sci. Rep. 2018, 8, 14798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katisko, K.; Cajanus, A.; Huber, N.; Jääskeläinen, O.; Kokkola, T.; Kärkkäinen, V.; Rostalski, H.; Hartikainen, P.; Koivisto, A.M.; Hannonen, S.; et al. GFAP as a biomarker in frontotemporal dementia and primary psychiatric disorders: Diagnostic and prognostic performance. J. Neurol. Neurosurg. Psychiatry 2021, 92, 1305–1312. [Google Scholar] [CrossRef]
- Çavdar, S.; Kuvvet, Y.; Sur-Erdem, I.; Özgür, M.; Onat, F. Relationships between astrocytes and absence epilepsy in rat: An experimental study. Neurosci. Lett. 2019, 712, 134518. [Google Scholar] [CrossRef]
- Anantha, J.; Goulding, S.R.; Wyatt, S.L.; Concannon, R.M.; Collins, L.M.; Sullivan, A.M.; O’Keeffe, G.W. STRAP and NMEMediate the Neurite Growth-Promoting Effects of the Neurotrophic Factor GDF5. iScience 2020, 23, 101457. [Google Scholar] [CrossRef]
- Misan, N.; Michalak, S.; Kapska, K.; Osztynowicz, K.; Ropacka-Lesiak, M. Blood-Brain Barrier Disintegration in Growth-Restricted Fetuses with Brain Sparing Effect. Int. J. Mol. Sci. 2022, 23, 12349. [Google Scholar] [CrossRef]
- Romani, P.; Ignesti, M.; Gargiulo, G.; Hsu, T.; Cavaliere, V. Extracellular NME proteins: A player or a bystander? Lab. Investig. 2017, 98, 248–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lööv, C.; Shevchenko, G.; Geeyarpuram Nadadhur, A.; Clausen, F.; Hillered, L.; Wetterhall, M.; Erlandsson, A. Identification of Injury Specific Proteins in a Cell Culture Model of Traumatic Brain Injury. PLoS ONE 2013, 8, e55983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lescuyer, P.; Allard, L.; Zimmermann-Ivol, C.G.; Burgess, J.A.; Hughes-Frutiger, S.; Burkhard, P.R.; Sanchez, J.-C.; Hochstrasser, D.F. Identification ofpost-mortem cerebrospinal fluid proteins as potential biomarkers of ischemia and neurodegeneration. Proteomics 2004, 4, 2234–2241. [Google Scholar] [CrossRef]
- Südhof, T.C. Neurotransmitter Release: The Last Millisecond in the Life of a Synaptic Vesicle. Neuron 2013, 80, 675–690. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.; Kwon, S.E.; Gaffaney, J.D.; Dunning, F.M.; Chapman, E.R. Uncoupling the roles of synaptotagmin I during endo- and exocytosis of synaptic vesicles. Nat. Neurosci. 2011, 15, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Baker, K.; Gordon, S.L.; Melland, H.; Bumbak, F.; Scott, D.J.; Jiang, T.J.; Owen, D.; Turner, B.J.; Boyd, S.G.; Rossi, M.; et al. SYT1-associated neurodevelopmental disorder: A case series. Brain 2018, 141, 2576–2591. [Google Scholar] [CrossRef] [Green Version]
- Courtney, N.A.; Bao, H.; Briguglio, J.S.; Chapman, E.R. Synaptotagmin 1 clamps synaptic vesicle fusion in mammalian neurons independent of complexin. Nat. Commun. 2019, 10, 4076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levitt, P.; Campbell, D.B. The genetic and neurobiologic compass points toward common signaling dysfunctions in autism spectrum disorders. J. Clin. Investig. 2009, 119, 747–754. [Google Scholar] [CrossRef] [Green Version]
- Jamain, S.; Quach, H.; Betancur, C.; Råstam, M.; Colineaux, C.; Gillberg, I.C.; Soderstrom, H.; Giros, B.; Leboyer, M.; Gillberg, C.; et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat. Genet. 2003, 34, 27–29. [Google Scholar] [CrossRef] [Green Version]
- Öhrfelt, A.; Brinkmalm, A.; Dumurgier, J.; Brinkmalm, G.; Hansson, O.; Zetterberg, H.; Bouaziz-Amar, E.; Hugon, J.; Paquet, C.; Blennow, K. The pre-synaptic vesicle protein synaptotagmin is a novel biomarker for Alzheimer’s disease. Alzheimer’s Res. Ther. 2016, 8, 41. [Google Scholar] [CrossRef] [Green Version]
- Aronica, E.; Boer, K.; Van Vliet, E.A.; Redeker, S.; Baayen, J.C.; Spliet, W.G.M.; Van Rijen, P.C.; Troost, D.; Da Silva, F.L.; Wadman, W.J.; et al. Complement activation in experimental and human temporal lobe epilepsy. Neurobiol. Dis. 2007, 26, 497–511. [Google Scholar] [CrossRef]
- Kopczynska, M.; Zelek, W.M.; Vespa, S.; Touchard, S.; Wardle, M.; Loveless, S.; Thomas, R.H.; Hamandi, K.; Morgan, B.P. Complement system biomarkers in epilepsy. Seizure 2018, 60, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Y.; Chen, T.; Bosco, D.B.; Xie, M.; Zheng, J.; Dheer, A.; Ying, Y.; Wu, Q.; Lennon, V.A.; Wu, L. The complement C3-C3aR pathway mediates microglia–astrocyte interaction following status epilepticus. Glia 2020, 69, 1155–1169. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wise, L.; Fukuchi, K.-I. TLR4 Cross-Talk with NLRP3 Inflammasome and Complement Signaling Pathways in Alzheimer’s Disease. Front. Immunol. 2020, 11, 724. [Google Scholar] [CrossRef]
- Krance, S.H.; Wu, C.-Y.; Zou, Y.; Mao, H.; Toufighi, S.; He, X.; Pakosh, M.; Swardfager, W. The complement cascade in Alzheimer’s disease: A systematic review and meta-analysis. Mol. Psychiatry 2019, 26, 5532–5541. [Google Scholar] [CrossRef]
- Zablotska, L.B.; Zupunski, L.; Leuraud, K.; Lopes, J.; Hinkle, J.; Pugeda, T.; Delgado, T.; Olschowka, J.; Williams, J.; O’banion, M.K.; et al. Radiation and CNS effects: Summary of evidence from a recent symposium of the Radiation Research Society. Int. J. Radiat. Biol. 2022, 1–11. [Google Scholar] [CrossRef]
- Subhramanyam, C.S.; Wang, C.; Hu, Q.; Dheen, S.T. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin. Cell Dev. Biol. 2019, 94, 112–120. [Google Scholar] [CrossRef]
- Lahuerta, M.; Gonzalez, D.; Aguado, C.; Fathinajafabadi, A.; García-Giménez, J.L.; Moreno-Estellés, M.; Romá-Mateo, C.; Knecht, E.; Pallardó, F.V.; Sanz, P. Reactive Glia-Derived Neuroinflammation: A Novel Hallmark in Lafora Progressive Myoclonus Epilepsy That Progresses with Age. Mol. Neurobiol. 2019, 57, 1607–1621. [Google Scholar] [CrossRef]
- Yu, Z.-L.; Jiang, J.-M.; Wu, D.-H.; Xie, H.-J.; Jiang, J.-J.; Zhou, L.; Peng, L.; Bao, G.-S. Febrile seizures are associated with mutation of seizure-related (SEZ) 6, a brain-specific gene. J. Neurosci. Res. 2006, 85, 166–172. [Google Scholar] [CrossRef]
- Aguiar, C.C.T.; Almeida, A.B.; Araújo, P.V.P.; de Abreu, R.N.D.C.; Chaves, E.M.C.; Vale, O.C.D.; Macêdo, D.S.; Woods, D.J.; Fonteles, M.M.d.F.; Vasconcelos, S.M.M. Oxidative Stress and Epilepsy: Literature Review. Oxidative Med. Cell. Longev. 2012, 2012, 795259. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.-W.; Dodia, C.; Feinstein, S.I.; Jain, M.K.; Fisher, A.B. 1-Cys Peroxiredoxin, a Bifunctional Enzyme with Glutathione Peroxidase and Phospholipase A2Activities. J. Biol. Chem. 2009, 275, 28421–28427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sizova, D. Protein Expression Profile of Alzheimer’s Disease Mouse Model Generated by Difference Gel Electrophoresis (DIGE) Approach. In Genomics, Proteomics, and the Nervous System; Advances in Neurobiology; Clelland, J., Ed.; Springer: New York, NY, USA, 2011; Volume 2. [Google Scholar]
- Qin, L.; Liu, X.; Liu, S.; Liu, Y.; Yang, Y.; Yang, H.; Chen, Y.; Chen, L. Differentially expressed proteins underlying childhood cortical dysplasia with epilepsy identified by iTRAQ proteomic profiling. PLoS ONE 2017, 12, e0172214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippov, M.A.; Vorobyov, V.V. Detrimental and synergistic role of epilepsy—Alzheimer’s disease risk factors. Neural Regen. Res. 2019, 14, 1376–1377. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Reiman, E.M.; Beach, T.G.; Serrano, G.E.; Sabbagh, M.N.; Nielsen, M.; Caselli, R.J.; Shi, J. Effect of ApoE isoforms on mitochondria in Alzheimer disease. Neurology 2020, 94, e2404–e2411. [Google Scholar] [CrossRef]
- Pumain, R.; Laschet, J. A Key Glycolytic Enzyme Plays a Dual Role in GABAergic Neurotransmission and in Human Epilepsy. Crit. Rev. Neurobiol. 2006, 18, 197–203. [Google Scholar] [CrossRef]
- Hara, M.R.; Agrawal, N.; Kim, S.F.; Cascio, M.B.; Fujimuro, M.; Ozeki, Y.; Takahashi, M.; Cheah, J.H.; Tankou, S.K.; Hester, L.D.; et al. S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nature 2005, 7, 665–674. [Google Scholar] [CrossRef]
- Sekar, S.; Taghibiglou, C. Nuclear accumulation of GAPDH, GluA2 and p53 in Post-mortem Substantia Nigral region of Patients with Parkinson’s Disease. Neurosci. Lett. 2019, 716, 134641. [Google Scholar] [CrossRef]
- Wierschke, S.; Gigout, S.; Horn, P.; Lehmann, T.-N.; Dehnicke, C.; Bräuer, A.U.; Deisz, R.A. Evaluating reference genes to normalize gene expression in human epileptogenic brain tissues. Biochem. Biophys. Res. Commun. 2010, 403, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Cumming, R.C.; Schubert, D. Amyloid-β induces disulfide bonding and aggregation of GAPDH in Alzheimer’s disease. FASEB J. 2005, 19, 2060–2062. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Disatnik, M.-H.; Mochly-Rosen, D. Impaired GAPDH -induced mitophagy contributes to the pathology of Huntington’s disease. EMBO Mol. Med. 2015, 7, 1307–1326. [Google Scholar] [CrossRef]
- Liu, M.; Zuo, S.; Guo, X.; Peng, J.; Xing, Y.; Guo, Y.; Li, C.; Xing, H. The Study of Overexpression of Peroxiredoxin-2 Reduces MPP+-Induced Toxicity in the Cell Model of Parkinson’s Disease. Neurochem. Res. 2023, 48, 2129–2137. [Google Scholar] [CrossRef]
- Behl, T.; Rana, T.; Alotaibi, G.H.; Shamsuzzaman, M.; Naqvi, M.; Sehgal, A.; Singh, S.; Sharma, N.; Almoshari, Y.; Abdellatif, A.A.; et al. Polyphenols inhibiting MAPK signalling pathway mediated oxidative stress and inflammation in depression. Biomed. Pharmacother. 2022, 146, 112545. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Moneim, A.; Yousef, A.I.; Abd El-Twab, S.M.; Abdel Reheim, E.S.; Ashour, M.B. Gallic acid and p-coumaric acid attenuate type 2 diabetes-induced neurodegeneration in rats. Metab. Brain Dis. 2017, 32, 1279–1286. [Google Scholar] [CrossRef]
- Dionísio, P.A.; Oliveira, S.R.; Gaspar, M.M.; Gama, M.J.; Castro-Caldas, M.; Amaral, J.D.; Rodrigues, C.M.P. Ablation of RIP3 protects from dopaminergic neurodegeneration in experimental Parkinson’s disease. Cell Death Dis. 2019, 10, 840. [Google Scholar] [CrossRef] [Green Version]
- Ji, S.; Ye, L.; Zhang, L.; Xu, D.; Dai, J. Retinal neurodegeneration in a mouse model of green-light-induced myopia. Exp. Eye Res. 2022, 223, 109208. [Google Scholar] [CrossRef]
- Reddy, S.D.; Younus, I.; Sridhar, V.; Reddy, D.S. Neuroimaging Biomarkers of Experimental Epileptogenesis and Refractory Epilepsy. Int. J. Mol. Sci. 2019, 20, 220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarıkaya, S.; Yaşin, S.; Çalık, M.; Yoldaş, T. Investigation on Acute Phase Reactants and Oxidant—Antioxidant Parameters in Patients Diagnosed as Having Generalized Tonic Clonic Type Epilepsy on Antiepileptic Monotherapy and Polytherapy. Med. J. Mustafa Kemal Univ. 2021, 12, 158–164. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Sheng, H.; Li, H.; Wang, R. Acute phase reactant serum amyloid A in inflammation and other diseases. Adv. Clin. Chem. 2019, 90, 25–80. [Google Scholar] [CrossRef]
- Gulhar, R.; Ashraf, M.A.; Jialal, I. Physiolohy, Acute Phase Reactants; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Gershen, L.D.; Zanotti-Fregonara, P.; Dustin, I.H.; Liow, J.-S.; Hirvonen, J.; Kreisl, W.C.; Jenko, K.J.; Inati, S.K.; Fujita, M.; Morse, C.L.; et al. Neuroinflammation in Temporal Lobe Epilepsy Measured Using Positron Emission Tomographic Imaging of Translocator Protein. JAMA Neurol. 2015, 72, 882–888. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.-W.; Zhang, X.; Huang, W.-J. Role of neuroinflammation in neurodegenerative diseases (Review). Mol. Med. Rep. 2016, 13, 3391–3396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves Carvalho, A.; Firuzi, O.; Joao Gama, M.; van Horssen, J.; Saso, L. Oxidative Stress and Antioxidants in Neurological Diseases: Is There Still Hope? Curr. Drug Targets 2017, 18, 705–718. [Google Scholar] [CrossRef]
- Staley, K. Molecular mechanisms of epilepsy. Nat. Neurosci. 2015, 18, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Thornburg-Suresh, E.J.C.; Richardson, J.E.; Summers, D.W. Membrane association is required for Stmn2-mediated axon protection. bioRxiv 2022. [Google Scholar] [CrossRef]
- Moulson, A.J.; Squair, J.W.; Franklin, R.J.M.; Tetzlaff, W.; Assinck, P. Diversity of Reactive Astrogliosis in CNS Pathology: Heterogeneity or Plasticity? Front. Cell. Neurosci. 2021, 15, 703810. [Google Scholar] [CrossRef]
- Ermert, D.; Blom, A.M. C4b-binding protein: The good, the bad and the deadly. Novel functions of an old friend. Immunol. Lett. 2016, 169, 82–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, B.C.; Shen, H.; Zhang, Y.; Zhu, X.; Wang, J.; Xu, P.; Jiang, D.; Yu, X. The antiepileptic drug levetiracetam promotes neuroblast differentiation and expression of superoxide dismutase in the mouse hippocampal dentate gyrus via PI3K/Akt signalling. Neurosci. Lett. 2018, 662, 84–90. [Google Scholar] [CrossRef] [PubMed]
Publication | |||||||
---|---|---|---|---|---|---|---|
Mériaux [7] | + | ||||||
Persike [36] | + | ||||||
Liu [22] | + | ||||||
Zhang [23] | - | ||||||
Yang [35] | - | + | - | ||||
Keren-Aviram [37] | + | - | + | - | |||
Eun [32] | - | + | |||||
Xiao [24] | + | + | |||||
Protein | AIDA | DPYSL2 | GFAP | SYT1 | SNCA | GAPDH | BAX |
Protein | Keck [20] | Bitsika [19] | Qian [50] | Walker [47] | Sadeghi [49] | Araujo [45] | Liu [44] | Xu [48] |
---|---|---|---|---|---|---|---|---|
Got2 | + | - | ||||||
Ywhae | - | + | ||||||
Park7 | - | - | ||||||
Pea15 | - | + | ||||||
Clu | + | + | ||||||
Gfap | + | + | + | |||||
Vim | + | + | + | + | + | |||
Tnc | + | + | ||||||
Msn | + | + | ||||||
Syn2 | - | - | + | |||||
Krt8 | + | + | ||||||
Nrgn | + | + | ||||||
Dnm2 | + | + | ||||||
Alb | + | + | ||||||
Tagln3 | + | + | ||||||
Glo1 | + | + | ||||||
Snap25 | - | + | ||||||
Stmn1 | - | + | ||||||
Eno2 | + | + | ||||||
Dnm1 | + | + | ||||||
Nme1 | + | + | ||||||
Hspd1 | + | + | ||||||
Ina | - | + | ||||||
Glul | + | - | ||||||
Ckb | + | - | ||||||
Pdia3 | - | + | ||||||
Tpi1 | + | - | ||||||
Syn2 | - | - | + | |||||
S100a4 | + | + |
Overlaps of Circulating Proteins | ||||||||
---|---|---|---|---|---|---|---|---|
Banote [55] | + | + | - | - | ||||
Sun [57] | - | - | + | - | + | + | + | |
Xiao [54] | + | - | - | + | ||||
Hamrah [56] | + | |||||||
Protein | MBL2 | VWF | APOE | APOC1 | SOD1 | CTSD | ORM1 | PCOLCE |
Protein | Persike [36] | Liu [22] | Zhang [23] | Yang [35] | Keren-Aviram [37] | Eun [32] | Banote [55] | Sun [57] | Xiao [54] | Keck [20] | Bitsika [19] | Qian [50] | Walker [47] | Sadeghi [49] | Araujo [45] | Liu [44] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DPYSL2 | + | + | - | |||||||||||||
PARK7 | + | - | - | - | ||||||||||||
GFAP | + | - | + | + | + | |||||||||||
SYT1 | - | - | - | |||||||||||||
C4B | + | + | + | |||||||||||||
PRDX6 | + | - | + | |||||||||||||
GAPDH | - | - | - | - | + | |||||||||||
STMN1 | + | - | + | |||||||||||||
APOE | - | + | + | |||||||||||||
NME1 | - | + | + | |||||||||||||
TPI1 | - | + | - | |||||||||||||
YWHAE | - | - | + | |||||||||||||
MSN | - | + | + | |||||||||||||
CLU | - | + | + | |||||||||||||
Vim | + | + | + | + | + | |||||||||||
Syn2 | - | - | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timechko, E.E.; Yakimov, A.M.; Paramonova, A.I.; Usoltseva, A.A.; Utyashev, N.P.; Ivin, N.O.; Utyasheva, A.A.; Yakunina, A.V.; Kalinin, V.A.; Dmitrenko, D.V. Mass Spectrometry as a Quantitative Proteomic Analysis Tool for the Search for Temporal Lobe Epilepsy Biomarkers: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 11130. https://doi.org/10.3390/ijms241311130
Timechko EE, Yakimov AM, Paramonova AI, Usoltseva AA, Utyashev NP, Ivin NO, Utyasheva AA, Yakunina AV, Kalinin VA, Dmitrenko DV. Mass Spectrometry as a Quantitative Proteomic Analysis Tool for the Search for Temporal Lobe Epilepsy Biomarkers: A Systematic Review. International Journal of Molecular Sciences. 2023; 24(13):11130. https://doi.org/10.3390/ijms241311130
Chicago/Turabian StyleTimechko, Elena E., Alexey M. Yakimov, Anastasia I. Paramonova, Anna A. Usoltseva, Nikita P. Utyashev, Nikita O. Ivin, Anna A. Utyasheva, Albina V. Yakunina, Vladimir A. Kalinin, and Diana V. Dmitrenko. 2023. "Mass Spectrometry as a Quantitative Proteomic Analysis Tool for the Search for Temporal Lobe Epilepsy Biomarkers: A Systematic Review" International Journal of Molecular Sciences 24, no. 13: 11130. https://doi.org/10.3390/ijms241311130
APA StyleTimechko, E. E., Yakimov, A. M., Paramonova, A. I., Usoltseva, A. A., Utyashev, N. P., Ivin, N. O., Utyasheva, A. A., Yakunina, A. V., Kalinin, V. A., & Dmitrenko, D. V. (2023). Mass Spectrometry as a Quantitative Proteomic Analysis Tool for the Search for Temporal Lobe Epilepsy Biomarkers: A Systematic Review. International Journal of Molecular Sciences, 24(13), 11130. https://doi.org/10.3390/ijms241311130