Atomic Layer Deposition of Alumina-Coated Thin-Film Cathodes for Lithium Microbatteries
Abstract
:1. Introduction
2. Results
2.1. Upper Limit of 4.2 V
2.2. Upper Limit of 4.5 V
2.3. Upper Limit of 4.4 V
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fergus, J.W. Recent developments in cathode materials for lithium ion batteries. J. Power Source 2010, 195, 939–954. [Google Scholar] [CrossRef]
- Lee, J.; Lee, E.; Park, J.; Park, S.; Lee, S. Ultrahigh-Energy-Density Lithium-Ion Batteries Based on a High-Capacity Anode and a High-Voltage Cathode with an Electroconductive Nanoparticle Shell. Adv. Energy Mater. 2014, 4, 1301542. [Google Scholar] [CrossRef]
- Kalluri, S.; Yoon, M.; Jo, M.; Park, S.; Myeong, S.; Kim, J.; Dou, S.X.; Guo, Z.; Cho, J. Surface Engineering Strategies of Layered LiCoO2 Cathode Material to Realize High-Energy and High-Voltage Li-Ion Cells. Adv. Energy Mater. 2017, 7, 1601507. [Google Scholar] [CrossRef]
- Fey, G.T.-K.; Kumar, T.P. Long-Cycling Coated LiCoO2 Cathodes for Lithium Batteries—A Review. J. Ind. Eng. Chem. 2004, 10, 1090–1103. [Google Scholar]
- Yu, X.; Manthiram, A. Electrode–electrolyte interfaces in lithium-based batteries. Energy Environ. Sci. 2018, 11, 527–543. [Google Scholar] [CrossRef]
- Teranishi, T.; Yoshikawa, Y.; Yoneda, M.; Kishimoto, A.; Halpin, J.; O’Brien, S.; Modreanu, M.; Povey, I.M. Aluminum interdiffusion into LiCoO2 using atomic layer deposition for high rate lithium ion batteries. ACS Appl. Energy Mater. 2018, 1, 3277–3282. [Google Scholar] [CrossRef]
- Xiao, B.; Tang, Q.; Dai, X.; Wu, F.; Chen, H.; Li, J.; Mai, Y.; Gu, Y. Enhanced Interfacial Kinetics and High Rate Performance of LiCoO2Thin-Film Electrodes by Al Doping and In Situ Al2O3Coating. ACS Omega 2022, 7, 31597–31606. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Dahn, J.R. Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V. Electrochim. Acta 2004, 49, 1079–1090. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, X.; Chen, L. Performance Improvement of Surface-Modified LiCoO2 Cathode Materials: An Infrared Absorption and X-Ray Photoelectron Spectroscopic Investigation. J. Electrochem. Soc. 2003, 150, A199–A208. [Google Scholar] [CrossRef]
- Mladenov, M.; Stoyanova, R.; Zhecheva, E.; Vassilev, S. Effect of Mg doping and MgO-surface modification on the cycling stability of LiCoO2 electrodes. Electrochem. Commun. 2001, 3, 410–416. [Google Scholar] [CrossRef]
- Sun, Y.K.; Han, J.M.; Myung, S.T.; Lee, S.W.; Amine, K. Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode. Electrochem. Commun. 2006, 8, 821–826. [Google Scholar] [CrossRef]
- Moon, S.H.; Kim, M.C.; Kim, E.S.; Shin, Y.K.; Lee, J.E.; Choi, S.; Park, K.W. TiO2-coated LiCoO2 electrodes fabricated by a sputtering deposition method for lithium-ion batteries with enhanced electrochemical performance. RSC Adv. 2019, 9, 7903–7907. [Google Scholar] [CrossRef]
- Zhao, B.; Nisula, M.; Dhara, A.; Henderick, L.; Mattelaer, F.; Dendooven, J.; Detavernier, C.; Zhao, B.; Nisula, M.; Dhara, A.; et al. Atomic Layer Deposition of Indium-Tin-Oxide as Multifunctional Coatings on V2O5 Thin-Film Model Electrode for Lithium-Ion Batteries. Adv. Mater. Interfaces 2020, 7, 2001022. [Google Scholar] [CrossRef]
- Mattelaer, F.; Vereecken, P.M.; Dendooven, J.; Detavernier Mattelaer, C.F.; Dendooven, J.; Detavernier, C.; Vereecken, P.M. The Influence of Ultrathin Amorphous ALD Alumina and Titania on the Rate Capability of Anatase TiO2 and LiMn2O4 Lithium Ion Battery Electrodes. Adv. Mater. Interfaces 2017, 4, 1601237. [Google Scholar] [CrossRef]
- Poznyak, A.; Pligovka, A.; Turavets, U.; Norek, M. On-Aluminum and Barrier Anodic Oxide: Meeting the Challenges of Chemical Dissolution Rate in Various Acids and Solutions. Coatings 2020, 10, 875. [Google Scholar] [CrossRef]
- Luo, D.; Li, G.; Yu, C.; Yang, L.; Zheng, J.; Guan, X.; Li, L. Low-concentration donor-doped LiCoO2 as a high performance cathode material for Li-ion batteries to operate between −10.4 and 45.4 °C. J. Mater. Chem. 2012, 22, 22233–22241. [Google Scholar] [CrossRef]
- Yoon, M.; Dong, Y.; Yoo, Y.; Myeong, S.; Hwang, J.; Kim, J.; Choi, S.-H.; Sung, J.; Ju Kang, S.; Li, J.; et al. Unveiling Nickel Chemistry in Stabilizing High-Voltage Cobalt-Rich Cathodes for Lithium-Ion Batteries. Adv. Funct. Mater. 2020, 30, 1907903. [Google Scholar] [CrossRef]
- Nithya, C.; Thirunakaran, R.; Sivashanmugam, A.; Gopukumar, S. High-performing LiMgxCuyCo1−x—YO2 cathode material for lithium rechargeable batteries. ACS Appl. Mater. Interfaces 2012, 4, 4040–4046. [Google Scholar] [CrossRef]
- Yin, R.-Z.; Kim, Y.-S.; Shin, S.-J.; Jung, I.; Kim, J.-S.; Jeong, S.-K. In Situ XRD Investigation and Thermal Properties of Mg Doped LiCoO2 for Lithium Ion Batteries. J. Electrochem. Soc. 2012, 159, A253–A258. [Google Scholar] [CrossRef]
- Wang, L.; Ma, J.; Wang, C.; Yu, X.; Liu, R.; Jiang, F.; Sun, X.; Du, A.; Zhou, X.; Cui, G.; et al. A Novel Bifunctional Self-Stabilized Strategy Enabling 4.6 V LiCoO2 with Excellent Long-Term Cyclability and High-Rate Capability. Adv. Sci. 2019, 6, 1900355. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Su, X.; Lei, D.; Qin, Y.; Wen, J.; Guo, F.; Wu, Y.A.; Rong, Y.; Kou, R.; Xiao, X.; et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 2018, 3, 936–943. [Google Scholar] [CrossRef]
- Zhang, J.N.; Li, Q.; Ouyang, C.; Yu, X.; Ge, M.; Huang, X.; Hu, E.; Ma, C.; Li, S.; Xiao, R.; et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 2019, 4, 594–603. [Google Scholar] [CrossRef] [Green Version]
- Sivajee Ganesh, K.; Purusottam Reddy, B.; Jeevan Kumar, P.; Hussain, O.M. Influence of Zr dopant on microstructural and electrochemical properties of LiCoO2 thin film cathodes by RF sputtering. J. Electroanal. Chem. 2018, 828, 71–79. [Google Scholar] [CrossRef]
- Woo, J.H.; Travis, J.J.; George, S.M.; Lee, S.-H. Utilization of Al2O3 Atomic Layer Deposition for Li Ion Pathways in Solid State Li Batteries. J. Electrochem. Soc. 2015, 162, A344–A349. [Google Scholar] [CrossRef] [Green Version]
- Goniakowski, J.; Noguera, C. Insulating oxide surfaces and nanostructures. Comptes Rendus Phys. 2016, 17, 471–480. [Google Scholar] [CrossRef]
- Liu, N.; Li, H.; Wang, Z.; Huang, X.; Chen, L. Origin of solid electrolyte interphase on nanosized LiCoO2. Electrochem. Solid-State Lett. 2006, 9, A328. [Google Scholar] [CrossRef]
- Lee, J.T.; Wang, F.M.; Cheng, C.S.; Li, C.C.; Lin, C.H. Low-temperature atomic layer deposited Al2O3 thin film on layer structure cathode for enhanced cycleability in lithium-ion batteries. Electrochim. Acta 2010, 55, 4002–4006. [Google Scholar] [CrossRef]
- Wang, K.; Wan, J.; Xiang, Y.; Zhu, J.; Leng, Q.; Wang, M.; Xu, L.; Yang, Y. Recent advances and historical developments of high voltage lithium cobalt oxide materials for rechargeable Li-ion batteries. J. Power Source 2020, 460, 228062. [Google Scholar] [CrossRef]
- Liu, J.; Liu, N.; Liu, D.; Bai, Y.; Shi, L.; Wang, Z.; Chen, L.; Hennige, V.; Schuch, A. Improving the performances of LiCoO2 cathode materials by soaking nano-alumina in commercial electrolyte. J. Electrochem. Soc. 2006, 154, A55. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, P.; Lin, M.; Zhao, W.; Zhang, Z.; Zhao, Y.; Yang, Y. Toward a stable electrochemical interphase with enhanced safety on high-voltage LiCoO2 cathode: A case of phosphazene additives. J. Power Source 2017, 359, 391–399. [Google Scholar] [CrossRef]
- Dong, T.; Zhang, J.; Xu, G.; Chai, J.; Du, H.; Wang, L.; Wen, H.; Zang, X.; Du, A.; Jia, Q.; et al. A multifunctional polymer electrolyte enables ultra-long cycle-life in a high-voltage lithium metal battery. Energy Environ. Sci. 2018, 11, 1197–1203. [Google Scholar] [CrossRef]
- Amatucci, G.G.; Tarascon, J.M.; Klein, L.C. Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries. Solid State Ion. 1996, 83, 167–173. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, H.; Hu, L.; Amine, K.; Washington, D.C. High Voltage Electrolyte for Lithium Batteries Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting. 2012. Available online: https://www.energy.gov/eere/vehicles/articles/high-voltage-electrolyte-lithium-batteries (accessed on 3 May 2023).
- Cherkashinin, G.; Jaegermann, W. Dissociative adsorption of H2O on LiCoO2 (00 l) surfaces: Co reduction induced by electron transfer from intrinsic defects. J. Chem. Phys. 2016, 144, 184706. [Google Scholar] [CrossRef] [PubMed]
- Motzko, M.; Carrillo Solano, M.A.; Jaegermann, W.; Hausbrand, R. Photoemission Study on the Interaction between LiCoO2 Thin Films and Adsorbed Water. J. Phys. Chem. C 2015, 119, 23407–23412. [Google Scholar] [CrossRef]
- Bekzhanov, A.; Uzakbaiuly, B.; Mukanova, A.; Bakenov, Z. Annealing Optimization of Lithium Cobalt Oxide Thin Film for Use as a Cathode in Lithium-Ion Microbatteries. Nanomater 2022, 12, 2188. [Google Scholar] [CrossRef]
- Yoon, Y.S.; Lee, S.H.; Cho, S.B.; Nam, S.C. Influence of two-step heat treatment on sputtered lithium cobalt oxide thin films. J. Electrochem. Soc. 2011, 158, A1313. [Google Scholar] [CrossRef]
- Wang, C.; Dai, X.; Guan, X.; Jia, W.; Bai, Y.; Li, J. LiCoO2 thin film cathode sputtered onto 500 °C substrate. Electrochim. Acta 2020, 354, 136668. [Google Scholar] [CrossRef]
- Noh, J.P.; Cho, G.B.; Jung, K.T.; Kang, W.G.; Ha, C.W.; Ahn, H.J.; Ahn, J.H.; Nam, T.H.; Kim, K.W. Fabrication of LiCoO2 thin film cathodes by DC magnetron sputtering method. Mater. Res. Bull. 2012, 47, 2823–2826. [Google Scholar] [CrossRef]
- Trask, J.; Anapolsky, A.; Cardozo, B.; Januar, E.; Kumar, K.; Miller, M.; Brown, R.; Bhardwaj, R. Optimization of 10-μm, sputtered, LiCoO2 cathodes to enable higher energy density solid state batteries. J. Power Source 2017, 350, 56–64. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, M.; Yan, Y.; Wei, Y.; Liu, W.; Zhang, X.; Li, J.; Fu, Z.; Li, J.; Zhang, X. Annealing of LiCoO2 films on flexible stainless steel for thin film lithium batteries. J. Mater. Res. 2020, 35, 31–41. [Google Scholar] [CrossRef]
- Jan, D.J.; Lee, C.C.; Yu, Y.J.; Chiang, H.W. Evaluation of lithium cobalt oxide films deposited by radio frequency magnetron sputtering as thin-film battery cathodes. Jpn. J. Appl. Phys. 2019, 58, 085501. [Google Scholar] [CrossRef]
- Kohler, R.; Proell, J.; Ulrich, S.; Trouillet, V.; Indris, S.; Przybylski, M.; Pfleging, W. Laser-assisted structuring and modification of LiCoO2 thin films. SPIE Proc. 2009, 7202, 69–79. [Google Scholar] [CrossRef]
- Liao, C.L.; Fung, K.Z. Lithium cobalt oxide cathode film prepared by rf sputtering. J. Power Source 2004, 128, 263–269. [Google Scholar] [CrossRef]
- Tintignac, S.; Baddour-Hadjean, R.; Pereira-Ramos, J.P.; Salot, R. High performance sputtered LiCoO2 thin films obtained at a moderate annealing treatment combined to a bias effect. Electrochim. Acta 2012, 60, 121–129. [Google Scholar] [CrossRef]
- Kim, H.S.; Oh, Y.; Kang, K.H.; Kim, J.H.; Kim, J.; Yoon, C.S. Characterization of Sputter-Deposited LiCoO2 Thin Film Grown on NASICON-type Electrolyte for Application in All-Solid-State Rechargeable Lithium Battery. ACS Appl. Mater. Interfaces 2017, 9, 16063–16070. [Google Scholar] [CrossRef]
- Jung, K.T.; Cho, G.B.; Kim, K.W.; Nam, T.H.; Jeong, H.M.; Huh, S.C.; Chung, H.S.; Noh, J.P. Influence of the substrate texture on the structural and electrochemical properties of sputtered LiCoO2 thin films. Thin Solid Films 2013, 546, 414–417. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, Z.; Du, G.; Zhang, P.; Liu, H. LiCoO2 cathode thin film fabricated by RF sputtering for lithium ion microbatteries. Surf. Coatings Technol. 2010, 204, 1710–1714. [Google Scholar] [CrossRef]
- Noh, J.P.; Jung, K.T.; Jang, M.S.; Kwon, T.H.; Cho, G.B.; Kim, K.W.; Nam, T.H. Protection Effect of ZrO2 Coating Layer on LiCoO2 Thin Film Fabricated by DC Magnetron Sputtering. J. Nanosci. Nanotechnol. 2013, 13, 7152–7154. [Google Scholar] [CrossRef]
- Turrell, S.J.; Zekoll, S.; Liu, J.; Grovenor, C.R.M.; Speller, S.C. Optimization of a potential manufacturing process for thin-film LiCoO2 cathodes. Thin Solid Films 2021, 735, 138888. [Google Scholar] [CrossRef]
- Puurunen, R.L. Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J. Appl. Phys. 2005, 97, 121301. [Google Scholar] [CrossRef]
- Boryło, P.; Lukaszkowicz, K.; Szindler, M.; Kubacki, J.; Balin, K.; Basiaga, M.; Szewczenko, J. Structure and properties of Al2O3 thin films deposited by ALD process. Vacuum 2016, 131, 319–326. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.H.; Jo, I.H.; Seo, J.; Yoo, Y.E.; Kim, J.H. Influence of growth temperature on dielectric strength of Al2O3 thin films prepared via atomic layer deposition at low temperature. Sci. Rep. 2022, 12, 5124. [Google Scholar] [CrossRef]
- Young, M.J.; Musgrave, C.B.; George, S.M. Growth and Characterization of Al2O3 Atomic Layer Deposition Films on sp2-Graphitic Carbon Substrates Using NO2/Trimethylaluminum Pretreatment. ACS Appl. Mater. Interfaces 2015, 7, 12030–12037. [Google Scholar] [CrossRef]
- Ott, A.W.; Klaus, J.W.; Johnson, J.M.; George, S.M. Al3O3 thin film growth on Si(100) using binary reaction sequence chemistry. Thin Solid Films 1997, 292, 135–144. [Google Scholar] [CrossRef]
- Naumann, V.; Otto, M.; Wehrspohn, R.B.; Werner, M.; Hagendorf, C. Interface and material characterization of thin ALD-Al 2 O 3 layers on crystalline silicon. Energy Procedia 2012, 27, 312–318. [Google Scholar] [CrossRef]
- Chen, L.; Warburton, R.E.; Chen, K.S.; Libera, J.A.; Johnson, C.; Yang, Z.; Hersam, M.C.; Greeley, J.P.; Elam, J.W. Mechanism for Al2O3 Atomic Layer Deposition on LiMn2O4 from In Situ Measurements and Ab Initio Calculations. Chem 2018, 4, 2418–2435. [Google Scholar] [CrossRef] [Green Version]
# | Material Type | Deposition Condition | Post-Treatment | Thickness | Microbattery Type | Initial Discharge Capacity | Voltage Range | Current Rate, Retention % | Cycles | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1 | LCO film | Ar, DC current 150 mA | Annealed at 600 °C in O2 for 1 h | 0.75 µm | Li/liquid electrolyte/ LCO | 65.7 µAh cm−2 µm−1 (132 mAh g−1) | 3–4.4 V | 147 µA cm−2 (~2.7 C), 87% 147 µA cm−2 (~2.7 C), 70% | 100 400 | Our work |
2 | LCO film | Ar:O2 (3:1), heated substrate at 500 °C (in situ annealing) | - | <1 µm | Li/liquid electrolyte/ LCO | 63 µAh cm−2 µm−1 | 3–4.2 V | 1 C, 84% 1 C, 75% | 100 200 | [38] |
3 | LCO film | Ar, in situ heated substrate at 300 °C and 600 °C | Annealing by RTA 10 min at 600 °C in Ar | 0.7 µm | Li/liquid electrolyte/ LCO Li/ LIPON/LCO | 25 µAh cm−2 µm−1 60 µAh cm−2 µm−1 | 3–4.2 V 3–4.2 V | 1 C, 85% 5 C, 100% | 50 100 | [37] |
4 | LCO film | Ar:O2 (3:1) and (5:1), DC power 130 W | Annealed at 500 °C in atmosphere | - | Li/liquid electrolyte/ LCO | 46 µAh cm−2 µm−1 | 3–4.2 V | 0.1 C, 8.2% | 100 | [39] |
5 | LCO film | Ar:O2 (96:4%), | Annealed at 800 °C in air | 10 µm | Li/LIPON/ LCO | 60 µAh cm−2 µm−1 | 3–4.2 V | 0.1 C, 95% | 100 | [40] |
6 | LCO film | Ar | Annealed at 550 °C, holding time 20 min at O2 | 1.1 µm | Li/liquid electrolyte/ LCO | 37.5 µAh cm−2 µm−1 | 3–4.2 V | 0.1 C, 3.8% | 50 | [41] |
7 | LCO film | Ar:O2 (1:2, 1:1, and 2:1), RF power 120, 150, and 180 W | 1 h at 700 °C in air | 1.6 µm | Li/liquid electrolyte/ LCO | 16.7 µAh cm−2 µm−1 | 3–4.2 V | 0.2 C | 20 | [42] |
8 | LCO film | Ar, laser-patterned | 400 °C and 600 °C in Ar:O2 (1:5) 3 h | 3 µm | Li/liquid electrolyte/ LCO | 140 mAh g−1 | 3–4.2 V | 0.05 C, 67% | 30 | [43] |
9 | LCO film | Ar:O2, in situ substrate heated at 250 °C | In O2 two hours 500 °C 600 °C 700 °C | >1 µm | Li/liquid electrolyte/ LCO | 41.8 µAh cm−2 µm−1 52.6 µAh cm−2 µm−1 61.2 µAh cm−2 µm−1 | 3–4.25 V | 10 µA cm−2, 58%, 72% 74% | 50 | [44] |
10 | LCO film | Ar:O2 (3:1), different deposition pressure parameters changed | 500 °C 2 h in air | <1 µm | Li/liquid electrolyte/ LCO | 67 µAh cm−2 µm−1 | 3–4.2 V | 0.2 C, 95% | 50 | [45] |
11 | Zr-doped LCO film | Ar:O2 (9:1), in situ substrate heated at 250 °C | 600 °C 3 h in air | >1 µm | Li/liquid electrolyte/ LCO | 64 µAh cm−2 µm−1 | 3–4.2 V | 1 C, 98.5% | 25 | [23] |
12 | LCO film | Ar, | 400–700 °C in O2 | <1 µm | Li/LIPON/ LCO | 40 µAh cm−2 µm−1 (80 mAh g−1) | 3.3–4.2 V | 0.01 C, 78% | 5 | [46] |
13 | LCO film | Ar:O2 (4:1), DC power 180 W | 600 °C in O2 | 0.5 µm | 30.7 µAh cm−2 (or 56.9 µAh cm−2 µm−1) | 3–4.2 V | 10 µA cm−2, 76% | 30 | [47] | |
14 | LCO film | Ar:O2 (3:1), RF power 100 W, in situ-heated substrate 400 °C | - | 0.4 µm | Li/liquid electrolyte/ LCO | 54.5 µAh cm−2 µm−1 | 3–4.2 V | 10 µA cm−2, 58.20% | 50 | [48] |
15 | ZrO2 coated LCO film | Ar:O2 (4:1), DC power 100 W | 600 °C 1 h in O2 | 0.6 µm | Li/liquid electrolyte/ LCO | 12.2 µAh cm−2 µm−1 | 3–4.5 V | 10 µA cm−2, 75% | 40 | [49] |
16 | LCO film | Ar:O2 | 300–700 °C 1 h in air | >1 µm | Li/liquid electrolyte/ LCO | 132 mAh g−1 (or 62 µAh cm−2 µm−1) | 3–4.3 V | 0.1 C, 70% | 50 | [50] |
17 | LCO film | Ar:O2 (5:1), RF power 100 W | 550 °C, 1 h 20 min annealed in argon | 1.2 µm | Li/liquid electrolyte/ LCO | 135 mAh g−1 (50 µAh cm−2 µm−1) 135 mAh g−1 (50 µAh cm−2 µm−1) 115 mAh g−1 (42 µAh cm−2 µm−1) | 3–4.2 V | 0.1 C, 93% 0.5 C, 77% 1 C, 50% | 20 100 100 | [36] |
18 | Al2O3-coated and Al-doped LCO film | Ar, RF-DC, (Al doping = 10 W DC), (Al2O3 coating = 80 W DC with O2 gas step) (LCO = 200 W RF) in situ substrate heated at 800 °C | - | 0.5 µm | Li/liquid electrolyte/ LCO | 45.7 µAh cm−2 µm−1 | 3–4.2 V | 2.5 μA cm–2, 94.14% | 240 | [7] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Donoghue, A.; Shine, M.; Povey, I.M.; Rohan, J.F. Atomic Layer Deposition of Alumina-Coated Thin-Film Cathodes for Lithium Microbatteries. Int. J. Mol. Sci. 2023, 24, 11207. https://doi.org/10.3390/ijms241311207
O’Donoghue A, Shine M, Povey IM, Rohan JF. Atomic Layer Deposition of Alumina-Coated Thin-Film Cathodes for Lithium Microbatteries. International Journal of Molecular Sciences. 2023; 24(13):11207. https://doi.org/10.3390/ijms241311207
Chicago/Turabian StyleO’Donoghue, Aaron, Micheál Shine, Ian M. Povey, and James F. Rohan. 2023. "Atomic Layer Deposition of Alumina-Coated Thin-Film Cathodes for Lithium Microbatteries" International Journal of Molecular Sciences 24, no. 13: 11207. https://doi.org/10.3390/ijms241311207
APA StyleO’Donoghue, A., Shine, M., Povey, I. M., & Rohan, J. F. (2023). Atomic Layer Deposition of Alumina-Coated Thin-Film Cathodes for Lithium Microbatteries. International Journal of Molecular Sciences, 24(13), 11207. https://doi.org/10.3390/ijms241311207