A Cross-Talk about Radioresistance in Lung Cancer—How to Improve Radiosensitivity According to Chinese Medicine and Medicaments That Commonly Occur in Pharmacies
Abstract
:1. Introduction
2. Lung Cancer: Epidemiology, Morphology and Symptoms
Molecular Classification of Lung Cancers
3. All about Radiation Therapy and Radioresistance
4. What If Traditional Chinese Medicine Is an Answer to Radiosenstization?
4.1. Oridonin
4.2. Celastrol
4.3. Tashinone
4.4. Diosmetin
4.5. Schinifoline
4.6. Huachansu
5. Conventional Medicaments as Radiosensitizers in Off-Label Use
5.1. Antidiabetic Drugs
5.1.1. Metformin
5.1.2. Rosiglitazone
5.2. Antiartheroslerotic Drugs
5.2.1. Lovastatin
5.2.2. Simvastatin
5.3. Anti-COX Drugs
Nimesulide
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lung and Bronchus Statistics. American Cancer Society—Cancer Facts. Available online: https://cancerstatisticscenter.cancer.org/?_ga=2.196892971.68994449.1669141011-2046967414.1669141010#!/cancer-site/Lung%20and%20bronchus (accessed on 22 November 2022).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M. Global Cancer Statistics 2020, GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Rodriguez-Canales, J.; Parra-Cuentas, E.; Wistuba, I.I. Diagnosis and molecular classification of lung cancer. Cancer Treat. Res. 2016, 170, 25–46. [Google Scholar] [CrossRef] [PubMed]
- Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020, Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef]
- König, D.; Savic Prince, S.; Rothschild, S.I. Targeted Therapy in Advanced and Metastatic Non-Small Cell Lung Cancer. An Update on Treatment of the Most Important Actionable Oncogenic Driver Alterations. Cancers 2021, 13, 804. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.D.; Alexandrov, A.; Kim, J.; Wala, J.; Berger, A.H.; Artyomov, M.N.; Schreiber, R.; Govindan, R.; Meyerson, M.; Ling, S.; et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat. Genet. 2016, 48, 607–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kris, M.G.; Johnson, B.E.; Berry, L.D.; Kwiatkowski, D.J.; Iafrate, A.J.; Wistuba, I.I.; Varella-Garcia, M.; Franklin, W.A.; Aronson, S.L.; Su, P.-F.; et al. Using multiplexed assays of oncogenic drivers in lung cancers to select targeted drugs. JAMA 2014, 311, 1998–2006. [Google Scholar] [CrossRef] [Green Version]
- Paez, J.G.; Jänne, P.A.; Lee, J.C.; Tracy, S.; Greulich, H.; Gabriel, S.; Herman, P.; Kaye, F.J.; Lindeman, N.; Boggon, T.J.; et al. EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science 2004, 304, 1497–1500. [Google Scholar] [CrossRef] [Green Version]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. ESMO Guidelines Committee. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29 (Suppl. S4), iv192–iv237, Erratum in: Ann Oncol. 2019, 30, 863–870. [Google Scholar] [CrossRef]
- Tan, A.C.; Lai, G.G.Y.; Tan, G.S.; Poon, S.Y.; Doble, B.; Lim, T.H.; Aung, Z.W.; Takano, A.; Tan, W.L.; Ang, M.-K.; et al. Utility of incorporating next-generation sequencing (NGS) in an Asian non-small cell lung cancer (NSCLC) population: Incremental yield of actionable alterations and cost-effectiveness analysis. Lung Cancer 2020, 139, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Oberndorfer, F.; Müllauer, L. Molecular pathology of lung cancer: Current status and perspectives. Curr. Opin. Oncol. 2018, 30, 69–76. [Google Scholar] [CrossRef]
- Yang, S.R.; Schultheis, A.M.; Yu, H.; Mandelker, D. Precision medicine in non-small cell lung cancer: Current applications and future directions. Semin. Cancer Biol. 2022, 84, 184–198. [Google Scholar] [CrossRef]
- Liang, J.; Guan, X.; Bao, G.; Yao, Y.; Zhong, X. Molecular subtyping of small cell lung cancer. Semin. Cancer Biol. 2022, 86 Pt 2, 450–462. [Google Scholar] [CrossRef]
- Rudin, C.M.; Durinck, S.; Stawiski, E.W.; Poirier, J.T.; Modursan, Z.; Shames, D.S.; Bergbower, E.A.; Guan, Y.; Shin, J.; Guillory, J.; et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat. Genet. 2012, 44, 1111–1116. [Google Scholar] [CrossRef] [Green Version]
- George, J.; Lim, J.S.; Jang, S.J.; Cun, Y.; Ozretić, L.; Kong, G.; Leenders, F.; Lu, X.; Fernandes-Cuesta, L.; Bosco, G.; et al. Comprehensive genomic profiles of small cell lung cancer. Nature 2015, 524, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Jin, W.; Lei, Z.; Xu, S.; Fachen, Z.; Yixiang, Z.; Shilei, Z.; Tao, G.; Zhe, S.; Fengzhou, L.; Su, W.-H.; et al. Genetic Mutation Analysis in Small Cell Lung Cancer by a Novel NGS-Based Targeted Resequencing Gene Panel and Relation with Clinical Features. Biomed. Res. Int. 2021, 2021, 3609028. [Google Scholar] [CrossRef]
- Ouadah, Y.; Rojas, E.R.; Riordan, D.P.; Capostagno, S.; Kuo, C.S.; Krasnow, M.A. Rare Pulmonary Neuroendocrine Cells Are Stem Cells Regulated by Rb, p53, and Notch. Cell 2019, 179, 403–416.e23. [Google Scholar] [CrossRef] [Green Version]
- Rudin, C.M.; Poirier, J.T.; Byers, L.A.; Dive, C.; Dowlati, A.; George, J.; Heymach, J.V.; Johnson, J.E.; Lehman, J.M.; MacPherson, D.; et al. Molecular subtypes of small cell lung cancer: A synthesis of human and mouse model data. Nat. Rev. Cancer. 2019, 19, 289–297. [Google Scholar] [CrossRef]
- Dora, D.; Rivard, C.; Yu, H.; Bunn, P.; Sua, K.; Ren, S.; Pickard, S.L.; Laszlo, V.; Harko, T.; Megyesfakvi, Z.; et al. Neuroendocrine subtypes of small cell lung cancer differ in terms of immune microenvironment and checkpoint molecule distribution. Mol. Oncol. 2020, 14, 1947–1965. [Google Scholar] [CrossRef]
- Lu, Z.; Zheng, X.; Ding, C.; Zou, Z.; Liang, Y.; Zhou, Y.; Li, X. Deciphering the Biological Effects of Radiotherapy in Cancer Cells. Biomolecules 2022, 12, 1167. [Google Scholar] [CrossRef]
- Baskar, R.; Dai, J.; Wenlong, N.; Yeo, R.; Yeoh, K.W. Biological response of cancer cells to radiation treatment. Front. Mol. Biosci. 2014, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Olivares-Urbano, M.A.; Griñán-Lisón, C.; Marchal, J.A.; Núñez, M.I. CSC Radioresistance: A Therapeutic Challenge to Improve Radiotherapy Effectiveness in Cancer. Cells 2020, 9, 1651. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, M.; Luo, J.; Zhou, H. Radiotherapy targeting cancer stem cells ‘awakens’ them to induce tumour relapse and metastasis in oral cancer. Int. J. Oral. Sci. 2020, 12, 19. [Google Scholar] [CrossRef]
- Choi, E.J.; Ryu, Y.K.; Kim, S.Y.; Wu, H.G.; Kim, J.S.; Kim, I.H.; Kim, I.A. Targeting epidermal growth factor receptor-associated signaling pathways in non-small cell lung cancer cells: Implication in radiation response. Mol. Cancer Res. 2010, 8, 1027–1036. [Google Scholar] [CrossRef] [Green Version]
- Césaire, M.; Montanari, J.; Curcio, H.; Lerouge, D.; Gervais, R.; Demontrond, P.; Balosso, J.; Chevalier, F. Radioresistance of Non-Small Cell Lung Cancers and Therapeutic Perspectives. Cancers 2022, 14, 2829. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, K.; Zhou, H.; Wu, Y.; Li, C.; Liu, Y.; Liu, Z.; Xu, Q.; Liu, S.; Xiao, D.; et al. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol. Cancer 2020, 19, 47. [Google Scholar] [CrossRef] [Green Version]
- Entezari, M.; Ghanbarirad, M.; Taheriazam, A.; Sadrkhanloo, M.; Zabolian, A.; Goharrizi, M.A.S.B.; Hushmandi, K.; Aref, A.R.; Ashrafizadeh, M.; Zarrabi, A.; et al. Long non-coding RNAs and exosomal lncRNAs: Potential functions in lung cancer progression, drug resistance and tumor microenvironment remodeling. Biomed. Pharm. 2022, 150, 112963. [Google Scholar] [CrossRef]
- Ebahimzadeh, K.; Shoorei, H.; Mousavinejad, S.A.; Anamag, F.T.; Dinger, M.; Taheri, M.; Ghafouri-Fard, S. Emerging role of non-coding RNAs in response of cancer cells to radiotherapy. Pathol. Res. Pract. 2021, 218, 153327. [Google Scholar] [CrossRef]
- Gasińska, A. Leksykon pojęć—Radiobiologia kliniczna cz. II. Nowotw. J. Oncol. 2006, 56, 721–730. [Google Scholar]
- Golden, E.B.; Formenti, S.C.; Schiff, P.B. Taxanes as radiosensitizers. Anticancer. Drugs 2014, 25, 502–511. [Google Scholar] [CrossRef]
- Sak, K. Radiosensitizing Potential of Curcumin in Different Cancer Models. Nutr. Cancer 2020, 72, 1276–1289. [Google Scholar] [CrossRef]
- Ashrafizadeh, M.; Najafi, M.; Makvandi, P.; Zarrabi, A.; Farkhondeh, T.; Samarghandian, S. Versatile role of curcumin and its derivatives in lung cancer therapy. J. Cell Physiol. 2020, 235, 9241–9268. [Google Scholar] [CrossRef]
- Akaberi, M.; Sahebkar, A.; Emami, S.A. Turmeric and Curcumin: From Traditional to Modern Medicine. Adv. Exp. Med. Biol. 2021, 1291, 15–39. [Google Scholar]
- Li, X.; Li, X.; Wang, J.; Ye, Z.; Li, J.-C. Oridonin Up-regulates Expression of P21 and Induces Autophagy and Apoptosis in Human Prostate Cancer Cells. Int. J. Biol. Sci. 2012, 8, 901–912. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zhong, Z.; Wan, J.; Tan, W.; Wu, G.; Chen, M.; Wang, Y. Oridonin induces apoptosis, inhibits migration and invasion on highly-metastatic human breast cancer cells. Am. J. Chin. Med. 2013, 41, 177–196. [Google Scholar] [CrossRef]
- Huang, H.; Weng, H.; Dong, B.; Zhao, P.; Zhou, H.; Qu, L. Oridonin Triggers Chaperon-mediated Proteasomal Degradation of BCR-ABL in Leukemia. Sci. Rep. 2017, 7, 41525. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Y.; Lv, Y.F.; Lu, L.; Cai, L. Oridonin inhibits mTOR signaling and the growth of lung cancer tumors. Anticancer. Drugs 2014, 25, 1192–1200. [Google Scholar] [CrossRef]
- Citrin, D.E.; Mitchell, J.B. Altering the response to radiation: Sensitizers and protectors. Semin. Oncol. 2014, 41, 848–859. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Shi, D.; Zhang, L.; Yang, F.; Cheng, G. Oridonin enhances the radiosensitivity of lung cancer cells by upregulating Bax and downregulating Bcl-2. Exp. Med. 2018, 16, 4859. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Si, T.; Xu, X.; Liang, F.; Wang, L.; Pan, S. Electromagnetic radiation at 900 MHz induces sperm apoptosis through bcl-2, bax and caspase-3 signaling pathways in rats. Reprod. Health 2015, 12, 65. [Google Scholar] [CrossRef]
- Park, H.; Jeong, Y.J.; Han, N.K.; Kim, J.S.; Lee, H.-J. Oridonin Enhances Radiation-Induced Cell Death by Promoting DNA Damage in Non-Small Cell Lung Cancer Cells. Int. J. Mol. Sci. 2018, 19, 2378. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Bi, Y.; Xu, Y.; Zhang, Z.; Xu, W.; Zhang, S.; Chen, J. Oridonin inhibits the migration and epithelial-to-mesenchymal transition of small cell lung cancer cells by suppressing FAK-ERK1/2 signalling pathway. J. Cell Mol. Med. 2020, 24, 4480. [Google Scholar] [CrossRef]
- Seo, H.R.; Seo, W.D.; Pyun, B.-J.; Lee, B.W.; Jin, Y.B.; Park, K.H.; Seo, E.-K.; Lee, Y.-J.; Lee, Y.-S. Radiosensitization by celastrol is mediated by modification of antioxidant thiol molecules. Chem. Biol. Interact. 2011, 193, 34–42. [Google Scholar] [CrossRef]
- Liu, M.; Fan, Y.; Li, D.; Han, B. Ferroptosis inducer erastin sensitizes NSCLC cells to celastrol through activation of the ROS-mitochondrial fission-mitophagy axis. Mol. Oncol. 2021, 15, 2084–2105. [Google Scholar] [CrossRef]
- Androutsopoulos, V.; Wilsher, N.; Arroo, R.R.J.; Potter, G.A. Bioactivation of the phytoestrogen diosmetin by CYP1 cytochromes P450. Cancer Lett. 2009, 274, 54–60. [Google Scholar] [CrossRef]
- Zhan, G.; Pan, L.; Tu, K.; Jiao, S. Antitumor, Antioxidant, and Nitrite Scavenging Effects of Chinese Water Chestnut (Eleocharis dulcis) Peel Flavonoids. J. Food Sci. 2016, 81, H2578–H2586. [Google Scholar] [CrossRef]
- Park, C.; Choi, E.O.; Hwangbo, H.; Lee, H.; Jeong, J.-W.; Han, M.H.; Moon, S.-K.; Youn, S.J.; Kim, W.-J.; Kim, G.-Y.; et al. Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROS-dependent inactivation of the PI3K/Akt signaling pathway. Nutr. Res. Pract. 2022, 16, 330. [Google Scholar] [CrossRef]
- Wang, C.-F.; Fan, L.; Tian, M.; Qi, X.-S. Radiosensitizing Effect of Schinifoline from Zanthoxylum schinifolium Sieb et Zucc on Human Non-Small Cell Lung Cancer A549 Cells: A Preliminary in Vitro Investigation. Molecules 2014, 19, 20128. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Li, A.; Inagaki, Y.; Kokudo, N. Antitumor activity of extracts and compounds from the skin of the toad Bufo bufo gargarizans Cantor. Int. Immunopharmacol. 2011, 11, 342–349. [Google Scholar] [CrossRef]
- Cheng, C.-S.; Wang, J.; Chen, J.; Kuo, K.T. New therapeutic aspects of steroidal cardiac glycosides: The anticancer properties of Huachansu and its main active constituent Bufalin. Cancer Cell Int. 2019, 19, 92. [Google Scholar] [CrossRef] [Green Version]
- Niu, J.; Wang, J.; Zhang, Q.; Zou, Z.; Ding, Y. Cinobufagin-induced DNA damage response activates G2/M checkpoint and apoptosis to cause selective cytotoxicity in cancer cells. Cancer Cell Int. 2021, 21, 446. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, D.; Ni, M.; Xue, J.; Wang, K.; Duan, X.; Liu, S. Effectiveness of Huachansu injection combined with chemotherapy for treatment of gastric cancer in China: A systematic review and Meta-analysis. J. Tradit. Chin. Med. 2020, 40, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Wu, F.; Yuan, L.; Miao, Z.; Zhu, S. Is Huachansu Beneficial in Treating Advanced Non-Small-Cell Lung Cancer? Evidence from a Meta-Analysis of Its Efficacy Combined with Chemotherapy. Evid. Based Complement. Altern. Med. 2015, 2015, 408145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Huang, Q.; Wang, X.; Xu, Y.; Xu, R.; Han, M.; Huang, B.; Chen, A.; Qiu, C.; Sun, T.; et al. Bufalin enhances radiosensitivity of glioblastoma by suppressing mitochondrial function and DNA damage repair. Biomed. Pharmacother. 2017, 94, 627–635. [Google Scholar] [CrossRef]
- Zhang, K.; Bai, P.; Dai, H.; Deng, Z. Metformin and risk of cancer among patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Prim. Care Diabetes 2021, 15, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Song, C.W.; Lee, H.; Dings, R.P.M.; Williams, B.; Powers, J.; Dos Santos, T.; Choi, B.-H.; Park, H.-J. Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Sci. Rep. 2012, 2, 362. [Google Scholar] [CrossRef] [Green Version]
- Storozhuk, Y.; Hopmans, S.N.; Sanli, T.; Barron, C.; Tsiani, E.; Cutz, J.-C.; Pond, G.; Wright, J.; Singh, G.; Tsakiridis, T. Metformin inhibits growth and enhances radiation response of non-small cell lung cancer (NSCLC) through ATM and AMPK. Br. J. Cancer 2013, 108, 2021–2032. [Google Scholar] [CrossRef] [Green Version]
- Riaz, M.A.; Sak, A.; Erol, Y.B.; Groneberg, M.; Thomale, J.; Stuschke, M. Metformin enhances the radiosensitizing effect of cisplatin in non-small cell lung cancer cell lines with different cisplatin sensitivities. Sci. Rep. 2019, 9, 1282. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, Y.; Han, J.; Mei, H. Metformin Attenuates Radiation-Induced Pulmonary Fibrosis in a Murine Model. Radiat. Res. 2017, 188, 105–113. [Google Scholar] [CrossRef]
- Cardwell, C.R.; McMenamin, U.; Hughes, C.M.; Murray, L.J. Statin use and survival from lung cancer: A population-based cohort study. Cancer Epidemiol. Biomark. Prev. 2015, 24, 833–841. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Liu, J.; Xie, Y.; Yuan, S.; Guo, Y.; Bai, W.; Zhao, K.; Jiang, W.; Wang, H.; Wang, H.; et al. ESE3/EHF, a promising target of rosiglitazone, suppresses pancreatic cancer stemness by downregulating CXCR4. Gut 2022, 71, 357–371. [Google Scholar] [CrossRef]
- Cerbone, A.; Toaldo, C.; Minelli, R.; Ciamporcero, E. Rosiglitazone and AS601245 decrease cell adhesion and migration through modulation of specific gene expression in human colon cancer cells. PLoS ONE 2012, 7, e40149. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.W.; Chyuan, I.T.; Shiue, C.; Yu, M.C.; Hsu, Y.F. Lovastatin-mediated MCF-7 cancer cell death involves LKB1-AMPK-p38MAPK-p53-survivin signalling cascade. J. Cell Mol. Med. 2020, 24, 1822–1836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.Y.; Shui, H.A.; Chang, T.C. Dual effects for lovastatin in anaplastic thyroid cancer: The pivotal effect of transketolase (TKT) on lovastatin and tumor proliferation. J. Investig. Med. 2018, 66, 935–943. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, D.W.; Lin, D.Q.; Cao, L.Q. Peroxisome proliferator-activated receptor-γ inhibits pancreatic cancer cell invasion and metastasis via regulating MMP-2 expression through PTEN. Mol. Med. Rep. 2015, 12, 6255–6260. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Yu, J.; Yin, Q.; Li, W.; Ren, X.; Hao, X. Rosiglitazone suppresses glioma cell growth and cell cycle by blocking the transforming growth factor-beta mediated pathway. Neurochem. Res. 2012, 37, 2076–2084. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, S.; Dai, M.; Nai, J.; Zhu, L.; Sheng, H. Solubility and Bioavailability Enhancement of Oridonin: A Review. Molecules 2020, 25, 332. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, J.H.; Chai, K.; Tashiro, S.I.; Onodera, S.; Ikejima, T. Inhibition of c-Met promoted apoptosis, autophagy and loss of the mitochondrial transmembrane potential in oridonin-induced A549 lung cancer cells. J. Pharm. Pharm. 2013, 65, 1622–1642. [Google Scholar] [CrossRef]
- Zhang, Y.-W.; Zheng, X.-W.; Liu, Y.-J.; Fang, L.; Pan, Z.-F.; Bao, M.-H.; Huang, P. Effect of Oridonin on Cytochrome P450 Expression and Activities in HepaRG Cell. Pharmacology 2018, 101, 246–254. [Google Scholar] [CrossRef]
- Yi-wen, Z.; Mei-Hua, B.; Xiao-ya, L.; Yu, C.; Jing, Y.; Hong-Hao, Z. Effects of Oridonin on Hepatic Cytochrome P450 Expression and Activities in PXR-Humanized Mice. Biol. Pharm. Bull. 2018, 41, 707–712. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.Y.; Ong, P.S.; Wang, L.; Goel, A.; Ding, L.; Wong, A.L.-A.; Ho, P.C.-L.; Sethi, G.; Xiang, X.; Goh, B.C. Celastrol in cancer therapy: Recent developments, challenges and prospects. Cancer Lett. 2021, 521, 252–267. [Google Scholar] [CrossRef]
- Lee, J.-H.; Choi, K.J.; Seo, W.D.; Jang, S.Y.; Kim, M.; Lee, B.W.; Kim, J.Y.; Kang, S.; Park, K.H.; Lee, Y.-S.; et al. Enhancement of radiation sensitivity in lung cancer cells by celastrol is mediated by inhibition of Hsp90. Int. J. Mol. Med. 2011, 27, 441–446. [Google Scholar]
- Xu, H.; Li Hao, Y.; Xu, L.; Chen, L.; Xu, W.F. Tanshinone sensitized the antitumor effects of irradiation on laryngeal cancer via JNK pathway. Cancer Med. 2018, 7, 5187–5193. [Google Scholar] [CrossRef]
- Huang, X.; Jin, L.; Deng, H.; Wu, D.; Shen, Q.-K.; Quan, Z.-S.; Zhang, C.-H.; Guo, H.-Y. Research and Development of Natural Product Tanshinone I: Pharmacology, Total Synthesis, and Structure Modifications. Front. Pharm. 2022, 13, 920411. [Google Scholar] [CrossRef]
- Lee, J.; Sohn, E.J.; Yoon, S.; Won, G.; Kim, C.G.; Jung, J.H.; Kim, S.-H. Activation of JNK and IRE1 is critically involved in tanshinone I-induced p62 dependent autophagy in malignant pleural mesothelioma cells: Implication of p62 UBA domain. Oncotarget 2017, 8, 25032–25045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Gong, Y.; Li, L.; Abdolmaleky, H.M.; Zhou, J.R. Bioactive tanshinone I inhibits the growth of lung cancer in part via downregulation of Aurora A function. Mol. Carcinog. 2013, 52, 535–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.; Su, W.; Zeng, S.; Qian, L.; Chen, X.; Wei, J.; Chen, N.; Gong, Z.; Xu, Z. Effect and Mechanism of Tanshinone I on the Radiosensitivity of Lung Cancer Cells. Mol. Pharm. 2018, 15, 4843–4853. [Google Scholar] [CrossRef]
- Marampon, F.; Gravina, G.; Ju, X.; Vetuschi, A.; Sferra, R.; Casimiro, M.C.; Pompili, S.; Festuccia, C.; Colapietro, A.; Gaudio, E. Cyclin D1 silencing suppresses tumorigenicity, impairs DNA double strand break repair and thus radiosensitizes androgen-independent prostate cancer cells to DNA damage. Oncotarget 2016, 7, 5383–5400. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Shi, J.; Zhao, M.; Chen, Q.; Wang, L.; Luo, F.; Zhu, L.; Lu, L.; Wang, X.; Liu, Z. Regioselective Glucuronidation of Diosmetin and Chrysoeriol by the Interplay of Glucuronidation and Transport in UGT1A9-Overexpressing HeLa Cells. PLoS ONE 2016, 11, e0166239. [Google Scholar] [CrossRef]
- Liu, P.; Begley, M.; Michowski, W.; Inuzuka, H.; Ginzberg, M.; Gao, D.; Tsou, P.; Gan, W.; Papa, A.; Kim, B.M.; et al. Cell-cycle-regulated activation of Akt kinase by phosphorylation at its carboxyl terminus. Nature 2014, 508, 541–545. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Yan, Y.; Xiao, L.; Dai, S.; Zeng, S.; Qian, L.; Wang, L.; Yang, X.; Xiao, Y.; Gong, Z. Radiosensitizing effect of diosmetin on radioresistant lung cancer cells via Akt signaling pathway. PLoS ONE 2017, 12, e0175977. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.L.; Chu, S.S.; Jiang, G.H. Feeding deterrents from Zanthoxylum schinifolium against two stored-product insects. J. Agric. Food Chem. 2019, 57, 10130–10133. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-J.; Zhou, Y.; Shi, X.-L.; Xia, X.; He, Y.-J.; Zhu, Y.-Y.; Xie, T.-Z.; Liu, T.; Xu, X.-J.; Luo, X.-D.; et al. Comparison of chemical constituents in diverse zanthoxylum herbs, and evaluation of their relative antibacterial and nematicidal activity. Food Biosci. 2021, 42, 101206. [Google Scholar] [CrossRef]
- Lu, L.; Li, Z.; Shan, C.; Ma, S.; Nie, W.; Wang, H.; Chen, G.; Li, S.; Shu, G. Whole transcriptome analysis of schinifoline treatment in Caenorhabditis elegans infected with Candida albicans. Mol. Immunol. 2021, 135, 312–319. [Google Scholar] [CrossRef]
- Li, W.; Yang, S.Y.; Yan, X.T.; Sun, Y.N.; Song, S.B.; Kang, H.K.; Kim, Y.H. NF-κB inhibitory activities of glycosides and alkaloids from Zanthoxylum schinifolium stems. Chem. Pharm. Bull. 2014, 62, 196–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.K.; Bae, K.; Yoo, H.-S.; Cho, S.-H. Chinese herbal medicines as adjuvant treatment during chemo-or radio-therapy for cancer. Biosci. Trends 2010, 4, 297–307. [Google Scholar]
- Tan, X.; Liang, X.; Xi, J.; Guo, S.; Meng, M.; Chen, X.; Li, Y. Clinical efficacy and safety of Huachansu injection combination with platinum-based chemotherapy for advanced non-small cell lung cancer: A systematic review and meta-analysis of randomized controlled trials. Medicine 2021, 100, e2716. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Raju, U.; Milas, L.; Molkentine, D.; Zhang, Z.; Yang, P.; Cohen, L.; Meng, Z.; Liao, Z. Huachansu, containing cardiac glycosides, enhances radiosensitivity of human lung cancer cells. Anticancer. Res. 2011, 31, 2141–2148. [Google Scholar]
- Pastor, N.; Cortés, F. Bufalin influences the repair of X-ray-induced DNA breaks in Chinese hamster cells. DNA Repair. 2003, 2, 1353–1360. [Google Scholar] [CrossRef]
- Mutschler, E.; Geisslinger, G.; Menzel, S.; Ruth, P. Farmakologia z Elementami Toksykologii, 1; Medpharm: Stuttgart, Germany, 2020. [Google Scholar]
- Pålsson-McDermott, E.M.; O’Neill, L.A.J. Targeting immunometabolism as an anti-inflammatory strategy. Cell Res. 2020, 30, 300. [Google Scholar] [CrossRef] [Green Version]
- Chevalier, B.; Pasquier, D.; Lartigau, E.F.; Chargari, C.; Schrenberg, A.; Jannin, A.; Mirabel, X.; Vantyghem, M.-C.; Escande, A. Metformin: (Future) best friend of the radiation oncologist? Radiother. Oncol. 2020, 151, 95–105. [Google Scholar] [CrossRef]
- Zarrouk, M.; Finlay, D.K.; Foretz, M.; Viollet, B.; Cantrell, D.A. Adenosine-Mono-Phosphate-Activated Protein Kinase-Independent Effects of Metformin in T Cells. PLoS ONE 2014, 9, e106710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, Z.S.O.; Golovoy, M.; Abdullah, Y.; Ahmed, R.S.I.; Dou, Q.P. Repurposing of Metformin for Cancer Therapy: Updated Patent and Literature Review. Recent. Pat. Anticancer Drug Discov. 2021, 16, 161–186. [Google Scholar] [CrossRef] [PubMed]
- Coyle, C.; Cafferty, F.H.; Vale, C.; Langley, R.E. Metformin as an adjuvant treatment for cancer: A systematic review and meta-analysis. Ann. Oncol. 2016, 27, 2184–2195. [Google Scholar] [CrossRef]
- Lv, Z.; Guo, Y. Metformin and Its Benefits for Various Diseases. Front. Endocrinol. 2020, 11, 191. [Google Scholar] [CrossRef]
- Rao, M.; Gao, C.; Guo, M.; Law, B.Y.K.; Xu, Y. Effects of metformin treatment on radiotherapy efficacy in patients with cancer and diabetes: A systematic review and meta-analysis. Cancer Manag. Res. 2018, 10, 4881–4890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.F.; Wang, J.; Guo, J.; Huang, Y.Y.; Huang, T.R. Metformin enhances radiosensitivity in hepatocellular carcinoma by inhibition of specificity protein 1 and epithelial-to-mesenchymal transition. J. Cancer Res. 2019, 15, 1603–1610. [Google Scholar] [CrossRef]
- Zannella, V.E.; Pra, A.D.; Muaddi, H.; McKee, T.D.; Stapleton, S.; Sykes, J.; Glicksman, R.; Chaib, S.; Zamiara, P.; Milosevic, M.; et al. Reprogramming metabolism with metformin improves tumor oxygenation and radiotherapy response. Clin. Cancer Res. 2013, 19, 6741–6750. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Dong, M.; Gao, Y.; Wang, Y. Metformin increases the radiosensitivity of non-small cell lung cancer cells by destabilizing NRF2. Biochem. Pharm. 2022, 199, 114981. [Google Scholar] [CrossRef]
- Azmoonfar, R.; Amini, P.; Saffar, H.; Rezapoor, S. Metformin Protects Against Radiation-Induced Pneumonitis and Fibrosis and Attenuates Upregulation of Dual Oxidase Genes Expression. Adv. Pharm. Bull. 2018, 8, 697–704. [Google Scholar] [CrossRef]
- Wang, J.; Xia, S.; Zhu, Z. Synergistic effect of phenformin in non-small cell lung cancer (NSCLC) ionizing radiation treatment. Cell Biochem. Biophys. 2015, 71, 513–518. [Google Scholar] [CrossRef]
- Dorsch, M.; Kowalczyk, M.; Planque, M.; Heilmann, G.; Urban, S.; Dujradin, P.; Forster, J.; Ueffing, K.; Nothdurft, S.; Oeck, S.; et al. Statins affect cancer cell plasticity with distinct consequences for tumor progression and metastasis. Cell Rep. 2021, 37, 110056. [Google Scholar] [CrossRef]
- Dang, Y.F.; Jiang, X.N.; Gong, F.L.; Guo, X.L. New insights into molecular mechanisms of rosiglitazone in monotherapy or combination therapy against cancers. Chem. Biol. Interact. 2018, 296, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Jing, X.; Wu, X.; Hu, J.; Zhang, X.; Wang, X.; Su, P.; Li, W.; Zhou, G. Suppression of multidrug resistance by rosiglitazone treatment in human ovarian cancer cells through downregulation of FZD1 and MDR1 genes. Anticancer Drugs 2015, 26, 706–715. [Google Scholar] [CrossRef]
- Al-Alem, L.; Southard, R.C.; Kilgore, M.W.; Curry, T.E. Specific thiazolidinediones inhibit ovarian cancer cell line proliferation and cause cell cycle arrest in a PPARγ independent manner. PLoS ONE 2011, 6, e16179. [Google Scholar] [CrossRef] [Green Version]
- Han, S.W.; Roman, J. Rosiglitazone suppresses human lung carcinoma cell growth through PPARgamma-dependent and PPARgamma-independent signal pathways. Mol. Cancer 2006, 5, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Wei, R.; Yu, F.; Yang, J.; Gao, H.; Wang, H. Anti-proliferative effect of rosiglitazone in the human T-lymphocyte leukaemia cell line Jurkat cells. Cell Biol. Int. 2018, 42, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Jung, E.M.; Lee, T.-J.; Kim, S.H.; Choi, Y.H.; Park, J.W.; Park, J.-W.; Choi, K.S.; Kwon, T.K. Rosiglitazone promotes tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by reactive oxygen species-mediated up-regulation of death receptor 5 and down-regulation of c-FLIP. Free Radic. Biol. Med. 2008, 44, 1055–1068. [Google Scholar] [CrossRef] [PubMed]
- Lyon, C.M.; Klinge, D.M.; Do, C.; Grimes, M.J.; Thomas, C.L.; Damiani, L.A.; March, T.H.; Stidley, C.A.; Belinsky, S.A. Rosiglitazone prevents the progression of preinvasive lung cancer in a murine model. Carcinogenesis 2009, 30, 2095–2099. [Google Scholar] [CrossRef] [Green Version]
- Arif, I.S.; Hooper, C.L.; Greco, F.; Williams, A.C.; Boateng, S.Y. Increasing doxorubicin activity against breast cancer cells using PPARγ-ligands and by exploiting circadian rhythms. Br. J. Pharm. 2013, 169, 1178–1188. [Google Scholar] [CrossRef] [Green Version]
- Tikoo, K.; Kumar, P.; Gupta, J. Rosiglitazone synergizes anticancer activity of cisplatin and reduces its nephrotoxicity in 7, 12-dimethyl benz{a}anthracene (DMBA) induced breast cancer rats. BMC Cancer 2009, 9, 107. [Google Scholar] [CrossRef] [Green Version]
- Bunt, S.K.; Mohr, A.M.; Bailey, J.M.; Grandgenett, P.M.; Hollingsworth, M.A. Rosiglitazone and Gemcitabine in combination reduces immune suppression and modulates T cell populations in pancreatic cancer. Cancer Immunol. Immunother. 2013, 62, 225–236. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, W.; Moon, S.-O.; Sung, M.J.; Kim, D.H.; Kang, K.P.; Jang, Y.B.; Lee, J.E.; Jang, K.Y.; Park, S.K. Rosiglitazone ameliorates cisplatin-induced renal injury in mice. Nephrol. Dial. Transpl. 2006, 21, 2096–2105. [Google Scholar] [CrossRef] [PubMed]
- To, K.K.W.; Tomlinson, B. Targeting the ABCG2-overexpressing multidrug resistant (MDR) cancer cells by PPARγ agonists. Br. J. Pharmacol. 2013, 170, 1137–1151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konieczna, A.; Novakova, V.; Medalova, J.; Erceg, S.; Klabusay, M. Thiazolidinediones Regulate the Level of ABC Transporters Expression on Lung Cancer Cells. Klin. Onkol. 2015, 28, 431–438. [Google Scholar] [CrossRef]
- Girnun, G.D.; Chen, L.; Silvaggi, J.; Drapkin, R.; Chirieac, L.; Padera, R.F.; Upadhyay, R.; Vafai, S.B.; Weissleder, R.; Mahmood, U.; et al. Regression of drug-resistant lung cancer by the combination of rosiglitazone and carboplatin. Clin. Cancer Res. 2008, 14, 6478–6486. [Google Scholar] [CrossRef] [Green Version]
- Mangoni, M.; Sottili, M.; Gerini, C.; Desideri, I.; Bastida, C.; Pallotta, S.; Castiglione, F.; Bonomo, P.; Meattini, I.; Greto, D. PPAR gamma agonist protects against oral mucositis induced by irradiation in a murine model. Oral Oncol. 2017, 64, 52–58. [Google Scholar] [CrossRef]
- Mangoni, M.; Sottili, M.; Gerini, C.; Desideri, I.; Bastida, C.; Pallotta, S.; Castiglione, F.; Bonomo, P.; Meattini, I.; Greto, D.; et al. A PPAR-gamma agonist protects from radiation-induced intestinal toxicity. United Eur. Gastroenterol. J. 2017, 5, 218–226. [Google Scholar] [CrossRef]
- Hu, L.; Chen, H.; Zhang, X.; Feng, Z.; Zhang, H. Rosiglitazone ameliorates radiation-induced intestinal inflammation in rats by inhibiting NLRP3 inflammasome and TNF-α production. J. Radiat. Res. 2020, 61, 842–850. [Google Scholar] [CrossRef]
- Baselet, B.; Driesen, R.B.; Coninx, E.; Belmans, N. Rosiglitazone Protects Endothelial Cells from Irradiation-Induced Mitochondrial Dysfunction. Front. Pharm. 2020, 11, 268. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Shen, W.; Li, X.; Feng, Y.; Qian, K.; Wang, G.; Gao, Y.; Xu, X.; Zhang, S.; Yue, L.; et al. The PPARγ Agonist Rosiglitazone Enhances the Radiosensitivity of Human Pancreatic Cancer Cells. Drug. Des. Devel. Ther. 2020, 14, 3099–3110. [Google Scholar] [CrossRef]
- Chiu, S.-J.; Hsaio, C.-H.; Tseng, H.-H.; Su, Y.-H. Rosiglitazone enhances the radiosensitivity of p53-mutant HT-29 human colorectal cancer cells. Biochem. Biophys. Res. Commun. 2010, 394, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Nag, A.; Gangenahalli, G.; Sharma, K. Peroxisome proliferator activated receptor gamma sensitizes non-small cell lung carcinoma to gamma irradiation induced apoptosis. Front. Genet. 2019, 10, 554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- An, Z.; Yu, J.R.; Park, W.Y. Rosiglitazone enhances radiosensitivity by inhibiting repair of DNA damage in cervical cancer cells. Radiat. Env. Biophys. 2017, 56, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Han, E.J.; Im, C.N.; Park, S.H.; Moon, E.Y.; Hong, S.H. Combined treatment with peroxisome proliferator-activated receptor (PPAR) gamma ligands and gamma radiation induces apoptosis by PPARγ-independent up-regulation of reactive oxygen species-induced deoxyribonucleic acid damage signals in non-small cell lung cancer cells. Int. J. Radiat. Oncol. Biol. Phys. 2013, 85, e239–e248. [Google Scholar] [CrossRef]
- Acimovic, J.; Lövgren-Sandblom, A.; Eriksson, L.C.; Björkhem-Bergman, L. The anti-carcinogenic effect of statins in a rat model correlates with levels and synthesis of ubiquinone. Biochem. Biophys. Res. Commun. 2012, 425, 348–352. [Google Scholar] [CrossRef]
- Zhang, L.; Kang, W.; Lu, X.; Ma, S.; Dong, L.; Zou, B. Weighted gene co-expression network analysis and connectivity map identifies lovastatin as a treatment option of gastric cancer by inhibiting HDAC2. Gene 2019, 681, 15–25. [Google Scholar] [CrossRef]
- Martirosyan, A.; Clendening, J.W.; Goard, C.A.; Penn, L.Z. Lovastatin induces apoptosis of ovarian cancer cells and synergizes with doxorubicin: Potential therapeutic relevance. BMC Cancer 2010, 10, 103. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Liu, Q.; Peng, N.; Li, Y.; Qiu, D.; Yang, T.; Kang, R.; Usmani, A.; Amadasu, E.; Borlongan, C.V.; et al. Lovastatin Inhibits RhoA to Suppress Canonical Wnt/β-Catenin Signaling and Alternative Wnt-YAP/TAZ Signaling in Colon Cancer. Cell Transpl. 2022, 31, 9636897221075749. [Google Scholar] [CrossRef]
- Jiang, W.; Hu, J.W.; He, X.R.; Jin, W.L.; He, X.Y. Statins: A repurposed drug to fight cancer. J. Exp. Clin. Cancer Res. 2021, 40, 241. [Google Scholar] [CrossRef]
- Walther, U.; Emmrich, K.; Ramer, R.; Mittag, N.; Hinz, B. Lovastatin lactone elicits human lung cancer cell apoptosis via a COX-2/PPARγ-dependent pathway. Oncotarget 2016, 7, 10345–10362. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, S.; Zhu, J.; Zheng, C.; Wu, M.; Xue, L.; He, G.; Fu, S.; Deng, X. Lovastatin enhances chemosensitivity of paclitaxel-resistant prostate cancer cells through inhibition of CYP2C8. Biochem. Biophys. Res. Commun. 2022, 589, 85–91. [Google Scholar] [CrossRef]
- Sanli, T.; Liu, C.; Rashid, A.; Hopmans, S.N.; Tsiani, E.; Schultz, C.; Farrell, T.; Singh, G.; Wright, J.; Tsakiridis, T. Lovastatin sensitizes lung cancer cells to ionizing radiation: Modulation of molecular pathways of radioresistance and tumor suppression. J. Thorac. Oncol. 2011, 6, 439–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nübel, T.; Damrot, J.; Roos, W.P.; Kaina, B.; Fritz, G. Lovastatin protects human endothelial cells from killing by ionizing radiation without impairing induction and repair of DNA double-strand breaks. Clin. Cancer Res. 2006, 12, 933–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrau, C.; Hülsenbeck, J.; Herzog, M.; Schad, A.; Torzewski, M.; Lackner, K.J.; Fritz, G. Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo. Radiother. Oncol. 2009, 92, 492–499. [Google Scholar] [CrossRef]
- Verena Ziegler, V.; Henninger, C.H.; Simiantonakis, I.; Buchholzer, M.; Ahmadian, M.R.; Budach, W.; Fritz, G. Rho inhibition by lovastatin affects apoptosis and DSB repair of primary human lung cells in vitro and lung tissue in vivo following fractionated irradiation. Cell Death Dis. 2017, 8, e2978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Shi, C.; Zeng, L.; Liu, G.; Jiang, W.; Zhang, X.; Chen, S.; Guo, J.; Jian, X.; Ouyang, J.; et al. High COX-2 expression in cancer-associated fibiroblasts contributes to poor survival and promotes migration and invasiveness in nasopharyngeal carcinoma. Mol. Carcinog. 2020, 59, 265–280. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z. The role of COX-2 in oral cancer development, and chemoprevention/ treatment of oral cancer by selective COX-2 inhibitors. Curr. Pharm. Des. 2005, 11, 1771–1777. [Google Scholar] [CrossRef] [PubMed]
- De Llobet, L.I.; Baro, M.; Mesia, R.; Balart, J. Simvastatin Enhances the Effects of Radiotherapy and Cetuximab on a Cell Line (FaDu) Derived from a Squamous Cell Carcinoma of Head and Neck. Transl. Oncol. 2014, 7, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Abdelrahman, I.Y.; Helwa, R.; Elkashef, H.; Hassan, N.H.A. Induction of P3NS1 Myeloma Cell Death and Cell Cycle Arrest by Simvastatin and/or γ-Radiation. Asian Pac. J. Cancer Prev. 2015, 16, 7103–7110. [Google Scholar] [CrossRef] [Green Version]
- Lacerda, L.; Reddy, J.P.; Liu, D.; Larson, R.; Li, L.; Masuda, H.; Brewer, T.; Debeb, B.G.; Xu, W.; Hortobagyi, N.H.; et al. Simvastatin radiosensitizes differentiated and stem-like breast cancer cell lines and is associated with improved local control in inflammatory breast cancer patients treated with postmastectomy radiation. Stem Cells Transl. Med. 2014, 3, 849–856. [Google Scholar] [CrossRef]
- Jin, Y.; Xu, K.; Chen, Q.; Wang, B.; Wang, B.; Pan, J.; Huang, S.; Wei, Y.; Ma, H. Simvastatin inhibits the development of radioresistant esophageal cancer cells by increasing the radiosensitivity and reversing EMT process via the PTEN-PI3K/AKT pathway. Exp. Cell Res. 2018, 362, 362–369. [Google Scholar] [CrossRef]
- Mathew, B.; Huang, Y.; Jacobson, J.R.; Berdyshev, E.; Gerhold, L.M.; Wang, T.; Moreno-Vinasco, L.; Lang, G.; Zhao, Y.; Chen, C.T.; et al. Simvastatin Attenuates Radiation-Induced Murine Lung Injury and Dysregulated Lung Gene Expression. Am. J. Respir. Cell Mol. Biol. 2011, 44, 415–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, S.F.; Cheng, J.; Geng, S.; Gao, S. Effects of simvastatin on the proliferation, invasion and radiosensitivity in Lewis lung cancer cell line. Zhonghua Zhong Liu Za Zhi 2017, 39, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Karagkounis, G.; DeVecchio, J.; Ferrandon, S.; Kalady, M.F. Simvastatin enhances radiation sensitivity of colorectal cancer cells. Surg. Endosc. 2018, 32, 1533–1539. [Google Scholar] [CrossRef] [PubMed]
- Korte, V.; Gademann, G.; Gawish, A.; Ochel, H.J. Modulation of radiosensitivity of DU145 prostate carcinoma cells by simvastatin. J. Cancer Res. Clin. Oncol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-W.; Qi, J.-W.; Hang, Y.; Wu, J.-X.; Zhou, X.-X.; Chen, J.-Z. Simvastatin is beneficial to lung cancer progression by inducing METTL3-induced m6A modification on EZH2 mRNA. Eur. Rev. Med. Pharm. Sci. 2020, 24, 4263–4270. [Google Scholar] [CrossRef]
- Cheng, J.; Fan, X.M. Role of cyclooxygenase-2 in gastric cancer development and progression. World J. Gastroenterol. 2013, 19, 7361–7368. [Google Scholar] [CrossRef]
- Arun, B.; Goss, P. The role of COX-2 inhibition in breast cancer treatment and prevention. Semin. Oncol. 2004, 31, 22–29. [Google Scholar] [CrossRef]
- Kobayashi, K.; Omori, K.; Murata, T. Role of prostaglandins in tumor microenvironment. Cancer Metastasis Rev. 2018, 37, 347–354. [Google Scholar] [CrossRef]
- Jiao, J.; Xiang, H.; Liao, Q. Recent advancement in nonsteroidal aromatase inhibitors for treatment of estrogen-dependent breast cancer. Curr. Med. Chem. 2010, 17, 3476–3487. [Google Scholar] [CrossRef]
- Chu, M.; Wang, T.; Sun, A.; Chen, Y. Nimesulide inhibits proliferation and induces apoptosis of pancreatic cancer cells by enhancing expression of PTEN. Exp. Med. 2018, 16, 370–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buecher, B.; Broquet, A.; Bouancheau, D.; Heymann, M.F.; Jany, A.; Denis, M.G.; Bonnet, C.; Galmiche, J.P.; Blottière, H.M. Molecular mechanisms involved in the antiproliferative effect of two COX-2 inhibitors, nimesulide and NS-398, on colorectal cancer cell lines. Dig. Liver Dis. 2003, 35, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Han, S.W.; Roman, J. COX-2 inhibitors suppress lung cancer cell growth by inducing p21 via COX-2 independent signals. Lung Cancer 2006, 51, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Hida, T.; Kozaki, K.; Muramatsu, H.; Masuda, A.; Shimizu, S.; Mitsudomi, T.; Sugiura, T.; Ogawa, M.; Takahashi, T. Cyclooxygenase-2 inhibitor induces apoptosis and enhances cytotoxicity of various anticancer agents in non-small cell lung cancer cell lines. Clin. Cancer Res. 2000, 6, 2006–2011. [Google Scholar]
- Olsen, J.H.; Friis, S.; Poulsen, A.H.; Fryzek, J.; Harving, H.; Tjønneland, A.; Sørensen, H.T.; Blot, W. Use of NSAIDs, smoking and lung cancer risk. Br. J. Cancer 2008, 98, 232. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.M.; Won, J.; Maeng, K.A.; Han, Y.S.; Yun, Y.-S.; Hong, S.H. Nimesulide, a selective COX-2 inhibitor, acts synergistically with ionizing radiation against A549 human lung cancer cells through the activation of caspase-8 and caspase-3. Int. J. Oncol. 2009, 34, 1467–1473. [Google Scholar]
- Saha, D.; Pyo, H.; Choy, H. COX-2 inhibitor as a radiation enhancer: New strategies for the treatment of lung cancer. Am. J. Clin. Oncol. 2004, 26, S70–S74. [Google Scholar] [CrossRef]
Substance | Mechanism of Action | References |
---|---|---|
Oridonin | Apoptosis induction: Up-regulation bax, down-regulation of bcl-2, potentiate radiation-induced ROS production, up-regulation of caspase-3, γ-H2AX Anti-EMT and migration: up-regulation of E-kadherin, down-regulation of vimentin, snail, slug | [24,25,26,27] |
Celastrol | As Hsp90 inhibitor: decreases levels of EGFR, ErB2 and surviving Apoptosis induction: up-regulation of P53 protein, potentiated cytochrome c release from mitochondria, cleaved caspases for instance caspase-3, caspase-8, caspase-9 and PARP | [31,32] |
Tashinone | Apoptosis induction: p53, Bax p-21, suppressed production of anti-apoptotic proteins such as Bcl-2, c-Myc Autophagy induction: c-Jun N-terminal kinase activation With IR: PPAT downregulation | [34,35,36,37] |
Diosmetin | Apoptosis induction: increasing of ROS level, inhibition of Nrf2 by disruption stability through Keap1-mediated proteasomal degradation, G1/S phase arrest of the cycle With IR: IR-induced DNA damage repair inhibition, inhibition of Akt signaling pathway, induction of G1 phase arrest | [38,39,40,41,42] |
Schinifoline | Apoptosis induction: Production of Fas and FasL, pro-apoptotic caspases, cytochrome c, increased bax:Bcl-2 ratio, stimuli ROS production, inhibition of PI3K/Akt signaling pathway, G2/M arrest | [43,44] |
Huachansu | Apoptosis induction: enhance of ROS level, activation of the G2/M checkpoint, extending attendance of γH2AX foci, up-regulation cleaved of caspase-3 and cleaved poly-(ADP-ribose) polymerase (PARP), inhibition of Bcl-2 and P53 protein, suppression of TopoII | [45,46] |
Metformin | Apoptosis induction: inhibition of mTOR, suppression of c-Myc and Hif-1α, AMPK activation with IR: maintain activation of ATM–AMPK–p53/p21cip1 and inhibition of Akt–mTOR–4EBP1, through KEAP1-independent mechanism, causes decrease of NRF2 due to ubiquitination and proteasomal degradation, preferentially acts with CSC Other with IR: protect from fibrosis and pneumonitis | [47,48,49,50,51,52,53,54] |
Lovastatin | Apoptosis induction: lower-level of glutathione, increase of cytochrome c, caspase-3, p53, bax, COX-2 activation and PPARγ with IR: Akt inhibition, stimulation of Erk phosphorylation, block expression p53 protein and kinase inhibitors p21cip1 and p27kip Other with IR: in normal epithelial tissue acts radioprotective, interact with Rho small GTPases protect lung epithelial, fibroblasts, microvascular epithelial cells against IR-induce toxicity by improved repair DNA mechanisms and caspase-dependent apoptosis | [55,56,57,58,59] |
Rosiglitazone | Apoptosis induction: stimulation of bax-mediated cell death, inhibited radiation-induced AKT (Protein Kinase B) phosphorylation, radiation-induced apoptosis was inverse-related with TP53 levels Radioprotective function: regulation of TGF-β, NF-κB p65 subunit, and regulation of genes associated with TNF-α, Il-6 and Il-1β | [60,61,62] |
Simvastatin | Inhibition of tumor growth and metastasis, reduction of invasion and motility of Lewis cell line through down-regulating the expression of RhoA and MMP-2. Other with IR: improvement of radiation-induced lung injury through genes regulation (p53, nuclear factor-erythroid-2-related factor, and sphingolipid metabolic pathway) | [63,64] |
Nimesulide | Apoptosis induction: induction of the expression of the p21 gene through MEK-1/ERK signaling and also DNA-protein, associated with COX2 level With IR: increase of caspase-8 and caspase-3 level | [65,66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, P.; Bil-Lula, I.; Śliwińska-Mossoń, M. A Cross-Talk about Radioresistance in Lung Cancer—How to Improve Radiosensitivity According to Chinese Medicine and Medicaments That Commonly Occur in Pharmacies. Int. J. Mol. Sci. 2023, 24, 11206. https://doi.org/10.3390/ijms241311206
Nowak P, Bil-Lula I, Śliwińska-Mossoń M. A Cross-Talk about Radioresistance in Lung Cancer—How to Improve Radiosensitivity According to Chinese Medicine and Medicaments That Commonly Occur in Pharmacies. International Journal of Molecular Sciences. 2023; 24(13):11206. https://doi.org/10.3390/ijms241311206
Chicago/Turabian StyleNowak, Paulina, Iwona Bil-Lula, and Mariola Śliwińska-Mossoń. 2023. "A Cross-Talk about Radioresistance in Lung Cancer—How to Improve Radiosensitivity According to Chinese Medicine and Medicaments That Commonly Occur in Pharmacies" International Journal of Molecular Sciences 24, no. 13: 11206. https://doi.org/10.3390/ijms241311206
APA StyleNowak, P., Bil-Lula, I., & Śliwińska-Mossoń, M. (2023). A Cross-Talk about Radioresistance in Lung Cancer—How to Improve Radiosensitivity According to Chinese Medicine and Medicaments That Commonly Occur in Pharmacies. International Journal of Molecular Sciences, 24(13), 11206. https://doi.org/10.3390/ijms241311206