Conjugated Linoleic Acid-Mediated Connexin-43 Remodeling and Sudden Arrhythmic Death in Myocardial Infarction
Abstract
:1. Introduction
2. Results
2.1. Electrocardiogram (ECG) Recordings Prior to MI Surgery Demonstrate VT following Treatment with cLA
2.2. Treatment with cLA Does Not Affect Cardiac Function before MI
2.3. Treatment with cLA Increases NOX2 Expression, while Decreasing CX43 Expression in Cardiomyocytes
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Mouse Model of Myocardial Infarction
4.3. Western Blot
4.4. Echocardiography
4.5. Histology, Immunohistochemistry and Confocal Microscopy
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banni, S. Conjugated linoleic acid metabolism. Curr. Opin. Lipidol. 2002, 13, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Chuang, C.-C.; Martinez, K.; Reid, T.; Brown, J.M.; Xi, L.; Hixson, L.; Hopkins, R.; Starnes, J.; McIntosh, M. Conjugated linoleic acid reduces adiposity and increases markers of browning and inflammation in white adipose tissue of mice. J. Lipid. Res 2013, 54, 909–922. [Google Scholar] [CrossRef] [Green Version]
- Cook, M.E.; Miller, C.C.; Park, Y.; Pariza, M.W. Immune Modulation by Altered Nutrient Metabolism: Nutritional Control of Immune-Induced Growth Depression. Poultry. Sci. 1993, 72, 1301–1305. [Google Scholar] [CrossRef]
- Miller, C.C.; Park, Y.; Pariza, M.W.; Cook, M.E. Feeding Conjugated Linoleic Acid to Animals Partially Overcomes Catabolic Responses Due to Endotoxin Injection. Biochem. Biophys. Res. Commun. 1994, 198, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- Wahle, K.W.J.; Heys, S.D.; Rotondo, D. Conjugated linoleic acids: Are they beneficial or detrimental to health? Prog. Lipid Res. 2004, 43, 553–587. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.N.; Kritchevsky, D.; Parizaa, M.W. Conjugated linoleic acid and atherosclerosis in rabbits. Atheroscl 1994, 108, 19–25. [Google Scholar] [CrossRef]
- Toomey, S.; Harhen, B.; Roche, H.M.; Fitzgerald, D.; Belton, O. Profound resolution of early atherosclerosis with conjugated linoleic acid. Atheroscler 2006, 187, 40–49. [Google Scholar] [CrossRef]
- Mooney, D.; McCarthy, C.; Belton, O. Effects of conjugated linoleic acid isomers on monocyte, macrophage, and foam cell phenotype in atherosclerosis. Prostaglandins Other Lipid Mediat. 2012, 98, 56–62. [Google Scholar] [CrossRef]
- Houseknecht, K.L.; Heuvel, J.P.V.; Moya-Camarena, S.Y.; Portocarrero, C.P.; Peck, L.W.; Nickel, K.P.; Belury, M.A. Dietary Conjugated Linoleic Acid Normalizes Impaired Glucose Tolerance in the Zucker Diabetic Fattyfa/faRat. Biochem. Biophys. Res. Commun. 1998, 244, 678–682. [Google Scholar] [CrossRef]
- Belury, M.A.; Mahon, A.; Banni, S. The Conjugated Linoleic Acid (CLA) Isomer, t10c12-CLA, Is Inversely Associated with Changes in Body Weight and Serum Leptin in Subjects with Type 2 Diabetes Mellitus. J. Nutr. 2003, 133, 257S–260S. [Google Scholar] [CrossRef] [Green Version]
- Piell, K.M.; Qipshidze Kelm, N.; Caroway, M.P.; Aman, M.; Cole, M.P. Nitrite treatment rescues cardiac dysfunction in aged mice treated with conjugated linoleic acid. Free Rad. Biol. Med. 2014, 72, 66–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.Z.; Jiang, J.X. Gap junction and hemichannel-independent actions of connexins on cell and tissue functions—An update. FEBS Lett. 2014, 588, 1186–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grippo, A.J.; Moffitt, J.A.; Henry, M.K.; Firkins, R.; Senkler, J.; McNeal, N.; Wardwell, J.; Scotti, M.-A.L.; Dotson, A.; Schultz, R. Altered Connexin 43 and Connexin 45 Protein Expression in the Heart as a Function of Social and Environmental Stress in the Prairie Vole. Stress 2015, 18, 107–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tulenko, T.N. Regulating Cross-Talk Between Vascular Smooth Muscle Cells. Arterioscler Thromb. Vasc. Biol. 2003, 23, 1707–1709. [Google Scholar] [CrossRef] [Green Version]
- Eiberger, J.; Degen, J.; Romualdi, A.; Deutsch, U.; Willecke, K.; Sohl, G. Connexin genes in the mouse and human genome. Cell Commun Adhes 2001, 8, 163–165. [Google Scholar] [CrossRef]
- Severs, N.J.; Bruce, A.F.; Dupont, E.; Rothery, S. Remodeling of gap junctions and connexin expression in diseased myocardium. Cardiovasc. Res. 2008, 80, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Gemel, J.; Glass, A.; Zemlin, C.W.; Beyer, E.C.; Veenstra, R.D. Connexin40 and connexin43 determine gating properties of atrial gap junction channels. J. Mol. Cell Cardiol. 2010, 48, 238–245. [Google Scholar] [CrossRef] [Green Version]
- Bao, M.; Kanter, E.M.; Huang, R.Y.C.; Maxeiner, S.; Frank, M.; Zhang, Y.; Schuessler, R.B.; Smith, T.W.; Townsend, R.R.; Rohrs, H.W.; et al. Residual Cx45 and its relationship to Cx43 in murine ventricular myocardium. Channels 2011, 5, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Severino, A.; Narducci, M.L.; Pedicino, D.; Pazzano, V.; Giglio, A.F.; Biasucci, L.M.; Liuzzo, G.; Casella, M.; Bartoletti, S.; Dello Russo, A.; et al. Reversible atrial gap junction remodeling during hypoxia/reoxygenation and ischemia: A possible arrhythmogenic substrate for atrial fibrillation. Gen. Physiol. Biophys. 2012, 31, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Lerner, D.L.; Yamada, K.A.; Schuessler, R.B.; Saffitz, J.E. Accelerated Onset and Increased Incidence of Ventricular Arrhythmias Induced by Ischemia in Cx43-Deficient Mice. Circulation 2011, 101, 547–552. [Google Scholar] [CrossRef] [Green Version]
- Sovari, A.A.; Rutledge, C.A.; Jeong, E.-M.; Dolmatova, E.; Arasu, D.; Liu, H.; Vahdani, N.; Gu, L.; Zandieh, S.; Xiao, L.; et al. Mitochondria Oxidative Stress, Connexin43 Remodeling, and Sudden Arrhythmic Death. Circ. Arrhythm. Electrophysiol 2013, 6, 623–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maraldi, T. Natural Compounds as Modulators of NADPH Oxidases. Oxid. Med. Cell. Longev. 2013, 2013, 271602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Shah, A.M. ROS signaling between endothelial cells and cardiac cells. Cardiovasc. Res. 2014, 102, 249–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedard, K.; Krause, K.-H. The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol. Rev. 2007, 87, 245–313. [Google Scholar] [CrossRef]
- Looi, Y.H.; Grieve, D.J.; Siva, A.; Walker, S.J.; Anilkumar, N.; Cave, A.C.; Marber, M.; Monaghan, M.J.; Shah, A.M. Involvement of Nox2 NADPH Oxidase in Adverse Cardiac Remodeling After Myocardial Infarction. Hypertension 2008, 51, 319–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betsuyaku, T.; Kanno, S.; Lerner, D.L.; Schuessler, R.B.; Saffitz, J.E.; Yamada, K.A. Spontaneous and inducible ventricular arrhythmias after myocardial infarction in mice. Cardiovasc. Pathol. 2004, 13, 156–164. [Google Scholar] [CrossRef]
- Aikawa, R.; Komuro, I.; Yamazaki, T.; Zou, Y.; Kudoh, S.; Tanaka, M.; Shiojima, I.; Hiroi, Y.; Yazaki, Y. Oxidative stress activates extracellular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. J. Clin. Invest. 1997, 100, 1813–1821. [Google Scholar] [CrossRef] [Green Version]
- Haendeler, J.; Hoffmann, J.; Brandes, R.P.; Zeiher, A.M.; Dimmeler, S. Hydrogen peroxide triggers nuclear export of telomerase reverse transcriptase via Src kinase family-dependent phosphorylation of tyrosine 707. Mol. Cell. Biol. 2003, 23, 4598–4610. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Kim, Y.S.; Jang, W.J.; Lee, S.M.; Kim, H.G.; Kim, S.Y.; Kim, J.O.; Ha, Y.L. A mixture of trans, trans conjugated linoleic acid induces apoptosis in MCF-7 human breast cancer cells with reciprocal expression of Bax and Bcl-2. J. Agric. Food Chem. 2008, 56, 5970–5976. [Google Scholar] [CrossRef]
- Islam, M.A.; Kim, Y.S.; Oh, T.W.; Kim, G.S.; Won, C.K.; Kim, H.G.; Choi, M.S.; Kim, J.O.; Ha, Y.L. Superior anticarcinogenic activity of trans, trans-conjugated linoleic acid in N-methyl-N-nitrosourea-induced rat mammary tumorigenesis. J. Agric. Food. Chem. 2010, 58, 5670–5678. [Google Scholar] [CrossRef]
- Rakib, M.A.; Lee, W.S.; Kim, G.S.; Han, J.H.; Kim, J.O.; Ha, Y.L. Antiproliferative Action of Conjugated Linoleic Acid on Human MCF-7 Breast Cancer Cells Mediated by Enhancement of Gap Junctional Intercellular Communication through Inactivation of NF- kappa B. Evid. Based Complement Altern. Med. 2013, 2013, 429393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutstein, D.E.; Morley, G.E.; Tamaddon, H.; Vaidya, D.; Schneider, M.D.; Chen, J.; Chien, K.R.; Stuhlmann, H.; Fishman, G.I. Conduction Slowing and Sudden Arrhythmic Death in Mice with Cardiac-Restricted Inactivation of Connexin43. Circ. Res. 2001, 88, 333–339. [Google Scholar] [CrossRef]
- Gutstein, D.E.; Morley, G.E.; Vaidya, D.; Liu, F.; Chen, F.L.; Stuhlmann, H.; Fishman, G.I. Heterogeneous expression of Gap junction channels in the heart leads to conduction defects and ventricular dysfunction. Circulation 2001, 104, 1194–1199. [Google Scholar] [CrossRef] [Green Version]
- Van Norstrand, D.W.; Asimaki, A.; Rubinos, C.; Dolmatova, E.; Srinivas, M.; Tester, D.J.; Saffitz, J.E.; Duffy, H.S.; Ackerman, M.J. Connexin43 mutation causes heterogeneous gap junction loss and sudden infant death. Circulation 2012, 125, 474–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Söhl, G.; Willecke, K. Gap junctions and the connexin protein family. Cardiovasc. Res. 2004, 62, 228–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Severs, N.J.; Dupont, E.; Thomas, N.; Kaba, R.; Rothery, S.; Jain, R.; Sharpey, K.; Fry, C.H. Alterations in cardiac connexin expression in cardiomyopathies. Adv. Cardiol. 2006, 42, 228–242. [Google Scholar]
- Turovsky, E.A.; Varlamova, E.G.; Turovskaya, M.V. Activation of Cx43 hemichannels induces the generation of Ca2+ oscillations in white adipocytes and stimulates lipolysis. Int. J. Mol. Sci. 2021, 22, 8095–8123. [Google Scholar] [CrossRef]
- Turovsky, E.A.; Varlamova, E.G.; Gudkov, S.V.; Plotnikov, E.Y. The protective mechanism of deuterated linoleic acid involves the activation of the Ca2+ signaling system of astrocytes in ischemia in vitro. Int. J. Mol. Sci 2021, 22, 13216–13235. [Google Scholar] [CrossRef]
- Angelova, P.R.; Horrocks, M.H.; Klenerman, D.; Ganhi, S.; Abramov, A.Y.; Shchepinov, M.S. Lipid peroxidation is essential for α-synuclein-induced cell death. J. Neuro. Chem. 2015, 133, 582–589. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.M.; Guzik, T.J.; Zhang, Y.H.; Zhang, M.H.; Kattach, H.; Ratnatunga, C.; Pillai, R.; Channon, K.M.; Casadei, B. A myocardial Nox2 containing NAD(P)H oxidase contributes to oxidative stress in human atrial fibrillation. Circ. Res. 2005, 97, 629–636. [Google Scholar] [CrossRef]
- Braunersreuther, V.; Montecucco, F.; Asrih, M.; Pelli, G.; Galan, K.; Frias, M.; Burger, F.; Quindere, A.L.; Montessuit, C.; Krause, K.H.; et al. Role of NADPH oxidase isoforms NOX1, NOX2 and NOX4 in myocardial ischemia/reperfusion injury. J. Mol. Cell. Cardiol. 2013, 64, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Maghzal, G.J.; Krause, K.H.; Stocker, R.; Jaquet, V. Detection of reactive oxygen species derived from the family of NOX NADPH oxidases. Free Radic. Biol. Med. 2012, 53, 1903–1918. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.P.; Chaiswing, L.; Oberley, T.D.; Edelmann, S.E.; Piascik, M.T.; Lin, S.-M.; Kiningham, K.K.; St. Clair, D.K. The protective roles of nitric oxide and superoxide dismutase in adriamycin-induced cardiotoxicity. Cardiovasc. Res. 2006, 69, 186–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Combadière, C.; Raoul, W.; Guillonneau, X.; Sennlaub, F. Comment on “Ccl2, Cx3cr1 and Ccl2/Cx3cr1 chemokine deficiencies are not sufficient to cause age-related retinal degeneration” by Luhmann et al. (Exp. Eye Res. 2013; 107, 80. https://doi.org/10.1016). Exp. Eye. Res. 2013, 111, 134–135. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kelm, N.Q.; Solinger, J.C.; Piell, K.M.; Cole, M.P. Conjugated Linoleic Acid-Mediated Connexin-43 Remodeling and Sudden Arrhythmic Death in Myocardial Infarction. Int. J. Mol. Sci. 2023, 24, 11208. https://doi.org/10.3390/ijms241311208
Kelm NQ, Solinger JC, Piell KM, Cole MP. Conjugated Linoleic Acid-Mediated Connexin-43 Remodeling and Sudden Arrhythmic Death in Myocardial Infarction. International Journal of Molecular Sciences. 2023; 24(13):11208. https://doi.org/10.3390/ijms241311208
Chicago/Turabian StyleKelm, Natia Qipshidze, Jane C. Solinger, Kellianne M. Piell, and Marsha P. Cole. 2023. "Conjugated Linoleic Acid-Mediated Connexin-43 Remodeling and Sudden Arrhythmic Death in Myocardial Infarction" International Journal of Molecular Sciences 24, no. 13: 11208. https://doi.org/10.3390/ijms241311208
APA StyleKelm, N. Q., Solinger, J. C., Piell, K. M., & Cole, M. P. (2023). Conjugated Linoleic Acid-Mediated Connexin-43 Remodeling and Sudden Arrhythmic Death in Myocardial Infarction. International Journal of Molecular Sciences, 24(13), 11208. https://doi.org/10.3390/ijms241311208