Individual Differences in Growth and in Accumulation of Secondary Metabolites in Rhodiola rosea Cultivated in Western Siberia
Abstract
:1. Introduction
2. Results
2.1. Growth Parameters
2.2. Analysis of Phenolic Compounds
2.3. The Phenylpropanoid Content
2.4. The Phenylethanoid Content
2.5. Flavonoid Content
2.6. Hydroxybenzoic Acids
2.7. The Catechin Content
3. Discussion
3.1. Growth Parameters
3.2. The Phenylpropanoid Content
3.3. The Phenylethanoid Content
3.4. The Flavonoid Content
3.5. Concentrations of Hydroxybenzoic Acids and Catechins
4. Materials and Methods
4.1. Plant Material and Propagation
4.2. Growth Conditions
4.3. Harvest and Drying
4.4. Extraction and HPLC Analysis of Phenolic Compounds
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, G.S. Rhodiola rosea: A possible plant adaptogen. Altern. Med. Rev. 2001, 6, 293–302. [Google Scholar] [PubMed]
- Wiedenfeld, H.; Dumaa, M.; Malinowski, M.; Furmanowa, M.; Narantuya, S. Phytochemical and analytical studies of extracts from Rhodiola rosea and Rhodiola quadrifida. Pharmazie 2007, 62, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Panossian, A.; Wikman, G.; Sarris, J. Rosenroot (Roseroot): Traditional use, chemical composition, pharmacology, and clinical efficacy. Phytomed 2010, 17, 481–493. [Google Scholar] [CrossRef]
- Jamioł, M.; Wawrzykowski, J.; Dec, M.; Wilk, A.; Czelej, M. Comparison of various techniques for the extraction, analysis of compounds and determination of antioxidant activities of Rhodiola spp.—A review. Food Rev. Int. 2023, 39, 467–487. [Google Scholar] [CrossRef]
- Péter Zomborszki, Z.; Kúsz, N.; Csupor, D.; Peschel, W. Rhodiosin and herbacetin in Rhodiola rosea preparations: Additional markers for quality control? Pharm. Biol. 2019, 57, 295–305. [Google Scholar] [CrossRef] [Green Version]
- USP Herbal Medicines Compendium. Monograph: Rhodiola Rosea root and rhizome powder. In The United States Pharmacopeial Convention; Labmix24: Hamminkeln, Germany, 2015. [Google Scholar]
- FA.2.5.0036.15; Russia State Pharmacopoeia 13, Rhodiola rosea rhizomes and roots. Federal Electronic Medical Library: Moscow, Russia, 2015.
- Panossian, A.G. Adaptogens: Tonic Herbs for Fatigue and Stress. Altern. Complement. Ther. 2003, 9, 327–331. [Google Scholar] [CrossRef]
- Saratikov, A.S.; Krasnov, E.A. Rhodiola Rosea (Golden Root), 4th ed.; Revised and Enlarged; Tomsk State University Publishing House: Tomsk, Russia, 2004; pp. 22–41. [Google Scholar]
- Panossian, A.G.; Wagner, H. Stimulating effect of adaptogens: An overview with particular reference to their efficacy following single dose administration. Phytother. Res. 2005, 19, 819–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panossian, A.G.; Wikman, G. Evidence-based efficacy of adaptogens in fatigue, and molecular mechanisms related to their stress-protective activity. Curr. Clin. Pharmacol. 2009, 43, 198–219. [Google Scholar] [CrossRef]
- Ma, G.P.; Zheng, Q.; Xu, M.B.; Zhou, X.L.; Lu, L.; Li, Z.X.; Zheng, G.Q. Rhodiola rosea L. improves learning and memory function: Preclinical evidence and possible mechanisms. Front. Pharmacol. 2018, 9, 1415. [Google Scholar] [CrossRef]
- Durazzo, A.; Lucarini, M.; Nazhand, A.; Coêlho, A.G.; Souto, E.B.; Arcanjo, D.D.R.; Santini, A. Rhodiola rosea: Main features and its beneficial properties. Rend. Fis. Acc. Lincei 2022, 33, 71–82. [Google Scholar] [CrossRef]
- Calabrese, E.J.; Dhawan, G.; Kapoor, R.; Agathokleous, E.; Calabrese, V. Rhodiola rosea and Salidroside commonly induce hormesis, with particular focus on longevity and neuroprotection. Chem.-Biol. Interact. 2023, 380, 110540. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, S.; Shao, W.; Wang, S.; Yao, L. Investigating the effects and mechanism of Rhodiola rosea injection on cardiac function in rats with chronic heart failure. Comb. Chem. High Throughput Screen. 2023, 26, 2238–2246. [Google Scholar] [CrossRef] [PubMed]
- Ming, D.S.; Hillhouse, B.J.; Guns, E.S.; Eberding, A.; Xie, S.; Vimalanathan, S.; Towers, G.H.N. Bioactive compounds from Rhodiola rosea (Crassulaceae). Phyther. Res. 2005, 19, 740–743. [Google Scholar] [CrossRef] [PubMed]
- Nikolaichuk, H.; Typek, R.; Gnat, S.; Studziński, M.; Choma, I.M. Effect-directed analysis as a method for quality and authenticity estimation of Rhodiola rosea L. preparations. J. Chromatogr. A 2021, 1649, 462217. [Google Scholar] [CrossRef]
- Galambosi, B. Demand and availability of Rhodiola rosea L. raw material. In Medicinal and Aromatic Plants; Bogers, R., Cracer, L., Lange, D., Eds.; Springer: Cham, Switzerland, 2006; pp. 223–236. [Google Scholar]
- Węglarz, Z.; Przybył, J.L.; Geszprych, A. Roseroot (Rhodiola rosea L.): Effect of internal and external factors on accumulation of biologically active compounds. In Bioactive Molecules and Medicinal Plants; Ramawat, K.G., Merillon, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 16, pp. 297–315. [Google Scholar]
- Koáodziej, B.; Sugier, D. Influence of plants age on the chemical composition of roseroot (Rhodiola rosea L.). Acta Sci. Pol. Hortorum Cultus 2013, 12, 147–160. [Google Scholar]
- Peschel, W.; Prieto, J.M.; Karkour, C.; Williamson, E.M. Effect of provenance, plant part and processing on extract profiles from cultivated European Rhodiola rosea L. for medicinal use. Phytochemistry 2013, 86, 92–102. [Google Scholar] [CrossRef] [PubMed]
- Peschel, W.; Kump, A.; Horváth, A.; Csupor, D. Age and harvest season affect the phenylpropenoid content in cultivated European Rhodiola rosea L. Ind. Crops Prod. 2016, 83, 787–802. [Google Scholar] [CrossRef]
- Peschel, W.; Kump, A.; Zomborszki, Z.P.; Pfosser, M.F.; Kainz, W.; Csupor, D. Phenylpropenoid content in high-altitude cultivated Rhodiola rosea L. provenances according to plant part, harvest season and age. Ind. Crops Prod. 2018, 111, 446–456. [Google Scholar] [CrossRef]
- Buchwald, W.; Mordalski, R.; Kucharski, W.; Gryszczyńska, A.; Adamczak, A. Effect of fertilization on roseroot (Rhodiola rosea L.) yield and content of active compounds. Acta Sci. Polonorum. Hortorum Cultus Ogrod. 2015, 14, 109–121. [Google Scholar]
- Erst, A.A.; Petruk, A.A.; Zibareva, L.N.; Erst, A.S. Morphological, histochemical and biochemical features of cultivated Rhodiola rosea (Altai Mountains ecotype). Contemp. Probl. Ecol. 2021, 14, 701–710. [Google Scholar] [CrossRef]
- Erst, A.A.; Petruk, A.A.; Erst, A.S.; Krivenko, D.A.; Filinova, N.V.; Maltseva, S.Y.; Kulikovskiy, M.S.; Banaev, E.V. Optimization of Biomass Accumulation and Production of Phenolic Compounds in Callus Cultures of Rhodiola rosea L. Using Design of Experiments. Plants 2022, 11, 124. [Google Scholar] [CrossRef] [PubMed]
- Mirmazloum, I.; Ladányi, M.; György, Z. Changes in the content of the glycosides, aglycons and their possible precursors of Rhodiola rosea during the vegetation period. Nat. Prod. Commun. 2015, 10, 1413–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rybakova, G.R.; Tikhomirov, A.A.; Chepeleva, G.G. To study the effect of the spectral composition of light when grown under light culture conditions on the yield of salidroside in Rhodiola rosea. Chem. Plant Raw Mater. 2002, 3, 77–83. [Google Scholar]
- Kučinskaitė, A.; Pobłocka-Olech, L.; Krauze-Baranowska, M.; Sznitowska, M.; Savickas, A.; Briedis, V. Evaluation of biologically active compounds in roots and rhizomes of Rhodiola rosea L. cultivated in Lithuania. Medicina 2007, 43, 487. [Google Scholar] [CrossRef] [Green Version]
- Alperth, F.; Turek, I.; Weiss, S.; Vogt, D.; Bucar, F. Qualitative and Quantitative Analysis of Different Rhodiola rosea Rhizome Extracts by UHPLC-DAD-ESI-MSn. Sci. Pharm. 2019, 87, 8. [Google Scholar] [CrossRef] [Green Version]
- Elameen, A.; Kosman, V.M.; Thomsen, M.; Pozharitskaya, O.N.; Shikov, A.N. Variability of major phenyletanes and phenylpropanoids in 16-year-old Rhodiola rosea L. clones in Norway. Molecules 2020, 25, 3463. [Google Scholar] [CrossRef]
- Red Data Book of the Russian Federation (Plants and Fungi); Partnership of Scientific Publications KMC: Moskow, Russia, 2008; 855p.
- Bernard, R. Rhodiola rosea in packaged food and beverages. In Global Analysis Report Agriculture and Agri-Food Canada; Elsevier: Ottawa, ON, Canada, 2016. [Google Scholar]
- Kubentayev, S.A.; Zhumagul, M.Z.; Kurmanbayeva, M.S.; Alibekov, D.T.; Kotukhov, J.A.; Sitpayeva, G.T.; Mukhtubayeva, S.K.; Izbastina, K.S. Current state of populations of Rhodiola rosea L. (Crassulaceae) in East Kazakhstan. Bot. Stud. 2021, 62, 19. [Google Scholar] [CrossRef]
- Sharygina Yu, M. Experience of Growing Rhodiola rosea in the Botanic Garden of Mari State Technical University. Lesn. Zhurnal 2004, 1, 14–19. [Google Scholar]
- Galambosi, B.; Galambosi, Z.; Uusitalo, M.; Heinonen, A. Effects of plant sex on the biomass production and secondary metabolites in roseroot (Rhodiola rosea L.) from the aspect of cultivation. Z. Arzn. Gew. Pfl. 2009, 14, 114–121. [Google Scholar]
- Przybyl, J.L.; Weglarz, Z.; Geszprych, A. Quality of Rhodiola rosea cultivated in Poland. Acta Hort. 2008, 765, 143–150. [Google Scholar] [CrossRef]
- Zaprometov, M.N. Phenolic Compounds: Distribution, Metabolism and Function in Plants; Nauka: Moscow, Russia, 1993. [Google Scholar]
- Malnoe, P.; Carron, C.-A.; Vouillamoz, J.F.; Rohloff, J. L’orpin rose (Rhodiola rosea L.), une plante alpine anti-stress. Rev. Suisse Vitic. Arboric. Hortic. 2009, 41, 281–286. [Google Scholar]
- Linh, P.T.; Kim, Y.H.; Hong, S.P.; Jian, J.J.; Kang, J.S. Quantitative determination of salidroside and tyrosol from the underground part of Rhodiola rosea by high performance liquid chromatography. Arch. Pharm. Res. 2000, 23, 349–352. [Google Scholar] [CrossRef]
- Bozhilova, M. Salidroside content in Rhodiola rosea L., dynamics and variability. Bot. Serb. 2011, 35, 67–70. [Google Scholar]
- Kim, E.F. The experience of growing Rhodiola rosea in the low mountains of Altai. Rastit. Resur. (Plant Resour.) 1976, 12, 583–590. [Google Scholar]
- Nakamura, S.; Li, X.; Matsuda, H.; Ninomiya, K.; Morikawa, T.; Yamaguti, K.; Yoshikawa, M. Bioactive constituents from Chinese natural medicines. XXVI. Chemical structures and hepatoprotective effects of constituents from roots of Rhodiola sachalinensis. Chem. Pharm. Bull. 2007, 55, 1505–1511. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.J.; Ryu, Y.B.; Park, S.J.; Kim, J.H.; Kwon, H.J.; Kim, J.H.; Park, K.H.; Rho, M.C.; Lee, W.S. Neuraminidase inhibitory activities of flavonols isolated from Rhodiola rosea roots and their in vitro anti-influenza viral activities. Bioorg. Med. Chem. 2009, 17, 6816–6823. [Google Scholar]
- Kwon, H.J.; Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Park, S.J.; Chang, J.S.; Lee, W.S. Rhodiosin, an antioxidant flavonol glycoside from Rhodiola rosea. J. Korean Soc. Appl. Biol. Chem. 2009, 52, 486–492. [Google Scholar] [CrossRef]
- Zhu, S.; Ma, C.; Fu, Q.; Hu, L.; Lou, Z.; Wang, H.; Tao, G. Application of Ionic Liquids in an Online Ultrasonic Assisted Extraction and Solid-Phase Trapping of Rhodiosin and Rhodionin from Rhodiola rosea for UPLC. Chromatographia 2013, 76, 195–200. [Google Scholar] [CrossRef]
- Bocharova, O.A.; Kazeev, I.V.; Shevchenko, V.E.; Sheichenko, O.P.; Poroikov, V.V.; Bocharov, E.V.; Karpova, R.V.; Ionov, N.S.; Kucheryanu, V.G.; Kosorukov, V.S.; et al. A potential method for standardization of multiphytoadaptogen: Tandem mass spectrometry for analysis of biologically active substances from Rhodiola rosea. Pharm. Chem. J. 2022, 56, 78–84. [Google Scholar] [CrossRef]
- Zapesochnaya, G.G.; Kurkin, V.A. Flavonoids of Rhodiola rosea rhizomes. 2. Flavonolignan and herbacetin glycosides. Khim. Prir. Soedin. 1983, 1, 23–32. [Google Scholar]
- Zapesochnaya, G.G.; Kurkin, V.A.; Shchavlinsky, A.N. Flavonoids of the epigeal part of Rhodiola rosea. II. Structures of new glycosides of herbacetin and of gossypetin. Chem. Nat. Compd. 1985, 4, 464–473. [Google Scholar] [CrossRef]
- Olennikov, D.N. New metabolites of Rhodiola rosea. II. Hibiscetin Glycosides. Chem. Nat. Compd. 2023, 59, 254–258. [Google Scholar] [CrossRef]
- Li, T.; Zhang, H. Identification and comparative determination of rhodionin in traditional Tibetan medicinal plants of fourteen Rhodiola species by high-performance liquid chromatography-photodiode array detection and electrospray ionization-mass spectrometry. Chem. Pharm. Bull. 2008, 56, 807–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, C.; Hu, L.; Fu, Q.; Gu, X.; Tao, G.; Wang, H. Separation of four flavonoids from Rhodiola rosea by on-line combination of sample preparation and counter-current chromatography. J. Chromatogr. A 2013, 1306, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Hu, L.; Ma, C.; Lv, W.; Wang, H. Application and recovery of ionic liquids in the preparative separation of four flavonoids from Rhodiola rosea by on-line three-dimensional liquid chromatography. J. Sep. Sci. 2014, 37, 2314–2321. [Google Scholar] [CrossRef]
- Olennikov, D.N.; Chirikova, N.K.; Vasilieva, A.G.; Fedorov, I.A. LC-MS profile, gastrointestinal and gut microbiota stability and antioxidant activity of Rhodiola rosea herb metabolites: A comparative study with subterranean organs. Antioxidants 2020, 9, 526. [Google Scholar] [CrossRef]
- Gryszczyńska, A.; Krajewska-Patan, A.; Buchwald, W.; Czerny, B.; Mielcarek, S.; Rudzińska, K.; Mrozikiewicz, P.M. Comparison of proanthocyanidins content in Rhodiola kirilowii and Rhodiola rosea roots-application of UPLC-MS/MS method. Herba Pol. 2012, 58, 5–15. [Google Scholar]
- Anilakumar, P.K.; Khanum, F.; Bawa, A.S. Phytoconstituents and antioxidant potency of Rhodiola rosea—A versatile adaptogen. J. Food Biochem. 2006, 30, 203–214. [Google Scholar] [CrossRef]
- Summers, C.B.; Felton, G.W. Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera: Noctuidae): Potential mode of action for phenolic compounds in plant anti-herbivore chemistry. Insect Biochem. Mol. Biol. 1994, 24, 943–953. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Bravo Lamas, L.; Martínez Flórez, S.; Agudo Toyos, P.; et al. Phenolic compounds in honey and their associated health benefits: A review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [Green Version]
- War, A.R.; Sharma, S.P.; Sharma, H.C. Differential induction of flavonoids in groundnut in response to Helicoverpa armigera and Aphis craccivora infestation. Int. J. Insect Sci. 2020, 8, 55–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marchiosi, R.; dos Santos, W.D.; Constantin, R.P.; de Lima, R.B.; Soares, A.R.; Finger-Teixeira, A.; Mota, T.R.; de Oliveira, D.M.; de Paiva Foletto-Felipe, M.; Ferrarese-Filho, J.A.O. Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochem. Rev. 2020, 19, 865–906. [Google Scholar] [CrossRef]
- Zhang, S.; Jiang, S.; Deng, N.; Zheng, B.; Li, T.; Liu, R.H. Phytochemical Profiles, Antioxidant Activity and Antiproliferative Mechanism of Rhodiola rosea L. Phenolic Extract. Nutrients 2022, 14, 3602. [Google Scholar] [CrossRef] [PubMed]
- Erst, A.; Erst, A.; Shmakov, A. In vitro propagation of rare species Rhodiola rosea from Altai Mountains. Turczaninowia 2018, 21, 78–86. [Google Scholar] [CrossRef]
- Erst, A.A.; Yakubov, V.V. Regenerative in vitro capacity of rare species Rhodiola rosea L. from various habitats. Contemp. Probl. Ecol. 2019, 12, 368–376. [Google Scholar] [CrossRef]
Year of Cultivation | Total DW, g | DW Increase over the Last Year, % | Rhizome: Root Ratio, DW | |
---|---|---|---|---|
Mean ± SE | CV, % | |||
Year 2 | 2.93 ± 0.35 | 27.72 | – | 1:0.71 1 |
Year 3 | 4.21 ± 0.46 | 21.63 | 144 | 1:0.75 1 |
Year 4 | 15.22 ± 1.37 | 19.54 | 362 | 1:0.58 1 |
Year 5 | 22.74 ± 2.86 | 24.68 | 149 | 1:0.78 |
Year 6 | 71.56 ± 6.49 | 17.78 | 315 | 1:0.44 |
ID | Compound | SCh: λmax, nm | tR, min | Specimen ID | Mean ± SE | CV, % | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||||||
hydroxybenzoic acids | |||||||||||||||
1 | GA | 216, 272 | 2.3 | 92.74 99.38 | 131.55 94.42 | 105.96 103.55 | 66.71 55.41 | 78.87 75.51 | 73.21 122.24 | 91.12 84.14 | 114.51 118.98 | 67.83 82.50 | 134.67 74.90 | 95.72 ± 7.96 a 91.10 ± 6.57 a | 26.29 22.80 |
2 | HBA derivative | 220, 270 | 2.6 | 36.29 38.37 | 48.71 55.42 | 46.70 38.50 | 36.06 36.63 | 65.22 42.61 | 32.54 37.78 | 53.74 48.87 | 17.59 45.59 | 26.32 46.31 | 45.80 50.08 | 40.90 ± 4.40 a 44.02 ± 1.99 a | 34.05 14.28 |
HBAtot | 129.03 137.75 | 180.26 149.84 | 152.66 142.05 | 102.77 92.04 | 144.08 118.12 | 105.74 160.02 | 144.86 133.01 | 132.10 164.57 | 94.15 128.81 | 180.48 124.98 | 136.61 ± 9.54 a 135.12 ± 6.71 a | 22.08 15.70 | |||
phenylethanoids | |||||||||||||||
3 | SAL | 222, 276 | 4.8 | 88.00 53.46 | 88.04 20.78 | 71.68 22.27 | 50.55 92.65 | 54.15 16.76 | 30.30 27.69 | 69.75 37.20 | 41.09 40.83 | 59.18 46.98 | 50.58 16.96 | 60.33 ± 6.01 a 37.56 ± 7.35 b | 31.51 61.85 |
4 | TYR | 220, 275 | 6.3 | 5.96 4.23 | 14.96 4.93 | 14.46 9.37 | 6.90 5.57 | 12.14 4.60 | 8.66 3.27 1 | 7.37 13.08 | 3.83 1 8.62 | 6.35 13.77 | 6.09 4.80 | 8.67 ± 1.21 a 7.23 ± 1.20 a | 44.29 52.43 |
SALtot | 93.96 57.69 | 103.00 25.71 | 86.14 31.64 | 57.45 98.22 | 66.29 21.36 | 38.96 30.96 | 77.12 50.28 | 44.92 49.45 | 65.53 60.75 | 56.67 21.76 | 69.00 ± 6.60 a 44.78 ± 7.55 b | 30.27 53.34 | |||
catechins | |||||||||||||||
5 | ±catechin | 204, 230 sh., 280 | 5.5 | 41.93 45.48 | 30.49 22.66 | 29.01 20.17 | 42.30 36.72 | 42.03 22.56 | 29.28 24.54 | 61.80 44.37 | 51.24 34.60 | 46.04 19.47 | 60.14 31.55 | 43.43 ± 3.75 a 30.21 ± 3.09 a | 27.30 32.38 |
6 | EGCG | 204, 230 sh., 275 | 7.5 | 35.30 69.87 | 74.07 115.82 | 51.23 48.92 | 89.02 198.26 | 29.71 89.26 | 64.53 98.15 | 70.46 108.17 | 96.48 132.11 | 68.77 116.36 | 50.84 74.12 | 63.04 ± 6.81 b 105.10 ± 13.04 a | 34.16 39.25 |
7 | No. 7 | 228, 277 | 8.2 | 56.14 163.09 | 24.58 70.50 | 45.48 41.74 | 35.94 110.89 | 27.38 121.61 | 13.56 34.76 | 21.50 99.15 | 32.96 78.29 | 37.51 66.83 | 64.20 121.19 | 35.93 ± 4.97 b 90.81 ± 12.59 a | 43.73 43.84 |
CATtot | 133.37 278.44 | 129.14 208.98 | 125.72 110.83 | 167.26 345.87 | 99.12 233.43 | 107.37 157.45 | 153.75 251.69 | 180.68 245.00 | 152.32 202.66 | 175.18 226.85 | 142.39 ± 8.83 b 226.12 ± 20.27 a | 19.62 28.35 | |||
phenylpropanoids | |||||||||||||||
8 | rosarin | 253.00 | 13.9 | 101.51 134.34 | 193.41 169.07 | 110.48 65.68 | 243.74 264.45 | 126.46 168.92 | 180.72 196.21 | 134.02 143.97 | 260.54 357.26 | 178.81 266.76 | 271.97 332.13 | 180.17 ± 19.77 a 209.88 ± 29.30 a | 34.69 44.14 |
9 | rosavin | 253.00 | 14.9 | 167.76 308.24 | 340.78 506.04 | 147.51 78.25 | 951.08 850.65 | 134.11 336.22 | 393.47 426.33 | 196.02 345.73 | 510.76 904.44 | 316.28 763.17 | 339.88 606.00 | 349.76 ± 77.09 a 512.51 ± 84.08 a | 69.70 51.88 |
10 | rosin | 253.00 | 15.2 | 197.07 213.16 | 281.20 370.43 | 184.04 149.73 | 425.26 500.54 | 97.44 281.13 | 223.54 283.09 | 148.50 182.50 | 298.09 580.21 | 174.57 470.07 | 306.97 559.63 | 233.67 ± 30.12 a 359.05 ± 50.52 a | 40.77 44.50 |
11 | CA | 253.00 | 19.0 | 179.54 244.67 | 326.78 217.93 | 225.55 198.94 | 56.96 151.32 | 363.44 239.64 | 154.70 115.21 | 180.09 127.33 | 260.63 164.01 | 194.94 117.45 | 369.01 346.37 | 231.16 ± 31.50 a 192.29 ± 23.01 a | 43.10 37.85 |
ROStot | 466.34 655.75 | 815.39 1045.53 | 442.02 293.65 | 1620.09 1615.63 | 358.01 786.27 | 797.72 905.62 | 478.54 672.20 | 1069.39 1841.91 | 669.66 1499.99 | 918.83 1497.76 | 763.60 ± 120.25 b 1081.43 ± 159.89 a | 49.80 46.75 | |||
PPtot | 645.89 900.41 | 1142.17 1263.47 | 667.57 492.60 | 1677.05 1766.96 | 721.45 1025.91 | 952.42 1020.83 | 658.63 799.54 | 1330.01 2005.92 | 864.60 1617.45 | 1287.83 1844.13 | 994.76 ± 11.59 b 1273.72 ± 160.65 a | 35.47 39.88 | |||
flavonoids | |||||||||||||||
12 | rhodiosin | 277, 333, 385 | 21.5 | 70.09 66.37 | 79.09 59.53 | 115.08 50.32 | 46.39 58.95 | 47.88 67.10 | 49.63 62.38 | 53.28 67.89 | 39.77 59.18 | 26.88 31.40 | 99.94 80.46 | 62.80 ± 8.82 a 60.36 ± 4.07 a | 44.43 21.32 |
13 | rhodionin | 277, 333, 386 | 22.1 | 25.61 17.58 | 27.88 22.56 | 37.47 19.67 | 18.56 23.43 | 43.42 14.31 | 17.78 27.55 | 15.48 27.07 | 9.14 30.39 | 10.84 13.20 | 30.78 29.33 | 23.70 ± 3.58 a 22.51 ± 1.95 a | 47.83 27.39 |
FLAVtot | 95.71 83.95 | 106.97 82.09 | 152.54 69.99 | 64.94 82.38 | 91.31 81.40 | 67.42 89.93 | 68.77 94.96 | 48.91 89.57 | 37.71 44.60 | 130.72 109.80 | 86.50 ± 11.44 a 82.87 ± 5.38 a | 41.83 20.51 | |||
Total | 1097.95 1458.25 | 1661.55 1730.09 | 1184.63 847.10 | 2069.47 2385.47 | 1122.26 1480.22 | 1271.90 1459.20 | 1103.13 1329.48 | 1736.63 2554.51 | 1214.31 2054.26 | 1830.88 2327.52 | 1429.27 ± 113.52 a 1762.61 ± 173.59 a | 25.13 31.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erst, A.A.; Kotsupiy, O.V.; Erst, A.S.; Kuznetsov, A.A. Individual Differences in Growth and in Accumulation of Secondary Metabolites in Rhodiola rosea Cultivated in Western Siberia. Int. J. Mol. Sci. 2023, 24, 11244. https://doi.org/10.3390/ijms241411244
Erst AA, Kotsupiy OV, Erst AS, Kuznetsov AA. Individual Differences in Growth and in Accumulation of Secondary Metabolites in Rhodiola rosea Cultivated in Western Siberia. International Journal of Molecular Sciences. 2023; 24(14):11244. https://doi.org/10.3390/ijms241411244
Chicago/Turabian StyleErst, Anna A., Olga V. Kotsupiy, Andrey S. Erst, and Alexander A. Kuznetsov. 2023. "Individual Differences in Growth and in Accumulation of Secondary Metabolites in Rhodiola rosea Cultivated in Western Siberia" International Journal of Molecular Sciences 24, no. 14: 11244. https://doi.org/10.3390/ijms241411244
APA StyleErst, A. A., Kotsupiy, O. V., Erst, A. S., & Kuznetsov, A. A. (2023). Individual Differences in Growth and in Accumulation of Secondary Metabolites in Rhodiola rosea Cultivated in Western Siberia. International Journal of Molecular Sciences, 24(14), 11244. https://doi.org/10.3390/ijms241411244