The Influence of Copper Nanoparticles on Neurometabolism Marker Levels in the Brain and Intestine in a Rat Model
Abstract
:1. Introduction
2. Results
2.1. The Effects of Different Sources of Copper
2.2. The Effects of Different Dosages of Copper
3. Discussion
4. Materials and Methods
4.1. Characterization of Cu Nanoparticles
4.2. Animal Protocol and Dietary Treatments
4.3. Experimental Procedures in Rats and Study Analysis
4.4. Determination of Indicators Proving the Potential Neurodegenerative Effect
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cendrowska-Pinkosz, M.; Ostrowska-Lesko, M.; Ognik, K.; Krauze, M.; Juśkiewicz, J.; Dąbrowska, A.; Szponar, J.; Mandziuk, S. Dietary Copper deficiency leads to changes in gene expression indicating an increased demand for NADH in the prefrontal cortex of the rat’s brain. Int. J. Mol. Sci. 2022, 23, 6706. [Google Scholar] [CrossRef] [PubMed]
- Angelopoulou, E.; Paudel, Y.N.; Papageorgiou, S.G.; Piperi, C. APOE Genotype and Alzheimer’s Disease: The Influence of Lifestyle and Environmental Factors. ACS Chem. Neurosci. 2021, 4, 2749–2764. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; Xu, M.; Luo, J.; Zhao, L.; Shi, F.; Ye, G.; Lv, C.; Li, Y. Effect of copper nanoparticles on brain cytochrome P450 enzymes in rats. Mol. Med. Rep. 2019, 20, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Gromadzka, G.; Tarnacka, B.; Flaga, A.; Adamczyk, A. Copper Dyshomeostasis in neurodegenerative diseases-therapeutic implications. Int. J. Mol. Sci. 2020, 4, 9259. [Google Scholar] [CrossRef]
- Antonucci, F.; Turola, E.; Riganti, L.; Caleo, M.; Gabrielli, M.; Perrotta, C.; Novellino, L.; Clementi, E.; Giussani, P.; Viani, P.; et al. Microvesicles released from microglia stimulate synaptic activity via enhanced sphingolipid metabolism. EMBO J. 2012, 31, 1231–1240. [Google Scholar] [CrossRef]
- Olufunmilayo, E.O.; Gerke-Duncan, M.B.; Holsinger, R.M.D. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants 2023, 12, 517. [Google Scholar] [CrossRef]
- Di Nicolantonio, J.J.; Mangan, D.; O’Keefe, J.H. Copper deficiency may be a leading cause of ischaemic heart disease. Open Heart 2018, 5, e000784. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, S.; Squitti, R.; Haertlé, T.; Siotto, M.; Saboury, A.A. Role of copper in the onset of Alzheimer’s disease compared to other metals. Front. Aging. Neurosci. 2018, 23, 446. [Google Scholar] [CrossRef] [Green Version]
- Peña, Q.; Rodríguez-Calado, S.; Simaan, A.J.; Capdevila, M.; Bayón, P.; Palacios, O.; Lorenzo, J.; Iranzo, O. Cell-penetrating peptide-conjugated copper complexes for redox-mediated anticancer therapy. Front. Pharmacol. 2022, 13, 827. [Google Scholar] [CrossRef]
- Falcone, E.; Okafor, M.; Vitale, N.; Raibaut, L.; Sour, A.; Faller, P. Extracellular Cu2+ pools and their detection: From current knowledge to next-generation probes. Coord. Chem. Rev. 2021, 433, 213727. [Google Scholar] [CrossRef]
- Mayes, J.; Tinker-Mill, C.; Kolosov, O.; Zhang, H.; Tabner, B.J.; Allsop, D. β-Amyloid fibrils in Alzheimer disease are not inert when bound to copper ions but can degrade hydrogen peroxide and generate reactive oxygen species. J. Biol. Chem. 2014, 289, 12052–12062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maynard, C.J.; Bush, A.I.; Masters, C.L.; Cappai, R.; Li, Q.X. Metals and amyloid beta in Alzheimer’s disease. Int. J. Exp. Pathol. 2005, 86, 147–159. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.; Aschner, M. Commonalities between copper neurotoxicity and Alzheimer’s disease. Toxics 2021, 9, 4. [Google Scholar] [CrossRef] [PubMed]
- Cheignon, C.; Tomas, M.; Bonnefont-Rousselot, D.; Faller, P.; Hureau, C.; Collin, F. Oxidative stress, and the amyloid beta peptide in Alzheimer’s disease. Redox Biol. 2018, 14, 450–464. [Google Scholar] [CrossRef]
- Ognik, K.; Tutaj, K.; Cholewińska, E.; Cendrowska-Pinkosz, M.; Dworzański, W.; Dworzańska, A.; Juśkiewicz, J. The effect of a rat diet without added Cu on redox status in tissues and epigenetic changes in the brain. Ann. Anim. Sci. 2020, 20, 503–520. [Google Scholar] [CrossRef]
- Wang, N.; Wang, X.; He, M.; Zheng, W.; Qi, D.; Zhang, Y.; Han, C.C. Ginseng polysaccharides: A potential neuroprotective agent. J. Ginseng. Res. 2021, 45, 211–217. [Google Scholar] [CrossRef]
- Cholewińska, E.; Ognik, K.; Fotschki, B.; Zduńczyk, Z.; Juśkiewicz, J. Comparison of the effect of dietary copper nanoparticles and one copper (II) salt on the copper biodistribution and gastrointestinal and hepatic morphology and function in a rat model. PLoS ONE 2018, 13, 5. [Google Scholar] [CrossRef] [Green Version]
- Kardos, J.; Héja, L.; Simon, Á.; Jablonkai, I.; Kovács, R.; Jemnitz, K. Copper signalling: Causes and consequences. Cell Commun. Signal. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Giampietro, R.; Spinelli, F.; Contino, M.; Colabufo, N.A. The pivotal role of copper in neurodegeneration: A new strategy for the therapy of neurodegenerative disorders. Mol. Pharm. 2018, 15, 808–820. [Google Scholar] [CrossRef]
- Rauch, J.N.; Luna, G.; Guzman, E.; Audouard, M.; Challis, C.; Sibih, Y.E.; Leshuk, C.; Hernandez, I.; Wegmann, S.; Hyman, B.T.; et al. LRP1 is a master regulator of tau uptake and spread. Nature 2020, 580, 381–385. [Google Scholar] [CrossRef]
- Tönnies, E.; Trushina, E. Oxidative stress, synaptic dysfunction, and Alzheimer’s disease. J. Alzheimer’s Dis. 2017, 57, 1105–1121. [Google Scholar] [CrossRef] [Green Version]
- Krauze, M.; Ognik, K.; Mikulski, D.; Jankowski, J. Assessment of neurodegenerative changes in turkeys fed diets with different proportions of arginine and methionine relative to lysine. Animals 2022, 14, 1535. [Google Scholar] [CrossRef] [PubMed]
- Long, P.; Wang, Q.; Zhang, Y.; Zhu, X.; Yu, K.; Jiang, H.; Liu, X.; Zhou, M.; Yuan, Y.; Liu, K.; et al. Profile of copper-associated DNA methylation and its association with incident acute coronary syndrome. Clin. Epigenet. 2021, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Chen, Q.; Yao, H.; Tan, J.; Liu, Z.; Zhou, Y.; Zou, Z. Epigenetics in Alzheimer’s disease. Front. Aging Neurosci. 2022, 14, 911635. [Google Scholar] [CrossRef]
- Rossi, L.; Lombardo, M.F.; Ciriolo, M.R.; Rotilio, G. Mitochondrial dysfunction in neurodegenerative diseases associated with copper imbalance. Neurochem. Res. 2004, 29, 493–504. [Google Scholar] [CrossRef]
- Brewer, G.J. Divalent copper as a major triggering agent in Alzheimer’s disease. J. Alzheimers Dis. 2015, 46, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Greenough, M.A.; Ramírez Munoz, A.; Bush, A.I.; Opazo, C.M. Metallo-pathways to Alzheimer’s disease: Lessons from genetic disorders of copper trafficking. Metallomics 2018, 8, 831–839. [Google Scholar] [CrossRef]
- Fahmy, H.M.; Ali, O.; Hassan, A.; Mohamed, M. Biodistribution and toxicity assessment of copper nanoparticles in the rat brain. J. Trace Elem. Med. Biol. 2020, 19, 6008–6029. [Google Scholar] [CrossRef]
- Poulson, B.G.; Szczepski, K.; Lachowicz, J.I.; Jaremko, L.; Emwas, A.-H.; Jaremko, M. Aggregation of biologically important peptides and proteins: Inhibition or acceleration depending on protein and metal ion concentrations. RSC Adv. 2020, 10, 215–227. [Google Scholar] [CrossRef]
- Sleigh, J.N.; Schiavo, G. Neuroscience highlights in 2022: Cytoskeletal transport. Lancet Neurol. 2023, 22, 25–27. [Google Scholar] [CrossRef]
- Zhang, H.; Li, N. Apoptosis in chronic pain and potential therapeutic targets. Front. Pharmacol. 2022, 13, 898574. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathy, S.; Yoo, B.; McElheny, D.; Tay, W.; Ishii, Y. Capturing a reactive state of amyloid aggregates: NMR-based characterization of copper-bound Alzheimer disease amyloid β-fibrils in a redox cycle. J. Biol. Chem. 2014, 289, 9998–10010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cendrowska-Pinkosz, M.; Krauze, M.; Juśkiewicz, J.; Ognik, K. The effect of the use of copper carbonate and copper nanoparticles in the diet of rats on the level of β-amyloid and acetylcholinesterase in selected organs. J. Trace Elem. Med. Biol. 2021, 67, 126777. [Google Scholar] [CrossRef]
- Kaden, D.; Bush, A.I.; Danzeisen, R.; Bayer, T.A.; Multhaup, G. Disturbed copper bioavailability in Alzheimer’s disease. Int. J. Alzheimers Dis. 2011, 2011, 345614. [Google Scholar] [CrossRef] [Green Version]
- Kitazawa, M.; Hsu, H.W.; Medeiros, R. Copper exposure perturbs brain inflammatory responses and impairs clearance of amyloid-beta. Toxicol. Sci. 2016, 152, 194–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, C.; Zhu, L.; Zhu, F.; Sun, J.; Zhu, Z. Effects of different sources of copper on Ctr1, ATP7A, ATP7B, MT and DMT1 protein and gene expression in Caco-2 cells. J. Trace Elem. Med. Biol. 2014, 28, 344–350. [Google Scholar] [CrossRef]
- Kang, H.R.; Seo, J.Y.; Kim, S.S.; Kim, B.R.; Zakharova, A.; Woo, J.E.; Kim, M.H.; Han, M.K.; Kim, J.S. Anti-inflammatory activities of licorice-derived prenylflavonoids. FASEB J. 2014, 28, 830.30. [Google Scholar] [CrossRef]
- Schlief, M.L.; Gitlin, J.D. Copper homeostasis in the CNS. Mol. Neurobiol. 2006, 33, 81–90. [Google Scholar] [CrossRef]
- Chang, Z.; Zhang, H.; Dong, H.; Mehmood, K.; Ijaz, M.; Ahmad, H.I.; Naeem, M.A.; Wu, Q.; Nabi, F.; Zhu, H. Effect of CuSO4 and nano copper on serum antioxidant capacity in Weaned piglets. J. Biol. Regul. Homeost. Agents 2018, 32, 219–224. [Google Scholar]
- Ognik, K.; Sembratowicz, I.; Cholewińska, E.; Jankowski, J.; Kozłowski, K.; Juśkiewicz, J.; Zduńczyk, Z. The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of blood. Anim. Sci. J. 2018, 89, 579–588. [Google Scholar] [CrossRef]
- Ognik, K.; Cholewińska, E.; Juśkiewicz, J.; Zduńczyk, Z.; Tutaj, K.; Szlązak, R. The effect of copper nanoparticles and copper (II) salt on redox reactions and epigenetic changes in a rat model. J. Anim. Physiol. Anim. Nutr. 2019, 103, 675–686. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.; Kaneko, N.; Villemagne, V. High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 2018, 554, 249–254. [Google Scholar] [CrossRef]
- Underhill, S.M.; Amara, S.G. Acetylcholine receptor stimulation activates protein kinase C mediated internalization of the dopamine transporter. Front. Cell. Neurosci. 2021, 15, 662216. [Google Scholar] [CrossRef] [PubMed]
- Nuzzo, D.; Pasquale, P.; Giardina, C.; Scordino, M.; Mudo, G.; Pagliaro, M.; Scurria, A.; Meneguzzo, F.; Ilharco, L.; Fidalgo, A.; et al. New neuroprotective effect of lemon integropectin on neuronal cellular model. Antioxidants 2021, 10, 669. [Google Scholar] [CrossRef] [PubMed]
- Rowe, E.M.; Xing, V.; Biggar, K.K. Lysine methylation: Implications in neurodegenerative disease. Brain Res. 2019, 1707, 164–171. [Google Scholar] [CrossRef]
- Tarr, P.E.; Roncarati, R.; Pelicci, G.; Pelicci, P.G.; D’Adamio, L. Tyrosine phosphorylation of the beta-amyloid precursor protein cytoplasmic tail promotes interaction with Shc. J. Biol. Chem. 2002, 10, 16798–16804. [Google Scholar] [CrossRef] [Green Version]
- Voss, K.; Harris, C.; Ralle, M.; Duffy, M.; Murchison, C.; Quinn, J.F. Modulation of tau phosphorylation by environmental copper. Transl. Neurodegener. 2014, 17, 24. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Li, M.; Wei, A. Treadmill exercise promotes E3 ubiquitin ligase to remove amyloid β and P-tau and improve cognitive ability in APP/PS1 transgenic mice. J. Neuroinflamm. 2022, 19, 243–252. [Google Scholar] [CrossRef]
- Lukács, M.; Szunyog, G.; Grenács, Á.; Lihi, N.; Kállay, C.; Di Natale, G.; Campagna, T.; Lanza, V.; Tabbi, G.; Pappalardo, G.; et al. Copper (II) coordination abilities of the tau protein’s n-terminus peptide fragments: A combined potentiometric, spectroscopic, and mass spectrometric study. Chem. Plus Chem. 2019, 84, 1643–1774. [Google Scholar] [CrossRef] [Green Version]
- Lam, S.; Hérard, A.S.; Boluda, S. Pathological changes induced by Alzheimer’s brain inoculation in amyloid-beta plaque-bearing mice. Acta Neuropathol. Commun. 2022, 10, 112–134. [Google Scholar] [CrossRef]
- Haass, C.; Selkoe, D. If amyloid drives Alzheimer disease, why have anti-amyloid therapies not yet slowed cognitive decline? PLoS Biol. 2022, 20, e3001694. [Google Scholar] [CrossRef]
- Comstra, H.S.; McArthy, J.; Rudin-Rush, S.; Hartwig, C.; Gokhale, A.; Zlatic, S.A.; Blackburn, J.B.; Werner, E.; Petris, M.; D’Souza, P.; et al. The interactome of the copper transporter ATP7A belongs to a network of neurodevelopmental and neurodegeneration factors. eLife 2017, 6, e24722. [Google Scholar] [CrossRef] [PubMed]
- Colucci-D’Amato, L.; Speranza, L.; Volpicelli, F. Neurotrophic Factor BDNF, Physiological Functions and Therapeutic Potential in Depression, Neurodegeneration and Brain Cancer. Int. J. Mol. Sci. 2020, 21, 7777. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, V.G.; Pajer, K.; Calcagno, D.; Pajenda, G.; Nógrádi, A. The Role of Metals in the Neuroregenerative Action of BDNF, GDNF, NGF and Other Neurotrophic Factors. Biomolecules 2022, 12, 1015. [Google Scholar] [CrossRef] [PubMed]
- Stępniowska, A.; Juśkiewicz, J.; Tutaj, K.; Fotschki, J.; Fotschki, B.; Ognik, K. Effect of chromium picolinate and chromium nanoparticles added to low- or high-fat diets on chromium biodistribution and the blood level of selected minerals in rats. Pol. J. Food Nutr. Sci. 2022, 72, 229–238. [Google Scholar] [CrossRef]
Treatment | AChE (ng/mL) | GAChE (ng/mL) | LRP1 (pg/mL) | ABC (ng/mL) | % Methylation |
---|---|---|---|---|---|
CuSALT6.5 | 12.59 ± 0.451 | 2.31 ± 0.017 | 8.35 ± 0.078 | 2.65 ± 0.024 | 75.58 ± 0.474 |
CuSALT13 | 9.94 ± 0.365 | 2.46 ± 0.069 | 7.51 ± 0.092 | 1.26 ± 0.034 | 79.36 ± 0.431 |
CuNPs6.5 | 12.16 ± 0.541 | 0.68 ± 0.028 | 11.27 ± 0.074 | 2.79 ± 0.079 | 75.11 ± 0.245 |
CuNPs13 | 14.58 ± 0.325 | 1.87 ± 0.046 | 7.65 ± 0.065 | 1.63 ± 0.062 | 79.21 ± 0.247 |
Effect source (S) | |||||
CuSALT | 11.27 | 2.39 a | 7.93 | 1.96 | 77.47 |
CuNPs | 13.37 | 1.28 b | 9.46 | 2.21 | 77.16 |
Effect dose (D) | |||||
6.5 mg/kg | 12.34 | 1.49 b | 9.81 | 2.72 a | 75.35 |
13 mg/kg | 12.26 | 2.17 a | 7.58 | 1.45 b | 79.29 |
p-value | |||||
S effect | 0.058 | 0.009 | 0.082 | 0.462 | 0.196 |
D effect | 0.165 | 0.026 | 0.075 | 0.033 | 0.078 |
S × D | 0.012 | 0.623 | 0.792 | 0.126 | 0.427 |
Treatment | AChE (ng/mL) | GAChE (ng/mL) | LRP1 (pg/mL) | ABC (ng/mL) | % Methylation |
---|---|---|---|---|---|
CuSALT6.5 | 10.49 ± 0.147 | 3.72 ± 0.453 | 2.86 ± 0.418 | 0.56 ± 0.017 | 74.37 ± 0.721 |
CuSALT13 | 6.39 ± 0.231 | 4.43 ± 0.789 | 2.78 ± 0.731 | 1.26 ± 0.013 | 79.36 ± 0.624 |
CuNPs6.5 | 16.36 ± 0.245 | 0.68 ± 0.654 | 5.34 ± 0.695 | 0.34 ± 0.019 | 72.57 ± 0.614 |
CuNPs13 | 13.41 ± 0.214 | 1.87 ± 0.843 | 3.35 ± 0.413 | 1.04 ± 0.013 | 74,11 ± 0.781 |
Effect source (S) | |||||
CuSALT | 8.44 b | 3.85 a | 2.82 b | 0.91 | 76.87 |
CuNPs | 14.89 a | 1.28 b | 4.35 a | 0.69 | 73.34 |
Effect dose (D) | |||||
6.5 mg/kg | 13.43 a | 2.19 b | 4.01 a | 0.45 b | 73.47 |
13 mg/kg | 9.89 b | 3.15 a | 3.01 b | 1.15 a | 76.74 |
p-value | |||||
S effect | 0.024 | 0.007 | 0.043 | 0.073 | 0.137 |
D effect | 0.006 | 0.021 | 0.002 | 0.001 | 0.095 |
S × D | 0.247 | 0.092 | 0.088 | 0.456 | 0.093 |
Treatment | βAP pg/mL | Tau ng/mL | p-Tau ng/mL | CAMK2a ng/mL |
---|---|---|---|---|
CuSALT6.5 | 10.49 ± 0.258 | 1.36 ± 0.254 | 0.24 ± 0.087 | 0.93 ± 0.047 |
CuSALT13 | 15.59 ± 0.457 | 2.29 ± 0.147 | 0.38 ± 0.047 | 1.34 ± 0.046 |
CuNPs6.5 | 9.75 ± 0.089 | 0.98 ± 0.095 | 0.15 ± 0.036 | 0.40 ± 0.015 |
CuNPs13 | 12.76 ± 0.584 | 1.25 ± 0.087 | 0.33 ± 0.047 | 1.22 ± 0.078 |
Effect source (S) | ||||
CuSALT | 13.04 a | 1.83 a | 0.43 | 0.67 |
CuNPs | 11.07 b | 1.16 b | 0.24 | 0.81 |
Effect dose (D) | ||||
6.5 mg/kg | 10.12 b | 1.17 | 0.19 b | 0.67 b |
13 mg/kg | 14.18 a | 1.77 | 0.34 a | 1.28 a |
p-value | ||||
S effect | 0.017 | 0.001 | 0.065 | 0.097 |
D effect | 0.036 | 0.072 | 0.003 | 0.005 |
S × D | 0.135 | 0.063 | 0.182 | 0.236 |
Treatment | βAP (pg/mL) | Tau (ng/mL) | p-Tau (ng/mL) | CAMK2a (ng/mL) |
---|---|---|---|---|
CuSALT6.5 | 10.19 ± 0.124 | 1.67 ± 0.458 | 0.642 ± 0.015 | 0.097 ± 0.061 |
CuSALT13 | 13.28 ± 0.213 | 1.38 ± 0.325 | 1.067 ± 0.078 | 0.144 ± 0.041 |
CuNPs6.5 | 7.45 ± 0.951 | 0.81 ± 0.475 | 0.054 ± 0.036 | 0.097 ± 0.021 |
CuNPs13 | 10.46 ± 0.478 | 2.77 ± 0.461 | 0.885 ± 0.048 | 0.098 ± 0.027 |
Effect source (S) | ||||
CuSALT | 11.74 a | 2.83 | 0.86 | 0.12 |
CuNPs | 9.11 b | 1.79 | 0.72 | 0.09 |
Effect dose (D) | ||||
6.5 mg/kg | 8.82 b | 1.24 b | 0.35 | 0.09 |
13 mg/kg | 11.87 a | 3.38 a | 0.98 | 0.16 |
p-value | ||||
S effect | 0.005 | 0.057 | 0.108 | 0.082 |
D effect | 0.007 | 0.049 | 0.062 | 0.078 |
S × D | 0.378 | 0.742 | 0.207 | 0.063 |
Basal Diet | % |
---|---|
Ingredient | |
Casein a | 14.8 |
DL-methionine | 0.2 |
Cellulose b | 8.0 |
Choline chloride | 0.2 |
Rapeseed oil | 8.0 |
Cholesterol | 0.3 |
Vitamin mix. c | 1.0 |
Mineral mix. d | 3.5 |
Maize starch e | 64.0 |
Treatment | Source of Cu |
---|---|
CuSALT6.5 | a diet containing 6.5 mg/kg Cu from CuCO3 (n = 10) |
CuSALT13 | a diet containing 13 mg/kg Cu from CuCO3 (n = 10) |
CuNPs6.5 | a diet containing 6.5 mg/kg Cu from Cu nanoparticles’ preparation (n = 10) |
CuNPs13 | a diet containing 13 mg/kg Cu from Cu nanoparticles’ preparation (n = 10) |
Mineral Mixture with CuSALT | Mineral Mixture Deprived of CuSALT | |
---|---|---|
Calcium carbonate anhydrous CaCO3 | 357 | 357 |
Potassium phosphate monobasic K2HPO4 | 196 | 196 |
Potassium citrate C6H5K3O7 | 70.78 | 70.78 |
Sodium chloride NaCl | 74 | 74 |
Potassium sulfate K2SO4 | 46.6 | 46.6 |
Magnesium oxide MgO | 24 | 24 |
Microelements mixture | 18 | 18 |
Starch | 213.62 | 213.62 |
Microelements mixture, g/100 g | ||
Ferric citrate (16.7% Fe) | 31 | 31 |
Zinc carbonate ZnCO3 (56%Zn) | 4.5 | 4.5 |
Manganous carbonate MnCO3 (44.4% Mn) | 23.4 | 23.4 |
Copper carbonate CuCO3 (55.5% Cu) | 1.85 a/3.7 b | 0 c |
Potassium iodate KJ | 0.04 | 0.04 |
Citric acid C6H8O7 | 40.7 g | 40.7 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cendrowska-Pinkosz, M.; Krauze, M.; Juśkiewicz, J.; Fotschki, B.; Ognik, K. The Influence of Copper Nanoparticles on Neurometabolism Marker Levels in the Brain and Intestine in a Rat Model. Int. J. Mol. Sci. 2023, 24, 11321. https://doi.org/10.3390/ijms241411321
Cendrowska-Pinkosz M, Krauze M, Juśkiewicz J, Fotschki B, Ognik K. The Influence of Copper Nanoparticles on Neurometabolism Marker Levels in the Brain and Intestine in a Rat Model. International Journal of Molecular Sciences. 2023; 24(14):11321. https://doi.org/10.3390/ijms241411321
Chicago/Turabian StyleCendrowska-Pinkosz, Monika, Magdalena Krauze, Jerzy Juśkiewicz, Bartosz Fotschki, and Katarzyna Ognik. 2023. "The Influence of Copper Nanoparticles on Neurometabolism Marker Levels in the Brain and Intestine in a Rat Model" International Journal of Molecular Sciences 24, no. 14: 11321. https://doi.org/10.3390/ijms241411321
APA StyleCendrowska-Pinkosz, M., Krauze, M., Juśkiewicz, J., Fotschki, B., & Ognik, K. (2023). The Influence of Copper Nanoparticles on Neurometabolism Marker Levels in the Brain and Intestine in a Rat Model. International Journal of Molecular Sciences, 24(14), 11321. https://doi.org/10.3390/ijms241411321