The Next Frontier in ART: Harnessing the Uterine Immune Profile for Improved Performance
Abstract
:1. Introduction
2. Emergence of the Concept: The Uterine-Specific Immune Environment
2.1. Animal Models
2.2. Translation to Human
2.3. Selecting Key Immune Targets to Define the Uterine Immune Profile
2.3.1. IL-18
2.3.2. IL-15
2.4. TWEAK and Fn-14
2.5. CD56
3. From Concept to Clinical Studies
3.1. The Endometrial Diagnosis
3.2. Suggestion of Personalization
- (a)
- Endometrial scratching is recommended for cases with low IL-15/Fn-14, indicating uNK cell immaturity, in order to promote uNK cell maturation [59]. The scratching procedure is typically performed during the mid-luteal phase of the preceding cycle to induce the expression of chemokines, adhesion molecules, and innate immune cells [60].
- (b)
- (c)
- Glucocorticoid supplementation is recommended as a first-line treatment to reduce Th-1 cytokines, decrease uNK cytotoxicity, and alleviate hyperactivation in lymphokine-activated killer cells for patients with overactivated and mixed immune profiles [59,62]. In cases where corticoid treatment is not effective, low-molecular-weight heparin (LMWH) was considered as an alternative due to its well-documented anti-complement effect [63,64]. As a second line of treatment, the intravenous slow perfusion of Intralipid® was suggested to control the hyperactivation of NK cells and to regulate a Th-1-predominant cytokine balance [65,66,67]. Only a test under therapy, showing the normalization of the endometrial profile under the suggested medication, would attest of its efficacy.
- (d)
- For overactivated and mixed profiles, the hormonal adaptation of the luteal phase is recommended. This involved the use of high daily doses of vaginal progesterone (1200 mg) or a dual route of administration, such as vaginal and oral or vaginal and subcutaneous, to take advantage of the immunosuppressive properties of progesterone [68,69]. In cases of the elevated expression of IL-18, oral estradiol supplementation at a dose of 4 mg is recommended to downregulate its levels [61,62]. Progesterone influences the maternal immune system through multiple pathways and some hormonal receptors may modulate subsequent immune events [70]. It induces the production of PIBF (progesterone-induced blocking factor) to inhibit NK cell activity and promotes the production of galectin-1, which supports the development of tolerogenic dendritic cells, which in turn will induce the expansion of IL-10-secreting regulatory T cells [71].
- (e)
- The supplementation of the luteal phase with human chorionic gonadotrophin (hCG) is also one the suggested therapeutic options. During the mid-luteal phase, we recommended hCG supplementation in cases of low CD56 mobilization or immaturity of uNK cells. Previous studies have demonstrated that hCG triggers the maturation and proliferation of uNK cells, while promoting uterine angiogenesis [72,73,74,75]. HCG is naturally produced by the embryo and is directly involved in the local reaction by inducing an adequate angiogenesis while controlling the activation of uNK cells at the maternal–fetal interface.
- (f)
- In specific cases, sexual intercourse after embryo transfer is recommended. Seminal plasma has been found to have a beneficial effect on the endometrium, as it induces the expression of pro-inflammatory cytokines and chemokines and recruits immune cells [75]. Therefore, we suggest sexual intercourse in cases where the endometrial immune activation is low. However, we do not recommend exposure to seminal plasma in cases of overactivated or mixed immune profiles.
3.3. Extended Clinical Cohort Studies in Populations Who Would Benefit in Theory of Personalized Strategy
3.3.1. Context of Repeated Implantation Failure (RIF)
3.3.2. Context of Recurrent Pregnancy Loss (RPL)
3.3.3. Controlled Cohort Study
3.4. Understanding Immunotherapy for an Effective Precise Medicine in IVF
3.4.1. The Efficacy of Immunotherapy Needs to Be Tested
3.4.2. The Endometrial Scratching
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wyns, C.; De Geyter, C.; Calhaz-Jorge, C.; Kupka, M.S.; Motrenko, T.; Smeenk, J.; Bergh, C.; Tandler-Schneider, A.; Rugescu, I.A.; Goossens, V. ART in Europe, 2018: Results generated from European registries by ESHRE. Hum. Reprod. Open 2022, 2022, hoac022. [Google Scholar] [CrossRef] [PubMed]
- Cui, W. Mother or nothing: The agony of infertility. Bull. World Health Organ. 2010, 88, 881–882. [Google Scholar] [CrossRef] [PubMed]
- Chambers, G.M.; Adamson, G.D.; Eijkemans, M.J. Acceptable cost for the patient and society. Fertil. Steril. 2013, 100, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Mascarenhas, M.N.; Cheung, H.; Mathers, C.D.; Stevens, G.A. Measuring infertility in populations: Constructing a standard definition for use with demographic and reproductive health surveys. Popul. Health Metr. 2012, 10, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ledee, N.; Petitbarat, M.; Prat-Ellenberg, L.; Dray, G.; Cassuto, G.N.; Chevrier, L.; Kazhalawi, A.; Vezmar, K.; Chaouat, G. The uterine immune profile: A method for individualizing the management of women who have failed to implant an embryo after IVF/ICSI. J. Reprod. Immunol. 2020, 142, 103207. [Google Scholar] [CrossRef]
- Cheloufi, M.; Kazhalawi, A.; Pinton, A.; Rahmati, M.; Chevrier, L.; Prat-Ellenberg, L.; Michel, A.S.; Dray, G.; Mekinian, A.; Kayem, G.; et al. The Endometrial Immune Profiling May Positively Affect the Management of Recurrent Pregnancy Loss. Front. Immunol. 2021, 12, 656701. [Google Scholar] [CrossRef]
- Ledee, N.; Petitbarat, M.; Prat-Ellenberg, L.; Dray, G.; Cassuto, G.N.; Chevrier, L.; Kazhalawi, A.; Vezmar, K.; Chaouat, G. Endometrial Immune Profiling: A Method to Design Personalized Care in Assisted Reproductive Medicine. Front. Immunol. 2020, 11, 1032. [Google Scholar] [CrossRef]
- Edwards, R.G. Human implantation: The last barrier in assisted reproduction technologies? Reprod. Biomed Online 2006, 13, 887–904. [Google Scholar] [CrossRef]
- Robertson, S.A. Immune regulation of conception and embryo implantation-all about quality control? J. Reprod. Immunol. 2010, 85, 51–57. [Google Scholar] [CrossRef]
- King, A.; Burrows, T.; Loke, Y.W. Human uterine natural killer cells. Nat. Immun. 1996, 15, 41–52. [Google Scholar]
- King, A.; Jokhi, P.P.; Burrows, T.D.; Gardner, L.; Sharkey, A.M.; Loke, Y.W. Functions of human decidual NK cells. Am. J. Reprod. Immunol. 1996, 35, 258–260. [Google Scholar] [CrossRef]
- Koopman, L.A.; Kopcow, H.D.; Rybalov, B.; Boyson, J.E.; Orange, J.S.; Schatz, F.; Masch, R.; Lockwood, C.J.; Schachter, A.D.; Park, P.J.; et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J. Exp. Med. 2003, 198, 1201–1212. [Google Scholar] [CrossRef] [Green Version]
- Wegmann, T.G.; Lin, H.; Guilbert, L.; Mosmann, T.R. Bidirectional cytokine interactions in the maternal-fetal relationship: Is successful pregnancy a TH2 phenomenon? Immunol. Today 1993, 14, 353–356. [Google Scholar] [CrossRef] [PubMed]
- Chaouat, G.; Menu, E.; Delage, G.; Moreau, J.F.; Khrishnan, L.; Hui, L.; Meliani, A.A.; Martal, J.; Raghupathy, R.; Lelaidier, C.; et al. Immuno-endocrine interactions in early pregnancy. Hum. Reprod. 1995, 10 (Suppl 2), 55–59. [Google Scholar] [CrossRef] [PubMed]
- Chaouat, G.; Menu, E.; Athanassakis, I.; Wegmann, T.G. Maternal T cells regulate placental size and fetal survival. Reg. Immunol. 1988, 1, 143–148. [Google Scholar] [PubMed]
- Wegmann, T.G.; Athanassakis, I.; Guilbert, L.; Branch, D.; Dy, M.; Menu, E.; Chaouat, G. The role of M-CSF and GM-CSF in fostering placental growth, fetal growth, and fetal survival. Transplant. Proc. 1989, 21 Pt 1, 566–568. [Google Scholar]
- Chaouat, G.; Ledee-Bataille, N.; Dubanchet, S.; Zourbas, S.; Sandra, O.; Martal, J. Reproductive immunology 2003: Reassessing the Th1/Th2 paradigm? Immunol. Lett. 2004, 92, 207–214. [Google Scholar] [CrossRef]
- Moffett, A.; Loke, C. Implantation, embryo-maternal interactions, immunology and modulation of the uterine environment—A workshop report. Placenta 2006, 27 (Suppl. SA), S54–S55. [Google Scholar] [CrossRef]
- Aplin, J.D. The cell biological basis of human implantation. Baillieres Best Pr. Res. Clin. Obstet. Gynaecol. 2000, 14, 757–764. [Google Scholar] [CrossRef]
- Singh, H.; Aplin, J.D. Adhesion molecules in endometrial epithelium: Tissue integrity and embryo implantation. J. Anat. 2009, 215, 3–13. [Google Scholar] [CrossRef]
- Salamonsen, L.A.; Hannan, N.J.; Dimitriadis, E. Cytokines and chemokines during human embryo implantation: Roles in implantation and early placentation. Semin. Reprod. Med. 2007, 25, 437–444. [Google Scholar] [CrossRef] [PubMed]
- Acosta, A.A.; Elberger, L.; Borghi, M.; Calamera, J.C.; Chemes, H.; Doncel, G.F.; Kliman, H.; Lema, B.; Lustig, L.; Papier, S. Endometrial dating and determination of the window of implantation in healthy fertile women. Fertil. Steril. 2000, 73, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Gellersen, B.; Brosens, I.A.; Brosens, J.J. Decidualization of the human endometrium: Mechanisms, functions, and clinical perspectives. Semin. Reprod. Med. 2007, 25, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Lee, M.; Lee, S.K. Role of endometrial immune cells in implantation. Clin. Exp. Reprod. Med. 2011, 38, 119–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Diao, L.; Huang, C.; Li, Y.; Zeng, Y.; Kwak-Kim, J.Y.H. The role of decidual immune cells on human pregnancy. J. Reprod. Immunol. 2017, 124, 44–53. [Google Scholar] [CrossRef]
- Zhang, J.; Dunk, C.; Croy, A.B.; Lye, S.J. To serve and to protect: The role of decidual innate immune cells on human pregnancy. Cell Tissue Res. 2016, 363, 249–265. [Google Scholar] [CrossRef]
- Manaster, I.; Mandelboim, O. The unique properties of uterine NK cells. Am. J. Reprod. Immunol. 2010, 63, 434–444. [Google Scholar] [CrossRef]
- Lash, G.E.; Pitman, H.; Morgan, H.L.; Innes, B.A.; Agwu, C.N.; Bulmer, J.N. Decidual macrophages: Key regulators of vascular remodeling in human pregnancy. J. Leukoc. Biol. 2016, 100, 315–325. [Google Scholar] [CrossRef] [Green Version]
- Blois, S.M.; Barrientos, G.; Garcia, M.G.; Orsal, A.S.; Tometten, M.; Cordo-Russo, R.I.; Klapp, B.F.; Santoni, A.; Fernandez, N.; Terness, P.; et al. Interaction between dendritic cells and natural killer cells during pregnancy in mice. J. Mol. Med. 2008, 86, 837–852. [Google Scholar] [CrossRef]
- Aluvihare, V.R.; Kallikourdis, M.; Betz, A.G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 2004, 5, 266–271. [Google Scholar] [CrossRef]
- Feyaerts, D.; Kuret, T.; van Cranenbroek, B.; van der Zeeuw-Hingrez, S.; van der Heijden, O.W.H.; van der Meer, A.; Joosten, I.; van der Molen, R.G. Endometrial natural killer (NK) cells reveal a tissue-specific receptor repertoire. Hum. Reprod. 2018, 33, 441–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Chen, Z.; Smith, G.N.; Croy, B.A. Natural killer cell-triggered vascular transformation: Maternal care before birth? Cell Mol. Immunol. 2010, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lash, G.E.; Schiessl, B.; Kirkley, M.; Innes, B.A.; Cooper, A.; Searle, R.F.; Robson, S.C.; Bulmer, J.N. Expression of angiogenic growth factors by uterine natural killer cells during early pregnancy. J. Leukoc. Biol. 2006, 80, 572–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blois, S.M.; Klapp, B.F.; Barrientos, G. Decidualization and angiogenesis in early pregnancy: Unravelling the functions of DC and NK cells. J. Reprod. Immunol. 2011, 88, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Kallikourdis, M.; Betz, A.G. Periodic accumulation of regulatory T cells in the uterus: Preparation for the implantation of a semi-allogeneic fetus? PLoS ONE 2007, 2, e382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Croy, B.A.; Esadeg, S.; Chantakru, S.; van den Heuvel, M.; Paffaro, V.A.; He, H.; Black, G.P.; Ashkar, A.A.; Kiso, Y.; Zhang, J. Update on pathways regulating the activation of uterine Natural Killer cells, their interactions with decidual spiral arteries and homing of their precursors to the uterus. J. Reprod. Immunol. 2003, 59, 175–191. [Google Scholar] [CrossRef]
- Brosens, J.J.; de Souza, N.M.; Barker, F.G. Uterine junctional zone: Function and disease. Lancet 1995, 346, 558–560. [Google Scholar] [CrossRef]
- Novick, D.; Kim, S.; Kaplanski, G.; Dinarello, C.A. Interleukin-18, more than a Th1 cytokine. Semin. Immunol. 2013, 25, 439–448. [Google Scholar] [CrossRef]
- Yoshino, O.; Osuga, Y.; Koga, K.; Tsutsumi, O.; Yano, T.; Fujii, T.; Kugu, K.; Momoeda, M.; Fujiwara, T.; Tomita, K.; et al. Evidence for the expression of interleukin (IL)-18, IL-18 receptor and IL-18 binding protein in the human endometrium. Mol. Hum. Reprod. 2001, 7, 649–654. [Google Scholar] [CrossRef]
- Lob, S.; Ochmann, B.; Ma, Z.; Vilsmaier, T.; Kuhn, C.; Schmoeckel, E.; Herbert, S.L.; Kolben, T.; Wockel, A.; Mahner, S.; et al. The role of Interleukin-18 in recurrent early pregnancy loss. J. Reprod. Immunol. 2021, 148, 103432. [Google Scholar] [CrossRef]
- Si, L.F.; Zhang, S.Y.; Gao, C.S.; Chen, S.L.; Zhao, J.; Cheng, X.C. Effects of IFN-gamma on IL-18 Expression in Pregnant Rats and Pregnancy Outcomes. Asian-Australas J. Anim. Sci. 2013, 26, 1399–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokmadzic, V.S.; Tsuji, Y.; Bogovic, T.; Laskarin, G.; Cupurdija, K.; Strbo, N.; Koyama, K.; Okamura, H.; Podack, E.R.; Rukavina, D. IL-18 is present at the maternal-fetal interface and enhances cytotoxic activity of decidual lymphocytes. Am. J. Reprod. Immunol. 2002, 48, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Croy, B.A.; Gambel, P.; Rossant, J.; Wegmann, T.G. Characterization of murine decidual natural killer (NK) cells and their relevance to the success of pregnancy. Cell Immunol. 1985, 93, 315–326. [Google Scholar] [CrossRef] [PubMed]
- Chaouat, G.; Ledee-bataille, N.; Zourbas, S.; Dubanchet, S.; Sandra, O.; Martal, J.; Ostojojic, S.; Frydman, R. Implantation: Can immunological parameters of implantation failure be of interest for pre-eclampsia? J. Reprod. Immunol. 2003, 59, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Ledee-Bataille, N.; Bonnet-Chea, K.; Hosny, G.; Dubanchet, S.; Frydman, R.; Chaouat, G. Role of the endometrial tripod interleukin-18, -15, and -12 in inadequate uterine receptivity in patients with a history of repeated in vitro fertilization-embryo transfer failure. Fertil. Steril. 2005, 83, 598–605. [Google Scholar] [CrossRef]
- Li, W.; Yamamoto, H.; Kubo, S.; Okamura, H. Modulation of innate immunity by IL-18. J. Reprod. Immunol. 2009, 83, 101–105. [Google Scholar] [CrossRef]
- Ashkar, A.A.; Black, G.P.; Wei, Q.; He, H.; Liang, L.; Head, J.R.; Croy, B.A. Assessment of requirements for IL-15 and IFN regulatory factors in uterine NK cell differentiation and function during pregnancy. J. Immunol. 2003, 171, 2937–2944. [Google Scholar] [CrossRef] [Green Version]
- Laskarin, G.; Strbo, N.; Crncic, T.B.; Juretic, K.; Bataille, N.L.; Chaouat, G.; Rukavina, D. Physiological role of IL-15 and IL-18 at the maternal-fetal interface. Chem. Immunol. Allergy 2005, 89, 10–25. [Google Scholar] [CrossRef]
- Verma, S.; Hiby, S.E.; Loke, Y.W.; King, A. Human decidual natural killer cells express the receptor for and respond to the cytokine interleukin 15. Biol. Reprod. 2000, 62, 959–968. [Google Scholar] [CrossRef] [Green Version]
- Manaster, I.; Mizrahi, S.; Goldman-Wohl, D.; Sela, H.Y.; Stern-Ginossar, N.; Lankry, D.; Gruda, R.; Hurwitz, A.; Bdolah, Y.; Haimov-Kochman, R.; et al. Endometrial NK cells are special immature cells that await pregnancy. J. Immunol. 2008, 181, 1869–1876. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.; Lei, M.; Qin, L.; Xie, M.; Zhao, D.; Wang, J. Endogenous TWEAK is critical for regulating the function of mouse uterine natural killer cells in an immunological model of pregnancy loss. Immunology 2016, 148, 70–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maecker, H.; Varfolomeev, E.; Kischkel, F.; Lawrence, D.; LeBlanc, H.; Lee, W.; Hurst, S.; Danilenko, D.; Li, J.; Filvaroff, E.; et al. TWEAK attenuates the transition from innate to adaptive immunity. Cell 2005, 123, 931–944. [Google Scholar] [CrossRef] [Green Version]
- Winkles, J.A. The TWEAK-Fn14 cytokine-receptor axis: Discovery, biology and therapeutic targeting. Nat. Rev. Drug Discov. 2008, 7, 411–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petitbarat, M.; Rahmati, M.; Serazin, V.; Dubanchet, S.; Morvan, C.; Wainer, R.; de Mazancourt, P.; Chaouat, G.; Foidart, J.M.; Munaut, C.; et al. TWEAK appears as a modulator of endometrial IL-18 related cytotoxic activity of uterine natural killers. PLoS ONE 2011, 6, e14497. [Google Scholar] [CrossRef] [PubMed]
- Petitbarat, M.; Serazin, V.; Dubanchet, S.; Wayner, R.; de Mazancourt, P.; Chaouat, G.; Ledee, N. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor inducible-14 might regulate the effects of interleukin 18 and 15 in the human endometrium. Fertil. Steril. 2009, 94, 1141–1143. [Google Scholar] [CrossRef]
- Failure, E.W.G.o.R.I.; Cimadomo, D.; de Los Santos, M.J.; Griesinger, G.; Lainas, G.; Le Clef, N.; McLernon, D.J.; Montjean, D.; Toth, B.; Vermeulen, N.; et al. ESHRE good practice recommendations on recurrent implantation failure. Hum. Reprod. Open 2023, 2023, hoad023. [Google Scholar] [CrossRef]
- Cicinelli, E.; Haimovich, S.; De Ziegler, D.; Raz, N.; Ben-Tzur, D.; Andrisani, A.; Ambrosini, G.; Picardi, N.; Cataldo, V.; Balzani, M.; et al. MUM-1 immunohistochemistry has high accuracy and reliability in the diagnosis of chronic endometritis: A multi-centre comparative study with CD-138 immunostaining. J. Assist. Reprod. Genet. 2022, 39, 219–226. [Google Scholar] [CrossRef]
- Ledee, N.; Petitbarat, M.; Rahmati, M.; Dubanchet, S.; Chaouat, G.; Sandra, O.; Perrier-d’Hauterive, S.; Munaut, C.; Foidart, J.M. New pre-conception immune biomarkers for clinical practice: Interleukin-18, interleukin-15 and TWEAK on the endometrial side, G-CSF on the follicular side. J. Reprod. Immunol. 2011, 88, 118–123. [Google Scholar] [CrossRef]
- Gnainsky, Y.; Granot, I.; Aldo, P.B.; Barash, A.; Or, Y.; Schechtman, E.; Mor, G.; Dekel, N. Local injury of the endometrium induces an inflammatory response that promotes successful implantation. Fertil. Steril. 2010, 94, 2030–2036. [Google Scholar] [CrossRef] [Green Version]
- Rahmati, M.; Ledee, N. Targeted Endometrial Scratching: An Example of Endometrial Diagnosis Usage in Reproductive Medicine. Front. Immunol. 2020, 11, 589677. [Google Scholar] [CrossRef]
- Ledee, N.; Dubanchet, S.; Lombroso, R.; Ville, Y.; Chaouat, G. Downregulation of human endometrial IL-18 by exogenous ovarian steroids. Am. J. Reprod. Immunol. 2006, 56, 119–123. [Google Scholar] [CrossRef] [PubMed]
- Murakami, Y.; Otsuki, M.; Kusumoto, K.; Takeuchi, S.; Takahashi, S. Estrogen inhibits interleukin-18 mRNA expression in the mouse uterus. J. Reprod. Dev. 2005, 51, 639–647. [Google Scholar] [CrossRef] [Green Version]
- Girardi, G.; Redecha, P.; Salmon, J.E. Heparin prevents antiphospholipid antibody-induced fetal loss by inhibiting complement activation. Nat. Med. 2004, 10, 1222–1226. [Google Scholar] [CrossRef]
- Oberkersch, R.; Attorresi, A.I.; Calabrese, G.C. Low-molecular-weight heparin inhibition in classical complement activation pathway during pregnancy. Thromb. Res. 2010, 125, e240–e245. [Google Scholar] [CrossRef] [PubMed]
- Coulam, C.B.; Acacio, B. Does immunotherapy for treatment of reproductive failure enhance live births? Am. J. Reprod. Immunol. 2012, 67, 296–304. [Google Scholar] [CrossRef]
- Roussev, R.G.; Acacio, B.; Ng, S.C.; Coulam, C.B. Duration of intralipid’s suppressive effect on NK cell’s functional activity. Am. J. Reprod. Immunol. 2008, 60, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Ledee, N.; Vasseur, C.; Petitbarat, M.; Chevrier, L.; Vezmar, K.; Dray, G.; Cheniere, S.; Lobersztajn, A.; Vitoux, D.; Cassuto, G.N.; et al. Intralipid(R) may represent a new hope for patients with reproductive failures and simultaneously an over-immune endometrial activation. J. Reprod. Immunol. 2018, 130, 18–22. [Google Scholar] [CrossRef]
- Szekeres-Bartho, J.; Par, G.; Szereday, L.; Smart, C.Y.; Achatz, I. Progesterone and non-specific immunologic mechanisms in pregnancy. Am. J. Reprod. Immunol. 1997, 38, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Wetendorf, M.; Demayo, F.J. The progesterone receptor regulates implantation, decidualization, and glandular development via a complex paracrine signaling network. Mol. Cell. Endocrinol. 2011, 357, 108–118. [Google Scholar] [CrossRef] [Green Version]
- McAvey, B.; Kuokkanen, S.; Zhu, L.; Pollard, J.W. The selective progesterone receptor modulator, telapristone acetate, is a mixed antagonist/agonist in the human and mouse endometrium and inhibits pregnancy in mice. F&S Sci. 2021, 2, 59–70. [Google Scholar] [CrossRef]
- Szekeres-Bartho, J.; Halasz, M.; Palkovics, T. Progesterone in pregnancy; receptor-ligand interaction and signaling pathways. J. Reprod. Immunol. 2009, 83, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Bansal, A.S.; Bora, S.A.; Saso, S.; Smith, J.R.; Johnson, M.R.; Thum, M.Y. Mechanism of human chorionic gonadotrophin-mediated immunomodulation in pregnancy. Expert Rev. Clin. Immunol. 2012, 8, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Perrier d’Hauterive, S.; Berndt, S.; Tsampalas, M.; Charlet-Renard, C.; Dubois, M.; Bourgain, C.; Hazout, A.; Foidart, J.M.; Geenen, V. Dialogue between blastocyst hCG and endometrial LH/hCG receptor: Which role in implantation? Gynecol. Obstet. Investig. 2007, 64, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Tsampalas, M.; Gridelet, V.; Berndt, S.; Foidart, J.M.; Geenen, V.; Perrier d’Hauterive, S. Human chorionic gonadotropin: A hormone with immunological and angiogenic properties. J. Reprod. Immunol. 2010, 85, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Kane, N.; Kelly, R.; Saunders, P.T.; Critchley, H.O. Proliferation of uterine natural killer cells is induced by human chorionic gonadotropin and mediated via the mannose receptor. Endocrinology 2009, 150, 2882–2888. [Google Scholar] [CrossRef] [Green Version]
- Luo, R.; Wang, J.; Liu, Y.; Shen, T.; Zhao, X.; Liang, Y. Personalized versus standard frozen-thawed embryo transfer in IVF/ICSI cycles: A systematic review and meta-analysis. J. Assist. Reprod. Genet. 2023, 40, 719–734. [Google Scholar] [CrossRef]
- Cozzolino, M.; Diaz-Gimeno, P.; Pellicer, A.; Garrido, N. Use of the endometrial receptivity array to guide personalized embryo transfer after a failed transfer attempt was associated with a lower cumulative and per transfer live birth rate during donor and autologous cycles. Fertil. Steril. 2022, 118, 724–736. [Google Scholar] [CrossRef]
- Ledee, N.; Petitbarat, M.; Chevrier, L.; Vitoux, D.; Vezmar, K.; Rahmati, M.; Dubanchet, S.; Gahery, H.; Bensussan, A.; Chaouat, G. The Uterine Immune Profile May Help Women With Repeated Unexplained Embryo Implantation Failure After In Vitro Fertilization. Am. J. Reprod. Immunol. 2016, 75, 388–401. [Google Scholar] [CrossRef] [Green Version]
- Rai, R.; Regan, L. Recurrent miscarriage. Lancet 2006, 368, 601–611. [Google Scholar] [CrossRef]
- Kaiser, J.; Branch, D.W. Recurrent Pregnancy Loss: Generally Accepted Causes and Their Management. Clin. Obstet Gynecol 2016, 59, 464–473. [Google Scholar] [CrossRef]
- Ledee, N.; Prat-Ellenberg, L.; Chevrier, L.; Balet, R.; Simon, C.; Lenoble, C.; Irani, E.E.; Bouret, D.; Cassuto, G.; Vitoux, D.; et al. Uterine immune profiling for increasing live birth rate: A one-to-one matched cohort study. J. Reprod. Immunol. 2017, 119, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Boomsma, C.M.; Keay, S.D.; Macklon, N.S. Peri-implantation glucocorticoid administration for assisted reproductive technology cycles. Cochrane Database Syst. Rev. 2012, 6, CD005996. [Google Scholar] [CrossRef] [PubMed]
- Kalampokas, T.; Pandian, Z.; Keay, S.D.; Bhattacharya, S. Glucocorticoid supplementation during ovarian stimulation for IVF or ICSI. Cochrane Database Syst. Rev. 2017, 3, CD004752. [Google Scholar] [CrossRef]
- Achilli, C.; Duran-Retamal, M.; Saab, W.; Serhal, P.; Seshadri, S. The role of immunotherapy in in vitro fertilization and recurrent pregnancy loss: A systematic review and meta-analysis. Fertil. Steril. 2018, 110, 1089–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hviid, M.M.; Macklon, N. Immune modulation treatments-where is the evidence? Fertil. Steril. 2017, 107, 1284–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Hoogenhuijze, N.E.; Kasius, J.C.; Broekmans, F.J.M.; Bosteels, J.; Torrance, H.L. Endometrial scratching prior to IVF; does it help and for whom? A systematic review and meta-analysis. Hum. Reprod. Open 2019, 2019, hoy025. [Google Scholar] [CrossRef] [Green Version]
- Robertson, S.A.; Jin, M.; Yu, D.; Moldenhauer, L.M.; Davies, M.J.; Hull, M.L.; Norman, R.J. Corticosteroid therapy in assisted reproduction-immune suppression is a faulty premise. Hum. Reprod. 2016, 31, 2164–2173. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Gao, S.; Zhao, Y.; Wang, H.; Pan, Q.; Shao, Q. Decidual Natural Killer Cells: A Good Nanny at the Maternal-Fetal Interface During Early Pregnancy. Front. Immunol. 2021, 12, 663660. [Google Scholar] [CrossRef]
- Eddy, J.L.; Krukowski, K.; Janusek, L.; Mathews, H.L. Glucocorticoids regulate natural killer cell function epigenetically. Cell Immunol. 2014, 290, 120–130. [Google Scholar] [CrossRef]
- Elenkov, I.J. Glucocorticoids and the Th1/Th2 balance. Ann. N. Y. Acad. Sci. 2004, 1024, 138–146. [Google Scholar] [CrossRef] [Green Version]
- Moustaki, A.; Argyropoulos, K.V.; Baxevanis, C.N.; Papamichail, M.; Perez, S.A. Effect of the simultaneous administration of glucocorticoids and IL-15 on human NK cell phenotype, proliferation and function. Cancer Immunol. Immunother. 2011, 60, 1683–1695. [Google Scholar] [CrossRef]
- Perez, S.A.; Mahaira, L.G.; Demirtzoglou, F.J.; Sotiropoulou, P.A.; Ioannidis, P.; Iliopoulou, E.G.; Gritzapis, A.D.; Sotiriadou, N.N.; Baxevanis, C.N.; Papamichail, M. A potential role for hydrocortisone in the positive regulation of IL-15-activated NK-cell proliferation and survival. Blood 2005, 106, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girardi, G.; Bulla, R.; Salmon, J.E.; Tedesco, F. The complement system in the pathophysiology of pregnancy. Mol. Immunol. 2006, 43, 68–77. [Google Scholar] [CrossRef] [PubMed]
- Ledee, N.; Prat-Ellenberg, L.; Petitbarat, M.; Chevrier, L.; Simon, C.; Irani, E.E.; Vitoux, D.; Bensussan, A.; Chaouat, G. Impact of prednisone in patients with repeated embryo implantation failures: Beneficial or deleterious? J. Reprod. Immunol. 2018, 127, 11–15. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Blum, S.; Rossle, C.; Le Boucher, J.; Malnoe, A.; Dutot, G. Effects of parenteral lipid emulsions with different fatty acid composition on immune cell functions in vitro. JPEN J. Parenter. Enter. Nutr. 2000, 24, 113–118. [Google Scholar] [CrossRef]
- Almog, B.; Shalom-Paz, E.; Dufort, D.; Tulandi, T. Promoting implantation by local injury to the endometrium. Fertil. Steril. 2010, 94, 2026–2029. [Google Scholar] [CrossRef]
- Mackens, S.; Racca, A.; Van de Velde, H.; Drakopoulos, P.; Tournaye, H.; Stoop, D.; Blockeel, C.; Santos-Ribeiro, S. Follicular-phase endometrial scratching: A truncated randomized controlled trial. Hum. Reprod. 2020, 35, 1090–1098. [Google Scholar] [CrossRef]
Suggestion of Personalization | Endometrial Immune Profile | |||
---|---|---|---|---|
No Dysregulation | Under Active Immune Profile | Overactive Immune Profile | Mixed Immune Profile | |
Endometrial scratching (mid-luteal phase preceding the transfer) | No | Yes | No | No or Yes (therapy test) |
Higher dosage estrogens | No impact | No | Yes | No |
Immunotherapy (GC, LMWH, IL) | No | No | Yes (therapy test) | Yes (therapy test) |
Higher progestative luteal support | No | No | Yes | Yes |
Luteal hCG supplementation | No | Yes | No | No or Yes (therapy test) |
Exposure to seminal plasma | No impact | Yes | No | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lédée, N.; Petitbarat, M.; Prat-Ellenberg, L.; Dray, G.; Vaucoret, V.; Kazhalawi, A.; Rodriguez-Pozo, A.; Habeichi, N.; Ruoso, L.; Cassuto, N.G.; et al. The Next Frontier in ART: Harnessing the Uterine Immune Profile for Improved Performance. Int. J. Mol. Sci. 2023, 24, 11322. https://doi.org/10.3390/ijms241411322
Lédée N, Petitbarat M, Prat-Ellenberg L, Dray G, Vaucoret V, Kazhalawi A, Rodriguez-Pozo A, Habeichi N, Ruoso L, Cassuto NG, et al. The Next Frontier in ART: Harnessing the Uterine Immune Profile for Improved Performance. International Journal of Molecular Sciences. 2023; 24(14):11322. https://doi.org/10.3390/ijms241411322
Chicago/Turabian StyleLédée, Nathalie, Marie Petitbarat, Laura Prat-Ellenberg, Géraldine Dray, Virginie Vaucoret, Alaa Kazhalawi, André Rodriguez-Pozo, Nada Habeichi, Lea Ruoso, Nino Guy Cassuto, and et al. 2023. "The Next Frontier in ART: Harnessing the Uterine Immune Profile for Improved Performance" International Journal of Molecular Sciences 24, no. 14: 11322. https://doi.org/10.3390/ijms241411322
APA StyleLédée, N., Petitbarat, M., Prat-Ellenberg, L., Dray, G., Vaucoret, V., Kazhalawi, A., Rodriguez-Pozo, A., Habeichi, N., Ruoso, L., Cassuto, N. G., & Rahmati, M. (2023). The Next Frontier in ART: Harnessing the Uterine Immune Profile for Improved Performance. International Journal of Molecular Sciences, 24(14), 11322. https://doi.org/10.3390/ijms241411322