Genome-Wide Identification, Characterization, and Expression Analysis of Long-Chain Acyl-CoA Synthetases in Carya illinoinensis under Different Treatments
Abstract
:1. Introduction
2. Results
2.1. Genome-Wide Identification and Characterization of LACS Genes in Pecan
2.2. Multiple Sequence Alignment, Gene Structure, and Conserved Motif Analysis of the CiLACS Genes
2.3. Chromosomal Localization and Colinearity Analyses of CiLACS Genes
2.4. Tissue-Specific Expression Analysis of the CiLACS Genes
2.5. Cis-Element Analysis in the Promoter Regions of the CiLACS Genes in Pecan
2.6. Expression Analysis of CiLACS Genes under Different Stress Conditions and during Different Periods of Fruit Development
2.7. Subcellular Localization of CiLACS9s in Tobacco Leaves
3. Discussion
4. Materials and Methods
4.1. Genome-Wide Identification of the LACS Gene in Eight Different Plant Species
4.2. Physicochemical Characterization of CiLACS Family Protein Sequences
4.3. Multiple Sequence Alignment and Phylogenetic Analysis
4.4. Analysis of Gene Structure and Conserved Motifs
4.5. Chromosome Localization and Gene Duplication Event Analysis among CiLACSs and AtLACSs
4.6. Tissue-Specific Expression Analysis of CiLACS Gene Family
4.7. Cis-Acting Element Analysis
4.8. Plant Material and Sample Collection
4.9. Subcellular Localizations of the CiLACS9 Protein
4.10. RNA Collection and Real-Time Quantitative PCR (qRT-PCR)
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shockey, J.; Fulda, M.; Browse, J. Arabidopsis Contains Nine Long-Chain Acyl-Coenzyme A Synthetase Genes That Participate in Fatty Acid and Glycerolipid Metabolism. Plant Physiol. 2002, 129, 1710–1722. [Google Scholar] [CrossRef] [Green Version]
- Stępiński, D.; Kwiatkowska, M.; Wojtczak, A.; Polit, J.T.; Domínguez, E.; Heredia, A.; Popłońska, K. The Role of Cutinsomes in Plant Cuticle Formation. Cells 2020, 9, 1778. [Google Scholar] [CrossRef] [PubMed]
- Groot, P.H.E.; Scholte, H.R.; Hülsmann, W.C. Fatty Acid Activation: Specificity, Localization, and Function. Adv. Lipid Res. 1976, 14, 75–126. [Google Scholar] [CrossRef] [PubMed]
- Mashek, D.G.; Li, L.O.; Coleman, R.A. Long-Chain Acyl-Coa Synthetases and Fatty Acid Channeling. Future Lipidol. 2007, 2, 465–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kornberg, A.; Pricer, W.E. Enzymatic Synthesis of the Coenzyme A Derivatives of Long Chain Fatty Acids. J. Biol. Chem. 1953, 204, 329–343. [Google Scholar] [CrossRef]
- Aznar-Moreno, J.; Caleron, M.; Martinez-Force, E.; Garces, R.; Mullen, R.; Gidda, S.; Salas, J. Sunflower (Helianthus annuus) Long-Chain Acyl-Coenzyme A Synthetases Expressed at High Levels in Developing Seeds. Physiol. Plant 2014, 150, 363–373. [Google Scholar] [CrossRef] [Green Version]
- Lü, S.; Song, T.; Kosma, D.K.; Parsons, E.P.; Rowland, O.; Jenks, M.A. Arabidopsis CER8 Encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) That Has Overlapping Functions with LACS2 in Plant Wax and Cutin Synthesis. Plant J. 2009, 59, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Schnurr, J.; Shockey, J.; Browse, J. The Acyl-CoA Synthetase Encoded by LACS2 Is Essential for Normal Cuticle Development in Arabidopsis. Plant Cell 2004, 16, 629–642. [Google Scholar] [CrossRef] [Green Version]
- Weng, H.; Molina, I.; Shockey, J.; Browse, J. Organ Fusion and Defective Cuticle Function in a Lacs1 Lacs2 Double Mutant of Arabidopsis. Planta 2010, 231, 1089–1100. [Google Scholar] [CrossRef]
- Suh, M.C.; Samuels, A.L.; Jetter, R.; Kunst, L.; Pollard, M.; Ohlrogge, J.; Beisson, F. Cuticular Lipid Composition, Surface Structure, and Gene Expression in Arabidopsis Stem Epidermis. Plant Physiol. 2005, 139, 1649–1665. [Google Scholar] [CrossRef] [Green Version]
- Jessen, D.; Olbrich, A.; Knüfer, J.; Krüger, A.; Hoppert, M.; Polle, A.; Fulda, M. Combined Activity of LACS1 and LACS4 Is Required for Proper Pollen Coat Formation in Arabidopsis: LACS Activity and Pollen Coat Formation. Plant J. 2011, 68, 715–726. [Google Scholar] [CrossRef]
- Fulda, M.; Shockey, J.; Werber, M.; Wolter, F.P.; Heinz, E. Two Long-Chain Acyl-CoA Synthetases from Arabidopsis thaliana Involved in Peroxisomal Fatty Acid β-Oxidation: Fatty Acid. Activation in Peroxisomes of Plants. Plant J. 2002, 32, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Schnurr, J.A.; Shockey, J.M.; De Boer, G.-J.; Browse, J.A. Fatty Acid Export from the Chloroplast. Molecular Characterization of a Major Plastidial Acyl-Coenzyme A Synthetase from Arabidopsis. Plant Physiol. 2002, 129, 1700–1709. [Google Scholar] [CrossRef] [Green Version]
- Tan, X.; Zheng, X.; Zhang, Z.; Wang, Z.; Xia, H.; Lu, C.; Gu, S. Long Chain Acyl-Coenzyme A Synthetase 4 (BnLACS4) Gene from Brassica Napus Enhances the Yeast Lipid Contents. J. Integr. Agric. 2014, 13, 54–62. [Google Scholar] [CrossRef]
- Zhang, C.; Mao, K.; Zhou, L.; Wang, G.; Zhang, Y.; Li, Y.; Hao, Y. Apple Lacs Gene Familiy. Plant Physiol. Biochem. 2018, 132, 320–332. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Yang, J.; Zhang, C.; Zeng, L.; Meng, W.; Sun, L. Genome-wide Identification and Expression Analyses of Long-chain Acyl-CoA Synthetases Under Abiotic Stresses in Helianthus annuus. Acta Hortic. Sin. 2022, 49, 352–364. (In Chinese) [Google Scholar] [CrossRef]
- Ayaz, A.; Saqib, S.; Huang, H.; Zaman, W.; Lu, S.; Zhao, H. Genome-Wide Comparative Analysis of Long-Chain Acyl-CoA Synthetases (LACSs) Gene Family: A Focus on Identification, Evolution and Expression Profiling Related to Lipid Synthesis. Plant Physiol. Biochem. 2021, 161, 1–11. [Google Scholar] [CrossRef]
- Wang, J.; Li, X.; Zhao, X.; Na, C.; Liu, H.; Miao, H.; Zhou, J.; Xiao, J.; Zhao, X.; Han, Y. Genome-Wide Identification and Characterization of the Abiotic-Stress-Responsive LACS Gene Family in Soybean (Glycine max). Agronomy 2022, 12, 1496. [Google Scholar] [CrossRef]
- Kitajima-Koga, A.; Baslam, M.; Hamada, Y.; Ito, N.; Taniuchi, T.; Takamatsu, T.; Oikawa, K.; Kaneko, K.; Mitsui, T. Functional Analysis of Rice Long-Chain Acyl-CoA Synthetase 9 (OsLACS9) in the Chloroplast Envelope Membrane. Int. J. Mol. Sci. 2020, 21, 2223. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Fan, P.; Liu, H.; Tan, P.; Ma, W.; Mo, Z.; Zhao, J.; Chu, G.; Peng, F. Insight into the CBL and CIPK Gene Families in Pecan (Carya illinoinensis): Identification, Evolution and Expression Patterns in Drought Response. BMC Plant Biol. 2022, 22, 221. [Google Scholar] [CrossRef]
- Zhou, X.; Dai, Y.; Wu, H.; Zhong, P.; Luo, L.; Shang, Y.; Tan, P.; Peng, F.; Tian, Z. Characterization of CiWRI1 from Carya illinoinensis in Seed Oil Biosynthesis. Forests 2020, 11, 818. [Google Scholar] [CrossRef]
- Domínguez-Avila, J.A.; Alvarez-Parrilla, E.; López-Díaz, J.A.; Maldonado-Mendoza, I.E.; del Consuelo Gómez-García, M.; de la Rosa, L.A. The Pecan Nut (Carya illinoinensis) and Its Oil and Polyphenolic Fractions Differentially Modulate Lipid Metabolism and the Antioxidant Enzyme Activities in Rats Fed High-Fat Diets. Food Chem. 2015, 168, 529–537. [Google Scholar] [CrossRef]
- Xiao, Z.; Li, N.; Wang, S.; Sun, J.; Zhang, L.; Zhang, C.; Yang, H.; Zhao, H.; Yang, B.; Wei, L.; et al. Genome-Wide Identification and Comparative Expression Profile Analysis of the Long-Chain Acyl-CoA Synthetase (LACS) Gene Family in Two Different Oil Content Cultivars of Brassica Napus. Biochem. Genet. 2019, 57, 781–800. [Google Scholar] [CrossRef] [PubMed]
- Fulda, M.; Schnurr, J.; Abbadi, A.; Heinz, E.; Browse, J. Peroxisomal Acyl-CoA Synthetase Activity Is Essential for Seedling Development in Arabidopsis thaliana. Plant Cell 2004, 16, 394–405. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Yan, C.; Roston, R.; Shanklin, J.; Xu, C. Arabidopsis Lipins, PDAT1 Acyltransferase, and SDP1 Triacylglycerol Lipase Synergistically Direct Fatty Acids toward β-Oxidation, Thereby Maintaining Membrane Lipid Homeostasis. Plant Cell 2014, 26, 4119–4134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shockey, J.; Browse, J. Genome-Level and Biochemical Diversity of the Acyl-Activating Enzyme Superfamily in Plants: Biochemistry and Evolution of Plant AAE Proteins. Plant J. 2011, 66, 143–160. [Google Scholar] [CrossRef]
- Verma, V.; Ravindran, P.; Kumar, P.P. Plant Hormone-Mediated Regulation of Stress Responses. BMC Plant Biol. 2016, 16, 86. [Google Scholar] [CrossRef] [Green Version]
- Seo, P.J.; Lee, S.B.; Suh, M.C.; Park, M.-J.; Go, Y.S.; Park, C.-M. The MYB96 Transcription Factor Regulates Cuticular Wax Biosynthesis under Drought Conditions in Arabidopsis. Plant Cell 2011, 23, 1138–1152. [Google Scholar] [CrossRef] [Green Version]
- Cameron, K.D.; Teece, M.A.; Smart, L.B. Increased Accumulation of Cuticular Wax and Expression of Lipid Transfer Protein in Response to Periodic Drying Events in Leaves of Tree Tobacco. Plant Physiol. 2006, 140, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Kosma, D.K.; Bourdenx, B.; Bernard, A.; Parsons, E.P.; Lü, S.; Joubès, J.; Jenks, M.A. The Impact of Water Deficiency on Leaf Cuticle Lipids of Arabidopsis. Plant Physiol. 2009, 151, 1918–1929. [Google Scholar] [CrossRef] [Green Version]
- Finn, R.D.; Coggill, P.; Eberhardt, R.Y.; Eddy, S.R.; Mistry, J.; Mitchell, A.L.; Potter, S.C.; Punta, M.; Qureshi, M.; Sangrador-Vegas, A.; et al. The Pfam Protein Families Database: Towards a More Sustainable Future. Nucleic Acids Res. 2016, 44, D279–D285. [Google Scholar] [CrossRef]
- Altschul, S. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Res. 1997, 25, 3389–3402. [Google Scholar] [CrossRef] [Green Version]
- Zhu, K.; Fan, P.; Mo, Z.; Tan, P.; Feng, G.; Li, F.; Peng, F. Identification, Expression and Co-Expression Analysis of R2R3-MYB Family Genes Involved in Graft Union Formation in Pecan (Carya illinoinensis). Forests 2020, 11, 917. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.-H. EvolView, an Online Tool for Visualizing, Annotating and Managing Phylogenetic Trees. Nucleic Acids Res. 2012, 40, W569–W572. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, L.; Zhang, Z.; Zhang, R.; Wang, Z.; Huang, C.; Huang, R.; Luan, Y.; Fan, T.; Wang, J.; et al. The Genomes of Pecan and Chinese Hickory Provide Insights into Carya Evolution and Nut Nutrition. GigaScience 2019, 8, giz036. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME Suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Tong, Y.; Li, Y.; Cheng, Z.-M.; Zhong, Y. Genome-Wide Identification of the HKT Genes in Five Rosaceae Species and Expression Analysis of HKT Genes in Response to Salt-Stress in Fragaria vesca. Genes. Genom. 2019, 41, 325–336. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate Transcript Quantification from RNA-Seq Data with or without a Reference Genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [Green Version]
- Lescot, M. PlantCARE, a Database of Plant Cis-Acting Regulatory Elements and a Portal to Tools for in Silico Analysis of Promoter Sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Chen, W.; Yin, X.; Wang, L.; Tian, J.; Yang, R.; Liu, D.; Yu, Z.; Ma, N.; Gao, J. Involvement of Rose Aquaporin RhPIP1;1 in Ethylene-Regulated Petal Expansion through Interaction with RhPIP2;1. Plant Mol. Biol. 2013, 83, 219–233. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, W.; Zhu, K.; Zhao, J.; Chen, M.; Wei, L.; Qiao, Z.; Tan, P.; Peng, F. Genome-Wide Identification, Characterization, and Expression Analysis of Long-Chain Acyl-CoA Synthetases in Carya illinoinensis under Different Treatments. Int. J. Mol. Sci. 2023, 24, 11558. https://doi.org/10.3390/ijms241411558
Ma W, Zhu K, Zhao J, Chen M, Wei L, Qiao Z, Tan P, Peng F. Genome-Wide Identification, Characterization, and Expression Analysis of Long-Chain Acyl-CoA Synthetases in Carya illinoinensis under Different Treatments. International Journal of Molecular Sciences. 2023; 24(14):11558. https://doi.org/10.3390/ijms241411558
Chicago/Turabian StyleMa, Wenjuan, Kaikai Zhu, Juan Zhao, Mengyun Chen, Lu Wei, Zhenbing Qiao, Pengpeng Tan, and Fangren Peng. 2023. "Genome-Wide Identification, Characterization, and Expression Analysis of Long-Chain Acyl-CoA Synthetases in Carya illinoinensis under Different Treatments" International Journal of Molecular Sciences 24, no. 14: 11558. https://doi.org/10.3390/ijms241411558
APA StyleMa, W., Zhu, K., Zhao, J., Chen, M., Wei, L., Qiao, Z., Tan, P., & Peng, F. (2023). Genome-Wide Identification, Characterization, and Expression Analysis of Long-Chain Acyl-CoA Synthetases in Carya illinoinensis under Different Treatments. International Journal of Molecular Sciences, 24(14), 11558. https://doi.org/10.3390/ijms241411558