Targeted Alpha-Particle Therapy: A Review of Current Trials
Abstract
:1. Introduction
2. Notable Radioisotopes in Targeted Alpha Therapy
3. Contemporary TAT Clinical Trials
3.1. Trials Run by Commercial Pharmaceutical Companies
3.2. Investigator-Initiated Trials
4. Challenges and Opportunities
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’Sullivan, J.M.; Fosså, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M.; et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 2013, 369, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Guerra Liberal, F.D.C.; O’Sullivan, J.M.; McMahon, S.J.; Prise, K.M. Targeted Alpha Therapy: Current Clinical Applications. Cancer Biother. Radiopharm. 2020, 35, 404–417. [Google Scholar] [CrossRef]
- Nelson, B.J.B.; Andersson, J.D.; Wuest, F. Targeted Alpha Therapy: Progress in Radionuclide Production, Radiochemistry, and Applications. Pharmaceutics 2020, 13, 49. [Google Scholar] [CrossRef]
- Eychenne, R.; Chérel, M.; Haddad, F.; Guérard, F.; Gestin, J.F. Overview of the Most Promising Radionuclides for Targeted Alpha Therapy: The “Hopeful Eight”. Pharmaceutics 2021, 13, 906. [Google Scholar] [CrossRef]
- Miederer, M.; Scheinberg, D.A.; McDevitt, M.R. Realizing the potential of the Actinium-225 radionuclide generator in targeted alpha particle therapy applications. Adv. Drug Deliv. Rev. 2008, 60, 1371–1382. [Google Scholar] [CrossRef] [Green Version]
- Thiele, N.A.; Wilson, J.J. Actinium-225 for Targeted α Therapy: Coordination Chemistry and Current Chelation Approaches. Cancer Biother. Radiopharm. 2018, 33, 336–348. [Google Scholar] [CrossRef]
- Davis, I.A.; Glowienka, K.A.; Boll, R.A.; Deal, K.A.; Brechbiel, M.W.; Stabin, M.; Bochsler, P.N.; Mirzadeh, S.; Kennel, S.J. Comparison of 225actinium chelates: Tissue distribution and radiotoxicity. Nucl. Med. Biol. 1999, 26, 581–589. [Google Scholar] [CrossRef]
- Vatsa, R.; Sood, A.; Vadi, S.K.; Das, C.K.; Kaur, K.; Parmar, M.; Mittal, B.R. 225Ac-PSMA-617 Radioligand Posttherapy Imaging in Metastatic Castrate-Resistant Prostate Cancer Patient Using 3 Photopeaks. Clin. Nucl. Med. 2020, 45, 437–438. [Google Scholar] [CrossRef]
- Kamaleshwaran, K.K.; Suneelkumar, M.; Madhusairam, R.; Radhakrishnan, E.K.; Arunpandiyan, S.; Arnold, V.J. Whole-body and Single-Photon Emission Computed Tomography/Computed Tomography Postpeptide Receptor Alpha Radionuclide Therapy Images of Actinium 225-Tetraazacyclododecanetetraacetic Acid-Octreotide as a Primary Modality of Treatment in a Patient with Advanced Rectal Neuroendocrine Tumor with Metastases. Indian J. Nucl. Med. 2020, 35, 226–228. [Google Scholar] [CrossRef]
- Albertsson, P.; Bäck, T.; Bergmark, K.; Hallqvist, A.; Johansson, M.; Aneheim, E.; Lindegren, S.; Timperanza, C.; Smerud, K.; Palm, S. Astatine-211 based radionuclide therapy: Current clinical trial landscape. Front. Med. 2022, 9, 1076210. [Google Scholar] [CrossRef]
- Johnson, E.L.; Turkington, T.G.; Jaszczak, R.J.; Gilland, D.R.; Vaidyanathan, G.; Greer, K.L.; Coleman, R.E.; Zalutsky, M.R. Quantitation of 211At in small volumes for evaluation of targeted radiotherapy in animal models. Nucl. Med. Biol. 1995, 22, 45–54. [Google Scholar] [CrossRef]
- Yong, K.; Brechbiel, M. Application of (212)Pb for Targeted α-particle Therapy (TAT): Pre-clinical and Mechanistic Understanding through to Clinical Translation. AIMS Med. Sci. 2015, 2, 228–245. [Google Scholar] [CrossRef]
- Kokov, K.V.; Egorova, B.V.; German, M.N.; Klabukov, I.D.; Krasheninnikov, M.E.; Larkin-Kondrov, A.A.; Makoveeva, K.A.; Ovchinnikov, M.V.; Sidorova, M.V.; Chuvilin, D.Y. (212)Pb: Production Approaches and Targeted Therapy Applications. Pharmaceutics 2022, 14, 189. [Google Scholar] [CrossRef]
- Smith-Jones, P.M.; Vallabahajosula, S.; Goldsmith, S.J.; Navarro, V.; Hunter, C.J.; Bastidas, D.; Bander, N.H. In vitro characterization of radiolabeled monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen. Cancer Res. 2000, 60, 5237–5243. [Google Scholar]
- Tagawa, S.T.; Sun, M.; Sartor, A.O.; Thomas, C.; Singh, S.; Bissassar, M.; Fernandez, E.; Niaz, M.J.; Ho, B.; Vallabhajosula, S.; et al. Phase I study of 225Ac-J591 for men with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2021, 39, 5015. [Google Scholar] [CrossRef]
- Sun, M.; Nauseef, J.T.; Lebenthal, J.M.; Niaz, M.J.; Singh, S.; Chamberlain, T.A.; Bissassar, M.; Patel, A.; Tan, A.; Vallabhajosula, S.; et al. A phase I/II dose-escalation study of fractionated and multiple dose 225Ac-J591 for progressive metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2021, 39, TPS188. [Google Scholar] [CrossRef]
- Tagawa, S.T.; Sun, M.P.; Nauseef, J.T.; Thomas, C.; Castellanos, S.H.; Thomas, J.E.; Davidson, Z.; Stangl-Kremser, J.; Bissassar, M.; Palmer, J.; et al. Phase I dose-escalation results of prostate-specific membrane antigen-targeted radionuclide therapy (PSMA-TRT) with alpha-radiolabeled antibody 225Ac-J591 and beta-radioligand 177Lu-PSMA I&T. J. Clin. Oncol. 2023, 41, 5018. [Google Scholar] [CrossRef]
- Sun, M.P.; Nauseef, J.T.; Palmer, J.; Thomas, J.E.; Stangl-Kremser, J.; Bissassar, M.; Castellanos, S.H.; Osborne, J.; Molina, A.M.; Sternberg, C.N.; et al. Phase I results of a phase I/II study of pembrolizumab and AR signaling inhibitor (ARSI) with 225Ac-J591. J. Clin. Oncol. 2023, 41, 181. [Google Scholar] [CrossRef]
- Juergens, R.A.; Zukotynski, K.A.; Juneau, D.; Krnezich, L.; Simms, R.; Forbes, J.; Burak, E.S.; Valliant, J.; Stafford, L.; Armor, T.; et al. A phase I study of [225Ac]-FPI-1434 radioimmunotherapy in patients with IGF-1R expressing solid tumors. J. Clin. Oncol. 2019, 37, TPS3152. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.; Amor-Coarasa, A.; Ponnala, S.; Nikolopoulou, A.; Williams, C., Jr.; Schlyer, D.; Zhao, Y.; Kim, D.; Babich, J.W. Trifunctional PSMA-targeting constructs for prostate cancer with unprecedented localization to LNCaP tumors. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1841–1851. [Google Scholar] [CrossRef]
- Kelly, J.M.; Amor-Coarasa, A.; Ponnala, S.; Nikolopoulou, A.; Williams, C., Jr.; DiMagno, S.G.; Babich, J.W. Albumin-Binding PSMA Ligands: Implications for Expanding the Therapeutic Window. J. Nucl. Med. 2019, 60, 656–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deberle, L.M.; Benešová, M.; Umbricht, C.A.; Borgna, F.; Büchler, M.; Zhernosekov, K.; Schibli, R.; Müller, C. Development of a new class of PSMA radioligands comprising ibuprofen as an albumin-binding entity. Theranostics 2020, 10, 1678–1693. [Google Scholar] [CrossRef] [PubMed]
- Borgna, F.; Deberle, L.M.; Busslinger, S.D.; Tschan, V.J.; Walde, L.M.; Becker, A.E.; Schibli, R.; Müller, C. Preclinical Investigations to Explore the Difference between the Diastereomers [(177)Lu]Lu-SibuDAB and [(177)Lu]Lu-RibuDAB toward Prostate Cancer Therapy. Mol. Pharm. 2022, 19, 2105–2114. [Google Scholar] [CrossRef] [PubMed]
- Busslinger, S.D.; Tschan, V.J.; Richard, O.K.; Talip, Z.; Schibli, R.; Müller, C. [(225)Ac]Ac-SibuDAB for Targeted Alpha Therapy of Prostate Cancer: Preclinical Evaluation and Comparison with [(225)Ac]Ac-PSMA-617. Cancers 2022, 14, 5651. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.J.; Sartor, A.O.; Wong, J.Y.C.; Max, S.I.; Xie, H.; Russell, M.; Divgi, C.R.; Patricia, D.; Avadhani, A.N.; Nordquist, L.T. Phase 1 study of JNJ-69086420, an actinium-225-labeled antibody targeting human kallikrein-2, for advanced prostate cancer. J. Clin. Oncol. 2022, 40, TPS206. [Google Scholar] [CrossRef]
- Potter, S.R.; Partin, A.W. Tumor markers: An update on human kallikrein 2. Rev. Urol. 2000, 2, 221–222. [Google Scholar] [PubMed]
- Delpassand, E.S.; Tworowska, I.; Esfandiari, R.; Torgue, J.; Hurt, J.; Shafie, A.; Núñez, R. Targeted α-Emitter Therapy with (212)Pb-DOTAMTATE for the Treatment of Metastatic SSTR-Expressing Neuroendocrine Tumors: First-in-Humans Dose-Escalation Clinical Trial. J. Nucl. Med. 2022, 63, 1326–1333. [Google Scholar] [CrossRef]
- Morris, M.; Ulaner, G.A.; Halperin, D.M.; Mehr, S.H.; Li, D.; Soares, H.P.; Anthony, L.B.; Kotiah, S.D.; Jacene, H.; Pavel, M.E.; et al. ACTION-1 phase Ib/3 trial of RYZ101 in somatostatin receptor subtype 2–expressing (SSTR2+) gastroenteropancreatic neuroendocrine tumors (GEP-NET) progressing after 177Lu somatostatin analogue (SSA) therapy: Initial safety analysis. J. Clin. Oncol. 2023, 41, 4132. [Google Scholar] [CrossRef]
- Atallah, E.; Berger, M.; Jurcic, J.; Roboz, G.; Tse, W.; Mawad, R.; Rizzieri, D.; Begna, K.; Orozco, J.; Craig, M. A phase 2 study of actinium-225 (225Ac)-lintuzumab in older patients with untreated acute myeloid leukemia (AML). J. Med. Imaging Radiat. Sci. 2019, 50, S37. [Google Scholar] [CrossRef]
- Abedin, S.; Guru Murthy, G.S.; Szabo, A.; Hamadani, M.; Michaelis, L.C.; Carlson, K.-S.; Runaas, L.; Gauger, K.; Desai, A.G.; Chen, M.M.; et al. Lintuzumab-Ac225 with Combination with Intensive Chemotherapy Yields High Response Rate and MRD Negativity in R/R AML with Adverse Features. Blood 2022, 140, 157–158. [Google Scholar] [CrossRef]
- Rosenkranz, A.A.; Slastnikova, T.A.; Durymanov, M.O.; Sobolev, A.S. Malignant melanoma and melanocortin 1 receptor. Biochemistry 2013, 78, 1228–1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vito, A.; Dornan, M.; Beale, T.; Felten, A.; Ernste, M.; Nguyen, Q.; Ahn, S.; Belanger, A.P.; Pan, S.; Wu, W.; et al. Development and characterization of a next-generation [225]Ac-PSMA radioligand. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, S440. [Google Scholar] [CrossRef]
- Xin, L.; Gao, J.; Zheng, Z.; Chen, Y.; Lv, S.; Zhao, Z.; Yu, C.; Yang, X.; Zhang, R. Fibroblast Activation Protein-α as a Target in the Bench-to-Bedside Diagnosis and Treatment of Tumors: A Narrative Review. Front. Oncol. 2021, 11, 648187. [Google Scholar] [CrossRef] [PubMed]
- Ohshima, Y.; Sudo, H.; Watanabe, S.; Nagatsu, K.; Tsuji, A.B.; Sakashita, T.; Ito, Y.M.; Yoshinaga, K.; Higashi, T.; Ishioka, N.S. Antitumor effects of radionuclide treatment using α-emitting meta-(211)At-astato-benzylguanidine in a PC12 pheochromocytoma model. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 999–1010. [Google Scholar] [CrossRef] [Green Version]
- Nakano, A.; Harada, T.; Morikawa, S.; Kato, Y. Expression of leukocyte common antigen (CD45) on various human leukemia/lymphoma cell lines. Acta Pathol. Jpn. 1990, 40, 107–115. [Google Scholar] [CrossRef]
- Morandi, F.; Horenstein, A.L.; Costa, F.; Giuliani, N.; Pistoia, V.; Malavasi, F. CD38: A Target for Immunotherapeutic Approaches in Multiple Myeloma. Front. Immunol. 2018, 9, 2722. [Google Scholar] [CrossRef] [Green Version]
- Akhavan, D.; Yazaki, P.; Yamauchi, D.; Simpson, J.; Frankel, P.H.; Bading, J.; Colcher, D.; Poku, K.; Chen, Y.J.; Lim, D.; et al. Phase I Study of Yttrium-90 Radiolabeled M5A Anti-Carcinoembryonic Antigen Humanized Antibody in Patients with Advanced Carcinoembryonic Antigen Producing Malignancies. Cancer Biother. Radiopharm. 2020, 35, 10–15. [Google Scholar] [CrossRef]
- de Kruijff, R.M.; Wolterbeek, H.T.; Denkova, A.G. A Critical Review of Alpha Radionuclide Therapy-How to Deal with Recoiling Daughters? Pharmaceuticals 2015, 8, 321–336. [Google Scholar] [CrossRef] [Green Version]
- Emami, B.; Lyman, J.; Brown, A.; Coia, L.; Goitein, M.; Munzenrider, J.E.; Shank, B.; Solin, L.J.; Wesson, M. Tolerance of normal tissue to therapeutic irradiation. Int. J. Radiat. Oncol. Biol. Phys. 1991, 21, 109–122. [Google Scholar] [CrossRef]
- Huang, C.Y.; Oborn, B.M.; Guatelli, S.; Allen, B.J. Monte Carlo calculation of the maximum therapeutic gain of tumor antivascular alpha therapy. Med. Phys. 2012, 39, 1282–1288. [Google Scholar] [CrossRef]
- Kratochwil, C.; Giesel, F.L.; Leotta, K.; Eder, M.; Hoppe-Tich, T.; Youssoufian, H.; Kopka, K.; Babich, J.W.; Haberkorn, U. PMPA for nephroprotection in PSMA-targeted radionuclide therapy of prostate cancer. J. Nucl. Med. 2015, 56, 293–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krečmerová, M.; Majer, P.; Rais, R.; Slusher, B.S. Phosphonates and Phosphonate Prodrugs in Medicinal Chemistry: Past Successes and Future Prospects. Front. Chem. 2022, 10, 889737. [Google Scholar] [CrossRef] [PubMed]
- Chua, H.L.; Plett, P.A.; Sampson, C.H.; Joshi, M.; Tabbey, R.; Katz, B.P.; MacVittie, T.J.; Orschell, C.M. Long-term hematopoietic stem cell damage in a murine model of the hematopoietic syndrome of the acute radiation syndrome. Health Phys. 2012, 103, 356–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvete, O.; Mestre, J.; Jerez, A.; Solé, F. The Secondary Myelodysplastic Neoplasms (MDS) Jigsaw. Cancers 2023, 15, 1483. [Google Scholar] [CrossRef]
- Ladjohounlou, R.; Lozza, C.; Pichard, A.; Constanzo, J.; Karam, J.; Le Fur, P.; Deshayes, E.; Boudousq, V.; Paillas, S.; Busson, M.; et al. Drugs That Modify Cholesterol Metabolism Alter the p38/JNK-Mediated Targeted and Nontargeted Response to Alpha and Auger Radioimmunotherapy. Clin. Cancer Res. 2019, 25, 4775–4790. [Google Scholar] [CrossRef] [Green Version]
- Leung, C.N.; Canter, B.S.; Rajon, D.; Bäck, T.A.; Fritton, J.C.; Azzam, E.I.; Howell, R.W. Dose-Dependent Growth Delay of Breast Cancer Xenografts in the Bone Marrow of Mice Treated with (223)Ra: The Role of Bystander Effects and Their Potential for Therapy. J. Nucl. Med. 2020, 61, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Bellia, S.R.; Feliciani, G.; Duca, M.D.; Monti, M.; Turri, V.; Sarnelli, A.; Romeo, A.; Kelson, I.; Keisari, Y.; Popovtzer, A.; et al. Clinical evidence of abscopal effect in cutaneous squamous cell carcinoma treated with diffusing alpha emitters radiation therapy: A case report. J. Contemp. Brachytherapy 2019, 11, 449–457. [Google Scholar] [CrossRef]
- Gorin, J.B.; Ménager, J.; Gouard, S.; Maurel, C.; Guilloux, Y.; Faivre-Chauvet, A.; Morgenstern, A.; Bruchertseifer, F.; Chérel, M.; Davodeau, F.; et al. Antitumor immunity induced after α irradiation. Neoplasia 2014, 16, 319–328. [Google Scholar] [CrossRef]
- Bobba, K.N.; Bidkar, A.P.; Meher, N.; Fong, C.; Wadhwa, A.; Dhrona, S.; Sorlin, A.; Bidlingmaier, S.; Shuere, B.; He, J.; et al. Evaluation of (134)Ce/(134)La as a PET Imaging Theranostic Pair for (225)Ac α-Radiotherapeutics. J. Nucl. Med. 2023, 64, 1076–1082. [Google Scholar] [CrossRef]
- Müller, C.; Vermeulen, C.; Köster, U.; Johnston, K.; Türler, A.; Schibli, R.; van der Meulen, N.P. Alpha-PET with terbium-149: Evidence and perspectives for radiotheragnostics. EJNMMI Radiopharm. Chem. 2017, 1, 5. [Google Scholar] [CrossRef] [Green Version]
- Wurzer, A.; Seidl, C.; Morgenstern, A.; Bruchertseifer, F.; Schwaiger, M.; Wester, H.J.; Notni, J. Dual-Nuclide Radiopharmaceuticals for Positron Emission Tomography Based Dosimetry in Radiotherapy. Chemistry 2018, 24, 547–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pandey, M.K.; Johnson, G.B.; Bartlett, D.J. Methods and Materials for Combining Biologics with Multiple Chelators. WO 2022/266499 A1, 22 December 2022. Available online: https://patentimages.storage.googleapis.com/11/dc/b5/a89eb5f05fe11d/WO2022266499A1.pdf (accessed on 14 June 2023).
- Chan, C.Y.; Chen, Z.; Destro, G.; Veal, M.; Lau, D.; O’Neill, E.; Dias, G.; Mosley, M.; Kersemans, V.; Guibbal, F.; et al. Imaging PARP with [(18)F]rucaparib in pancreatic cancer models. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3668–3678. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.C.; Xavier, M.A.; Knight, J.; Verhoog, S.; Torres, J.B.; Mosley, M.; Hopkins, S.L.; Wallington, S.; Allen, P.D.; Kersemans, V.; et al. PET Imaging of PARP Expression Using (18)F-Olaparib. J. Nucl. Med. 2019, 60, 504–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Abou, D.; Lu, P.; Hasson, A.M.; Villmer, A.; Benabdallah, N.; Jiang, W.; Ulmert, D.; Carlin, S.; Rogers, B.E.; et al. [(18)F]-Labeled PARP-1 PET imaging of PSMA targeted alpha particle radiotherapy response. Sci. Rep. 2022, 12, 13034. [Google Scholar] [CrossRef]
- Higano, C.S.; George, D.J.; Shore, N.D.; Sartor, O.; Miller, K.; Conti, P.S.; Sternberg, C.N.; Saad, F.; Sade, J.P.; Bellmunt, J.; et al. Clinical outcomes and treatment patterns in REASSURE: Planned interim analysis of a real-world observational study of radium-223 in metastatic castration-resistant prostate cancer. eClinicalMedicine 2023, 60, 101993. [Google Scholar] [CrossRef]
Trial Number | Alpha Particle | Target | Agent(s) | Setting | Primary Outcome Measures |
---|---|---|---|---|---|
Cornell | |||||
NCT03276572 | 225Ac | PSMA | 225Ac-J591 | mCRPC treated with prior ARPI | DLT, MTD |
NCT04506567 | 225Ac | PSMA | 225Ac-J591 | mCRPC treated with prior ARPI | DLT, MTD, RP2D |
NCT04576871 | 225Ac | PSMA | 225Ac-J591 | mCRPC treated with prior ARPI | DLT |
NCT04886986 | 225Ac | PSMA | 225Ac-J591 with 177Lu-PSMA-I&T | mCRPC treated with prior ARPI | DLT, MTD, RP2D, PSA decline |
NCT04946370 | 225Ac | PSMA | 225Ac-J591 with pembrolizumab and ARPI | mCRPC treated with prior ARPI | DLT, RP2D, response rate |
NCT05567770 | 225Ac | PSMA | 225Ac-J591 | mHSPC | DLT, MTD |
Fusion Pharmaceuticals | |||||
NCT03746431 | 225Ac | IGF-1R | 225Ac-FPI-1434 | IGF-1R-positive solid tumors refractory to standard therapies | AE, DLT, ORR |
NCT05605522 | 225Ac | NTSR1 | 225Ac-FPI-2059 | NTSR1-positive solid tumors refractory to standard therapies | AE, MTD |
NCT05219500 | 225Ac | PSMA | 225Ac-FPI-2265 (PSMA-I&T) | mCRPC with prior ARPI | PSA50, safety |
Bayer | |||||
NCT04147819 | 227Th | HER2 | BAY2701439 | HER2-positive solid tumors refractory to standard therapies | AE, ORR |
AdvanCell | |||||
NCT05720130 | 212Pb | PSMA | 212Pb-ADVC001 | mCRPC with prior ARPI and no prior exposure to 177Lu | RP2D |
Novartis | |||||
NCT04597411 | 225Ac | PSMA | 225Ac-PSMA-617 | mCRPC | RP2D |
Janssen | |||||
NCT04644770 | 225Ac | hK2 | 225Ac-DOTA-h11B6 (JNJ-69086420) | mCRPC with prior ARPI | AE, DLT |
Radiomedix and Orano Med | |||||
NCT03466216 | 212Pb | SSTR2 | 212Pb-DOTAMTATE | SSTR2-positive neuroendocrine tumors refractory to standard therapies | DLT, MTD |
NCT05153772 | 212Pb | SSTR2 | 212Pb-DOTAMTATE | SSTR2-positive neuroendocrine tumors refractory to standard therapies | ORR, AE |
RayzeBio | |||||
NCT05477576 | 225Ac | SSTR2 | RYZ101 | SSTR2-positive gastroenteropancreatic neuroendocrine tumors with prior 177Lu therapy | RP3D, PFS |
NCT05595460 | 225Ac | SSTR2 | RYZ101 with carboplatin, etoposide, and atezolizumab | SSTR2-positive extensive-stage small-cell lung cancer | RP2D, safety, tolerability |
Orano Med | |||||
NCT05283330 | 212Pb | GRPR1 | 212Pb-DOTAM-GRPR1 | GRPR1-positive solid tumors refractory to standard therapies | RP2D |
Actinium Pharmaceuticals | |||||
NCT03441048 | 225Ac | CD33 | 225Ac-lintuzumab with cladribine, cytarabine, filgrastim, and mitoxantrone | Relapsed/refractory AML | DLT, MTD, AE, OS |
NCT03867682 | 225Ac | CD33 | 225Ac-lintuzumab with venetoclax | Relapsed/refractory AML | MTD, overall response |
Trial Number | Alpha Particle | Target | Agent(s) | Setting | Primary Outcome Measures |
---|---|---|---|---|---|
NCT05275946 | 211At | Thyroid tissue | TAH-1005 | Differentiated thyroid cancer refractory to standard therapies | AE, DLT |
N/A | 211At | Norepinephrine transporter | 211At-meta-astatobenzylguanidine | Pheochromocytoma and paraganglioma | Safety, MTD, phase 2 dose |
NCT04083183 | 211At | CD45 | 211At-BC8-B10 | Hematopoietic stem cell transplant regimen for non-malignant hematologic diseases | Graft rejection |
NCT03670966 | 211At | CD45 | 211At-BC8-B10 | Hematopoietic stem cell transplant regimen for malignant hematologic diseases | Toxicity |
NCT04579523 | 211At | CD38 | 211At-OKT-B10 and fludarabine | Newly diagnosed, recurrent, or refractory high risk multiple myeloma | MTD |
NCT04466475 | 211At | CD38 | 211At-OKT-B10 and melphalan | Relapsed or refractory multiple myeloma after at least 3 lines of prior therapy | MTD |
NCT05363111 | 225Ac | CD38 | 225Ac-DOTA-daratumuab and daratumumab | Relapsed or refractory multiple myeloma after at least 2 lines of prior therapy | DLT, MTD |
NCT05204147 | 225Ac | CEA | 225Ac-DOTA-M5A | Metastatic solid tumors expressing CEA | AE, MTD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, A.; Kendi, A.T.; Johnson, G.B.; Halfdanarson, T.R.; Sartor, O. Targeted Alpha-Particle Therapy: A Review of Current Trials. Int. J. Mol. Sci. 2023, 24, 11626. https://doi.org/10.3390/ijms241411626
Jang A, Kendi AT, Johnson GB, Halfdanarson TR, Sartor O. Targeted Alpha-Particle Therapy: A Review of Current Trials. International Journal of Molecular Sciences. 2023; 24(14):11626. https://doi.org/10.3390/ijms241411626
Chicago/Turabian StyleJang, Albert, Ayse T. Kendi, Geoffrey B. Johnson, Thorvardur R. Halfdanarson, and Oliver Sartor. 2023. "Targeted Alpha-Particle Therapy: A Review of Current Trials" International Journal of Molecular Sciences 24, no. 14: 11626. https://doi.org/10.3390/ijms241411626
APA StyleJang, A., Kendi, A. T., Johnson, G. B., Halfdanarson, T. R., & Sartor, O. (2023). Targeted Alpha-Particle Therapy: A Review of Current Trials. International Journal of Molecular Sciences, 24(14), 11626. https://doi.org/10.3390/ijms241411626