Long-Term Tumor Control Following Targeted Alpha Therapy (TAT) of Low-Grade Gliomas (LGGs): A New Treatment Paradigm?
Abstract
:1. Introduction
2. Results
3. Discussion
4. Methods and Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.M.; Englander, Z.K.; Miller, M.L.; Bruce, J.N. Malignant Glioma. Adv. Exp. Med. Biol. 2023, 1405, 1–30. [Google Scholar] [PubMed]
- Dong, X.; Noorbakhsh, A.; Hirshman, B.R.; Zhou, T.; Tang, J.A.; Chang, D.C.; Carter, B.S.; Chen, C.C. Survival trends of grade I, II, and III astrocytoma patients and associated clinical practice patterns between 1999 and 2010: A SEER-based analysis. Neurooncol. Pract. 2016, 3, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Kinslow, C.J.; Garton, A.L.A.; Rae, A.I.; Marcus, L.P.; Adams, C.M.; McKhann, G.M.; Sisti, M.B.; Connolly, E.S.; Bruce, J.N.; Neugut, A.I.; et al. Extent of resection and survival for oligodendroglioma: A U.S. population-based study. J. Neurooncol. 2019, 144, 591–601. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ma, J.; Zou, Z.; Liu, H.; Liu, C.; Gong, S.; Gao, X.; Liang, G. Clinical characteristics and prognosis of patients with glioblastoma: A review of survival analysis of 1674 patients based on SEER database. Medicine 2022, 101, e32042. [Google Scholar] [CrossRef]
- Elsheikh, M.; Bridgman, E.; Lavrador, J.P.; Lammy, S.; Poon, M.T.C. Association of extent of resection and functional outcomes in diffuse low-grade glioma: Systematic review & meta-analysis. J. Neurooncol. 2022, 160, 717–724. [Google Scholar] [PubMed]
- Weller, M.; van den Bent, M.; Preusser, M.; Le Rhun, E.; Tonn, J.C.; Minniti, G.; Bendszus, M.; Balana, C.; Chinot, O.; Dirven, L.; et al. EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat. Rev. Clin. Oncol. 2021, 18, 170–186. [Google Scholar] [CrossRef] [PubMed]
- Oberheim Bush, N.A.; Chang, S. Treatment Strategies for Low-Grade Glioma in Adults. J. Oncol. Pract. 2016, 12, 1235–1241. [Google Scholar] [CrossRef]
- Berger, M.S.; Hervey-Jumper, S.; Wick, W. Astrocytic gliomas WHO grades II and III. Handb. Clin. Neurol. 2016, 134, 345–360. [Google Scholar]
- Duffau, H.; Mandonnet, E. The “onco-functional balance” in surgery for diffuse low-grade glioma: Integrating the extent of resection with quality of life. Acta Neurochir. 2013, 155, 951–957. [Google Scholar] [CrossRef]
- Claus, E.B.; Walsh, K.M.; Wiencke, J.K.; Molinaro, A.M.; Wiemels, J.L.; Schildkraut, J.M.; Bondy, M.L.; Berger, M.; Jenkins, R.; Wrensch, M. Survival and low-grade glioma: The emergence of genetic information. Neurosurg. Focus 2015, 38, E6. [Google Scholar] [CrossRef]
- Duffau, H. Early and Maximal Personalized Surgical Resection Improves Survival and Quality of Life in Low-grade Gliomas Patients. Neurol. India 2020, 68, 813–814. [Google Scholar] [CrossRef]
- Wank, M.; Schilling, D.; Schmid, T.E.; Meyer, B.; Gempt, J.; Barz, M.; Schlegel, J.; Liesche, F.; Kessel, K.A.; Wiestler, B.; et al. Human Glioma Migration and Infiltration Properties as a Target for Personalized Radiation Medicine. Cancers 2018, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Douw, L.; Klein, M.; Fagel, S.S.; van den Heuvel, J.; Taphoorn, M.J.; Aaronson, N.K.; Postma, T.J.; Vandertop, W.P.; Mooij, J.J.; Boerman, R.H.; et al. Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: Long-term follow-up. Lancet Neurol. 2009, 8, 810–818. [Google Scholar] [CrossRef] [PubMed]
- Touat, M.; Li, Y.Y.; Boynton, A.N.; Spurr, L.F.; Iorgulescu, J.B.; Bohrson, C.L.; Cortes-Ciriano, I.; Birzu, C.; Geduldig, J.E.; Pelton, K.; et al. Mechanisms and therapeutic implications of hypermutation in gliomas. Nature 2020, 580, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Perry, A.; Wesseling, P. Histologic classification of gliomas. Handb. Clin. Neurol. 2016, 134, 71–95. [Google Scholar] [PubMed]
- Frieboes, H.B.; Lowengrub, J.S.; Wise, S.; Zheng, X.; Macklin, P.; Bearer, E.L.; Cristini, V. Computer simulation of glioma growth and morphology. Neuroimage 2007, 37 (Suppl. S1), S59–S70. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Ding, S.; Liu, R.; Huang, C. Quantifying the Growth of Glioblastoma Tumors Using Multimodal MRI Brain Images. Cancers 2023, 15, 3614. [Google Scholar] [CrossRef] [PubMed]
- Hennig, I.M.; Laissue, J.A.; Horisberger, U.; Reubi, J.C. Substance-P receptors in human primary neoplasms: Tumoral and vascular localization. Int. J. Cancer 1995, 61, 786–792. [Google Scholar] [CrossRef] [PubMed]
- Kneifel, S.; Cordier, D.; Good, S.; Ionescu, M.C.; Ghaffari, A.; Hofer, S.; Kretzschmar, M.; Tolnay, M.; Apostolidis, C.; Waser, B.; et al. Local targeting of malignant gliomas by the diffusible peptidic vector 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid-substance p. Clin. Cancer Res. 2006, 12, 3843–3850. [Google Scholar] [CrossRef]
- Todd, A.J. Anatomy of primary afferents and projection neurones in the rat spinal dorsal horn with particular emphasis on substance P and the neurokinin 1 receptor. Exp. Physiol. 2002, 87, 245–249. [Google Scholar] [CrossRef]
- Merlo, A.; Hausmann, O.; Wasner, M.; Steiner, P.; Otte, A.; Jermann, E.; Freitag, P.; Reubi, J.C.; Muller-Brand, J.; Gratzl, O.; et al. Locoregional regulatory peptide receptor targeting with the diffusible somatostatin analogue 90Y-labeled DOTA0-D-Phe1-Tyr3-octreotide (DOTATOC): A pilot study in human gliomas. Clin. Cancer Res. 1999, 5, 1025–1033. [Google Scholar]
- Netti, P.A.; Berk, D.A.; Swartz, M.A.; Grodzinsky, A.J.; Jain, R.K. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 2000, 60, 2497–2503. [Google Scholar] [PubMed]
- Stylianopoulos, T.; Munn, L.L.; Jain, R.K. Reengineering the Physical Microenvironment of Tumors to Improve Drug Delivery and Efficacy: From Mathematical Modeling to Bench to Bedside. Trends Cancer 2018, 4, 292–319. [Google Scholar] [CrossRef] [PubMed]
- Merlo, A.; Jermann, E.; Hausmann, O.; Chiquet-Ehrismann, R.; Probst, A.; Landolt, H.; Maecke, H.R.; Mueller-Brand, J.; Gratzl, O. Biodistribution of 111In-labelled SCN-bz-DTPA-BC-2 MAb following loco-regional injection into glioblastomas. Int. J. Cancer 1997, 71, 810–816. [Google Scholar] [PubMed]
- Merlo, A.; Mueller-Brand, J.; Maecke, H.R. Comparing monoclonal antibodies and small peptidic hormones for local targeting of malignant gliomas. Acta Neurochir. Suppl. 2003, 88, 83–91. [Google Scholar] [PubMed]
- Schumacher, T.; Hofer, S.; Eichhorn, K.; Wasner, M.; Zimmerer, S.; Freitag, P.; Probst, A.; Gratzl, O.; Reubi, J.C.; Maecke, R.; et al. Local injection of the 90Y-labelled peptidic vector DOTATOC to control gliomas of WHO grades II and III: An extended pilot study. Eur. J. Nucl. Med. Mol. Imaging 2002, 29, 486–493. [Google Scholar] [CrossRef]
- Guerra Liberal, F.D.C.; O’Sullivan, J.M.; McMahon, S.J.; Prise, K.M. Targeted Alpha Therapy: Current Clinical Applications. Cancer Biother. Radiopharm. 2020, 35, 404–417. [Google Scholar] [CrossRef] [PubMed]
- Krolicki, L.; Bruchertseifer, F.; Kunikowska, J.; Koziara, H.; Krolicki, B.; Jakucinski, M.; Pawlak, D.; Apostolidis, C.; Mirzadeh, S.; Rola, R.; et al. Prolonged survival in secondary glioblastoma following local injection of targeted alpha therapy with 213Bi-substance P analogue. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 1636–1644. [Google Scholar] [CrossRef] [PubMed]
- Krolicki, L.; Bruchertseifer, F.; Kunikowska, J.; Koziara, H.; Krolicki, B.; Jakucinski, M.; Pawlak, D.; Apostolidis, C.; Mirzadeh, S.; Rola, R.; et al. Safety and efficacy of targeted alpha therapy with 213Bi-DOTA-substance P in recurrent glioblastoma. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 614–622. [Google Scholar] [CrossRef]
- Krolicki, L.; Bruchertseifer, F.; Kunikowska, J.; Koziara, H.; Pawlak, D.; Kulinski, R.; Rola, R.; Merlo, A.; Morgenstern, A. Dose escalation study of targeted alpha therapy with [225Ac]Ac-DOTA-substance P in recurrence glioblastoma—Safety and efficacy. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3595–3605. [Google Scholar] [CrossRef]
- Weinstein, M.C.; Torrance, G.; McGuire, A. QALYs: The basics. Value Health 2009, 12 (Suppl. S1), S5–S9. [Google Scholar] [CrossRef] [PubMed]
- Cordier, D.; Forrer, F.; Kneifel, S.; Sailer, M.; Mariani, L.; Macke, H.; Muller-Brand, J.; Merlo, A. Neoadjuvant targeting of glioblastoma multiforme with radiolabeled DOTAGA-substance P—results from a phase I study. J. Neurooncol. 2010, 100, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Kneifel, S.; Bernhardt, P.; Uusijarvi, H.; Good, S.; Plasswilm, L.; Buitrago-Tellez, C.; Muller-Brand, J.; Macke, H.; Merlo, A. Individual voxelwise dosimetry of targeted 90Y-labelled substance P radiotherapy for malignant gliomas. Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 1388–1395. [Google Scholar] [CrossRef] [PubMed]
- Minguez, P.; Flux, G.; Genolla, J.; Delgado, A.; Rodeno, E.; Sjogreen Gleisner, K. Whole-remnant and maximum-voxel SPECT/CT dosimetry in 131I-NaI treatments of differentiated thyroid cancer. Med. Phys. 2016, 43, 5279. [Google Scholar] [CrossRef] [PubMed]
- GBD 2016 Brain and Other CNS Cancer Collaborators. Global, regional, and national burden of brain and other CNS cancer, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 376–393. [Google Scholar] [CrossRef] [PubMed]
- Hanly, P.A.; Sharp, L. The cost of lost productivity due to premature cancer-related mortality: An economic measure of the cancer burden. BMC Cancer 2014, 14, 224. [Google Scholar] [CrossRef] [PubMed]
- Konski, A.; Bracy, P.; Weiss, S.; Grigsby, P. Cost-utility analysis of a malignant glioma protocol. Int. J. Radiat. Oncol. Biol. Phys. 1997, 39, 575–578. [Google Scholar] [CrossRef]
- Martino, J.; Gomez, E.; Bilbao, J.L.; Duenas, J.C.; Vazquez-Barquero, A. Cost-utility of maximal safe resection of WHO grade II gliomas within eloquent areas. Acta Neurochir. 2013, 155, 41–50. [Google Scholar] [CrossRef]
- Qian, Y.; Maruyama, S.; Kim, H.; Pollom, E.L.; Kumar, K.A.; Chin, A.L.; Harris, J.P.; Chang, D.T.; Pitt, A.; Bendavid, E.; et al. Cost-effectiveness of radiation and chemotherapy for high-risk low-grade glioma. Neuro-Oncology 2017, 19, 1651–1660. [Google Scholar] [CrossRef]
- Cordier, D.; Forrer, F.; Bruchertseifer, F.; Morgenstern, A.; Apostolidis, C.; Good, S.; Muller-Brand, J.; Macke, H.; Reubi, J.C.; Merlo, A. Targeted alpha-radionuclide therapy of functionally critically located gliomas with 213Bi-DOTA-[Thi8,Met(O2)11]-substance P: A pilot trial. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 1335–1344. [Google Scholar] [CrossRef]
Case | Age&Year Dx | Histology/ | Genetics | Pre-/Post-a | Activity/ | Karnofsky | PS after | QALY |
---|---|---|---|---|---|---|---|---|
# | /Gender | Location | therapies | nuclide(cycle) | Performance | TAT /OS | ||
First-line TAT for LGG | ||||||||
1 | 43(2000)m | oligo 2/pR | ND | S&Y-90SP/CT | 2 GBq Bi-213(1) | 90 | 288+/286+ | 23 |
2 | 33(2007)f | astro 2/fR | ND | none/S | 2 GBq Bi-213(1) | 100 | 192+/194+ | 16 |
3 | 39(2008)m | astro 2/oR | ND | none/S | 2 GBq Bi-213(1) | 100 | 180+/182+ | 15 |
4 | 64(2011)m | astro 2/centralR | IDH mut, 1p/19q wt | S/S | 2 GBq Bi-213(1) | 90 | 132+/150+ | 10 |
5 | 25(2011)m | astro 2/tL | IDH-1-R132H, ATRX mut | S/S | 35 MBq Ac-225(2) | 80 | 48+/144+ | 3.2 |
6 | 31(2013)f | astro 2/tL | IDH-1 mut, 1p/19qwt | S&RT/S | 2 GBq Bi-213(1) | 90 | 52+/120+ | 4 |
7 | 24(2015)m | astro 2/fL | IDH2 Exon4 R172M | none/S | 2 GBq Bi-213(1) | 100 | 96+/100+ | 8 |
8 | 32(2018)m | astro 2/fR | IDH-1 R132H, ATRX mut | S/none | 20 MBq Ac-225(1) | 100 | 22+/66+ | 1.8 |
9 | 30(2019)m | astro II/tL | IDH R132H, ATRX mut | S/none | 17 MBq Ac-225(2) | 100 | 18+/54+ | 1.5 |
Second-line TAT for recurrent OG2 after Y-90 SP | ||||||||
10 | SK43(2003)m | oligo 2/pR | ND | S&Y-90SP | 2.5 GBq Bi-213(3) | 90 | 48/224 | 3.6 |
11 | BW31(2003)f | oligo 2/pL | ND | S&Y-90SP/CT | 2 GBq Bi-213(1) | 70 | 64/186 | 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krolicki, L.; Kunikowska, J.; Cordier, D.; Slavova, N.; Koziara, H.; Bruchertseifer, F.; Maecke, H.R.; Morgenstern, A.; Merlo, A. Long-Term Tumor Control Following Targeted Alpha Therapy (TAT) of Low-Grade Gliomas (LGGs): A New Treatment Paradigm? Int. J. Mol. Sci. 2023, 24, 15701. https://doi.org/10.3390/ijms242115701
Krolicki L, Kunikowska J, Cordier D, Slavova N, Koziara H, Bruchertseifer F, Maecke HR, Morgenstern A, Merlo A. Long-Term Tumor Control Following Targeted Alpha Therapy (TAT) of Low-Grade Gliomas (LGGs): A New Treatment Paradigm? International Journal of Molecular Sciences. 2023; 24(21):15701. https://doi.org/10.3390/ijms242115701
Chicago/Turabian StyleKrolicki, Leszek, Jolanta Kunikowska, Dominik Cordier, Nedelina Slavova, Henryk Koziara, Frank Bruchertseifer, Helmut R. Maecke, Alfred Morgenstern, and Adrian Merlo. 2023. "Long-Term Tumor Control Following Targeted Alpha Therapy (TAT) of Low-Grade Gliomas (LGGs): A New Treatment Paradigm?" International Journal of Molecular Sciences 24, no. 21: 15701. https://doi.org/10.3390/ijms242115701
APA StyleKrolicki, L., Kunikowska, J., Cordier, D., Slavova, N., Koziara, H., Bruchertseifer, F., Maecke, H. R., Morgenstern, A., & Merlo, A. (2023). Long-Term Tumor Control Following Targeted Alpha Therapy (TAT) of Low-Grade Gliomas (LGGs): A New Treatment Paradigm? International Journal of Molecular Sciences, 24(21), 15701. https://doi.org/10.3390/ijms242115701