Pars Distalis and Pars Tuberalis Thyroid-Stimulating Hormones and Their Roles in Macro-Thyroid-Stimulating Hormone Formation
Abstract
:1. Introduction
2. The Two Sources of Pituitary TSH
3. Routine TSH Determination in the Laboratory and Interference with the Assays Used
4. The Role of Glycosylation in Macro-TSH Formation
5. Identification and Prevalence of Macro-TSH
6. Characteristics of Macro-TSH and Hypotheses concerning Its Role in Humans
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abs | Antibodies |
ACTH | Adrenocorticotropic hormone |
BBB | Blood–brain barrier |
CGH | Corticotroph-derived glycoprotein hormone |
CSF | Cerebrospinal fluid |
DiO2 | Deiodinase type 2 |
DiO3 | Deiodinase type 3 |
EEG | Electroencephalogram |
FSC | Follicle stellate cell |
FSH | Follicle stimulating hormone |
fT3, fT4 | Free triiodothyronine, free thyroxine |
GFAP | Glial fibrillary acidic protein |
GFC | Gel filtration chromatography |
HAMA | Human anti-mouse Antibodies |
hCG | Human chorionic gonadotropin |
HOMA-IR | Homeostasis model assessment of insulin resistance |
HPT | Hypothalamus pituitary thyroid |
IP3 | Inositol trisphosphate |
IST | Inappropriate secretion of TSH |
LH | Luteinizing hormone |
MT1a | Melatonin receptor 1a |
ME | Median eminence |
MSH | Melanocyte-stimulating hormone |
NACB | National academy of clinical biochemistry |
PD | Pars distalis |
PEG | Polyethylene glycol |
PFA | Perifornical area |
RMP | Reference measurement procedure |
RI | Reference interval |
PT | Pars tuberalis |
PRL | Prolactin |
SCH | Subclinical hypothyroidism |
SCN | Suprachiasmatic nucleus |
SI | Système international d’unités |
SITSH | Syndrome of inappropriate secretion of TSH |
SPINA-GT | Thyroid homeostasis parameter structure parameter inference approach-Gain of Thyroid |
T3 | Triiodothyronine |
T4 | Thyroxine |
T2DM | Type 2 diabetes mellitus |
TRH | Thyrotropin releasing hormone |
TSH | Thyroid-stimulating hormone |
V | Ventricle |
References
- Ikegami, K.; Liao, X.H.; Hoshino, Y.; Ono, H.; Ota, W.; Ito, Y.; Nishiwaki-Ohkawa, T.; Sato, C.; Kitajima, K.; Iigo, M.; et al. Tissue-specific posttranslational modification allows functional targeting of thyrotropin. Cell Rep. 2014, 9, 801–810. [Google Scholar] [CrossRef]
- Kalsbeek, A.; Fliers, E.; Franke, A.N.; Wortel, J.; Buijs, R.M. Functional connections between the suprachiasmatic nucleus and the thyroid gland as revealed by lesioning and viral tracing techniques in the rat. Endocrinology 2000, 141, 3832–3841. [Google Scholar] [CrossRef]
- Ikegami, K.; Refetoff, S.; Van Cauter, E.; Yoshimura, T. Interconnection between circadian clocks and thyroid function. Nat. Rev. Endocrinol. 2019, 15, 590–600. [Google Scholar] [CrossRef]
- Chiamolera, M.I.; Wondisford, F.E. Thyrotropin-Releasing Hormone and the Thyroid Hormone Feedback Mechanism. Endocrinology 2009, 150, 1091–1096. [Google Scholar] [CrossRef] [Green Version]
- Hanon, E.A.; Lincoln, G.A.; Fustin, J.M.; Dardente, H.; Masson-Pévet, M.; Morgan, P.J.; Hazlerigg, D.G. Ancestral TSH mechanism signals summer in a photoperiodic mammal. Curr. Biol. 2008, 18, 1147–1152. [Google Scholar] [CrossRef] [Green Version]
- Dash, P. Blood Brain Barrier and Cerebral Metabolism. In Homeostasis and Higher Brain Functions; Update October 2020; Department of Neurobiology and Anatomy, McGovern Medical School: Houston, TX, USA, 2020; Available online: https://nba.uth.tmc.edu/neuroscience/m/s4/chapter11.html#:~:text=Areas%20of%20brain%20without%20a,Area%20postrema (accessed on 2 May 2023).
- Korf, H.W.; Møller, M. Arcuate nucleus, median eminence, and hypophysial pars tuberalis. Handb. Clin. Neurol. 2021, 180, 227–251. [Google Scholar] [CrossRef]
- Loh, T.P.; Kao, S.L.; Halsall, D.J.; Toh, S.A.; Chan, E.; Ho, S.C.; Tai, E.S.; Khoo, C.M. Macro-thyrotropin: A case report and review of literature. J. Clin. Endocrinol. Metab. 2012, 97, 1823–1828. [Google Scholar] [CrossRef]
- Kennaway, D.; Voultsios, A.; Varcoe, T.; Moyer, R. Melatonin in mice: Rhythms, response to light, adrenergic stimulation, and metabolism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2002, 282, R358–R365. [Google Scholar] [CrossRef] [Green Version]
- Weaver, D.R.; Stehle, J.H.; Stopa, E.G.; Reppert, S.M. Melatonin receptors in human hypothalamus and pituitary: Implications for circadian and reproductive responses to melatonin. J. Clin. Endocrinol. Metab. 1993, 76, 295–301. [Google Scholar] [CrossRef]
- Wu, Y.H.; Zhou, J.N.; Balesar, R.; Unmehopa, U.; Bao, A.; Jockers, R.; Van Heerikhuize, J.; Swaab, D.F. Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: Colocalization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone. J. Comp. Neurol. 2006, 499, 897–910. [Google Scholar] [CrossRef]
- Yamada, S.; Horiguchi, K.; Akuzawa, M.; Sakamaki, K.; Shimomura, Y.; Kobayashi, I.; Andou, Y.; Yamada, M. Seasonal Variation in Thyroid Function in Over 7,000 Healthy Subjects in an Iodine-sufficient Area and Literature Review. J. Endocr. Soc. 2022, 6, bvac054. [Google Scholar] [CrossRef] [PubMed]
- Kuzmenko, N.V.; Tsyrlin, V.A.; Pliss, M.G.; Galagudza, M.M. Seasonal variations in levels of human thyroid-stimulating hormone and thyroid hormones: A meta-analysis. Chronobiol. Int. 2021, 38, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Zhang, G.; Xu, P.; Guo, R.; Li, J.; Guan, H.; Li, Y. Seasonal Changes of Thyroid Function Parameters in Women of Reproductive Age Between 2012 and 2018: A Retrospective, Observational, Single-Center Study. Front. Endocrinol. 2021, 12, 719225. [Google Scholar] [CrossRef]
- Santi, D.; Spaggiari, G.; Brigante, G.; Setti, M.; Tagliavini, S.; Trenti, T.; Simoni, M. Semi-annual seasonal pattern of serum thyrotropin in adults. Sci. Rep. 2019, 9, 10786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contet, C.; Goulding, S.P.; Kuljis, D.A.; Barth, A.L. International Review of Neurobiology; Candice, C., Ed.; Academic Press: Cambridge, MA, USA, 2016; Volume 128, pp. 281–342. [Google Scholar]
- Wittmann, G.; Farkas, E.; Szilvásy-Szabó, A.; Gereben, B.; Fekete, C.; Lechan, R.M. Variable proopiomelanocortin expression in tanycytes of the adult rat hypothalamus and pituitary stalk. J. Comp. Neurol. 2017, 525, 411–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Rodríguez, A.; Lazcano, I.; Sánchez-Jaramillo, E.; Uribe, R.M.; Jaimes-Hoy, L.; Joseph-Bravo, P.; Charli, J.L. Tanycytes and the Control of Thyrotropin-Releasing Hormone Flux Into Portal Capillaries. Front. Endocrinol. 2019, 10, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farkas, E.; Varga, E.; Kovács, B.; Szilvásy-Szabó, A.; Cote-Vélez, A.; Péterfi, Z.; Matziari, M.; Tóth, M.; Zelena, D.; Mezriczky, Z.; et al. A Glial-Neuronal Circuit in the Median Eminence Regulates Thyrotropin-Releasing Hormone-Release via the Endocannabinoid System. iScience 2020, 23, 100921. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, T.; Yoshimura, T. Seasonal Rhythms: The Role of Thyrotropin and Thyroid Hormones. Thyroid 2018, 28, 4–10. [Google Scholar] [CrossRef]
- Bolborea, M.; Helfer, G.; Ebling, F.J.; Barrett, P. Dual signal transduction pathways activated by TSH receptors in rat primary tanycyte cultures. J. Mol. Endocrinol. 2015, 54, 241–250. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.; Loudon, A. The pars tuberalis: The site of the circannual clock in mammals? Gen. Comp. Endocrinol. 2018, 258, 222–235. [Google Scholar] [CrossRef]
- Prummel, M.F.; Brokken, L.J.; Wiersinga, W.M. Ultra short-loop feedback control of thyrotropin secretion. Thyroid 2004, 14, 825–829. [Google Scholar] [CrossRef]
- Pires, M.; Tortosa, F. Update on Pituitary Folliculo-Stellate Cells. Int. Arch. Endocrinol. Clin. Res. 2006, 2, 006. [Google Scholar] [CrossRef] [Green Version]
- Fliers, E.; Unmehopa, U.A.; Alkemade, A. Functional neuroanatomy of thyroid hormone feedback in the human hypothalamus and pituitary gland. Mol. Cell. Endocrinol. 2006, 251, 1–8. [Google Scholar] [CrossRef]
- Pfaff, D.W.; Rubin, R.T.; Schneider, J.E.; Head, G.A. Principles of Hormone/Behavior Relations, 2nd ed.; Pfaff, D.W., Rubin, R.T., Schneider, J.E., Head, G.A., Eds.; Academic Press: San Diego, CA, USA, 2018; pp. 293–314. [Google Scholar]
- Coomans, C.P.; Ramkisoensing, A.; Meijer, J.H. The suprachiasmatic nuclei as a seasonal clock. Front. Neuroendocrinol. 2015, 37, 29–42. [Google Scholar] [CrossRef]
- Hu, K.; Scheer, F.A.; Ivanov, P.; Buijs, R.M.; Shea, S.A. The suprachiasmatic nucleus functions beyond circadian rhythm generation. Neuroscience 2007, 149, 508–517. [Google Scholar] [CrossRef] [Green Version]
- Sheehan, M.T. Biochemical Testing of the Thyroid: TSH is the Best and, Oftentimes, Only Test Needed—A Review for Primary Care. Clin. Med. Res. 2016, 14, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Gronfier, C.; Brandenberger, G. Ultradian rhythms in pituitary and adrenal hormones: Their relations to sleep. Sleep Med. Rev. 1998, 2, 17–29. [Google Scholar] [CrossRef]
- Coppeta, L.; Di Giampaolo, L.; Rizza, S.; Balbi, O.; Baldi, S.; Pietroiusti, A.; Magrini, A. Relationship between the night shift work and thyroid disorders: A systematic review and meta-analysis. Endocr. Regul. 2020, 54, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Zhou, Y.; Ke, S.; Huang, J.; Gao, X.; Li, B.; Lin, X.; Liu, X.; Liu, X.; Ma, L.; et al. Lifestyle is associated with thyroid function in subclinical hypothyroidism: A cross-sectional study. BMC Endocr. Disord. 2021, 21, 112. [Google Scholar] [CrossRef]
- Kim, W.; Lee, J.; Ha, J.; Jo, K.; Lim, D.J.; Lee, J.M.; Chang, S.A.; Kang, M.I.; Kim, M.H. Association between Sleep Duration and Subclinical Thyroid Dysfunction Based on Nationally Representative Data. J. Clin. Med. 2019, 8, 2010. [Google Scholar] [CrossRef] [Green Version]
- Van der Spoel, E.; Roelfsema, F.; Van Heemst, D. Within-Person Variation in Serum Thyrotropin Concentrations: Main Sources, Potential Underlying Biological Mechanisms, and Clinical Implications. Front. Endocrinol. 2021, 12, 619568. [Google Scholar] [CrossRef]
- Samuels, M.H.; Henry, P.; Luther, M.; Ridgway, E.C. Pulsatile TSH secretion during 48-hour continuous TRH infusions. Thyroid 1993, 3, 201–206. [Google Scholar] [CrossRef]
- Okada, S.L.; Ellsworth, J.L.; Durnam, D.M.; Haugen, H.S.; Holloway, J.L.; Kelley, M.L.; Lewis, K.E.; Ren, H.; Sheppard, P.O.; Storey, H.M.; et al. A glycoprotein hormone expressed in corticotrophs exhibits unique binding properties on thyroid-stimulating hormone receptor. Mol. Endocrinol. 2006, 20, 414–425. [Google Scholar] [CrossRef] [Green Version]
- Karponis, D.; Ananth, S. The role of thyrostimulin and its potential clinical significance. Endocr. Regul. 2017, 51, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Ghazal, K.; Brabant, S.; Prie, D.; Piketty, M.L. Hormone Immunoassay Interference: A 2021 Update. Ann. Lab. Med. 2022, 42, 3–23. [Google Scholar] [CrossRef]
- Favresse, J.; Burlacu, M.C.; Maiter, D.; Gruson, D. Interferences With Thyroid Function Immunoassays: Clinical Implications and Detection Algorithm. Endocr. Rev. 2018, 39, 830–850. [Google Scholar] [CrossRef]
- Morton, A. When lab tests lie … heterophile antibodies. Aust. Fam. Physician 2014, 43, 391–393. [Google Scholar]
- Rulander, N.J.; Cardamone, D.; Senior, M.; Snyder, P.J.; Master, S.R. Interference from anti-streptavidin antibody. Arch. Pathol. Lab. Med. 2013, 137, 1141–1146. [Google Scholar] [CrossRef]
- Vos, M.J.; Rondeel, J.M.M.; Mijnhout, G.S.; Endert, E. Immunoassay interference caused by heterophilic antibodies interacting with biotin. Clin. Chem. Lab. Med. 2017, 55, e122–e126. [Google Scholar] [CrossRef] [Green Version]
- Gessl, A.; Blueml, S.; Bieglmayer, C.; Marculescu, R. Anti-ruthenium antibodies mimic macro-TSH in electrochemiluminescent immunoassay. Clin. Chem. Lab. Med. 2014, 52, 1589–1594. [Google Scholar] [CrossRef]
- Buijs, M.M.; Gorgels, J.P.; Endert, E. Interference by antiruthenium antibodies in the Roche thyroid-stimulating hormone assay. Ann. Clin. Biochem. 2011, 48, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.; Martin, H.; Coates, P. Prolactin Biology and Laboratory Measurement: An Update on Physiology and Current Analytical Issues. Clin. Biochem. Rev. 2018, 39, 3–16. [Google Scholar]
- De Oliveira Andrade, L.J.; Matos de Oliveira, G.C. “Incidentalormones”—Macro-hormones. SciELO 2021. preprints. [Google Scholar] [CrossRef]
- Kasum, M.; Oreskovic, S.; Zec, I.; Jezek, D.; Tomic, V.; Gall, V.; Adzic, G. Macroprolactinemia: New insights in hyperprolactinemia. Biochem. Med. 2012, 22, 171–179. [Google Scholar] [CrossRef] [Green Version]
- Day, R. Encyclopedia of the Neuroscience; Squire, L.R., Ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 1139–1141. [Google Scholar]
- Varki, A.; Cummings, R.; Esko, J.; Stanly, P.; Hart, G.; Aebi, M.; Mohnen, D.; Kinoshita, T.; Packer, N.; Prestegard, J.; et al. Essentials of Glycobiology, 4th ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022. [Google Scholar]
- Ruiz-Canada, C.; Kelleher, D.J.; Gilmore, R. Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. Cell 2009, 136, 272–283. [Google Scholar] [CrossRef] [Green Version]
- Ząbczyńska, M.; Kozłowska, K.; Pocheć, E. Glycosylation in the Thyroid Gland: Vital Aspects of Glycoprotein Function in Thyrocyte Physiology and Thyroid Disorders. Int. J. Mol. Sci. 2018, 19, 2792. [Google Scholar] [CrossRef] [Green Version]
- Fahie-Wilson, M. In hyperprolactinemia, testing for macroprolactin is essential. Clin. Chem. 2003, 49, 1434–1436. [Google Scholar] [CrossRef] [Green Version]
- Wide, L.; Eriksson, K. Thyrotropin N-glycosylation and Glycan Composition in Severe Primary Hypothyroidism. J. Endocr. Soc. 2021, 5, bvab006. [Google Scholar] [CrossRef]
- Donadio, S.; Pascual, A.; Thijssen, J.H.; Ronin, C. Feasibility study of new calibrators for thyroid-stimulating hormone (TSH) immunoprocedures based on remodeling of recombinant TSH to mimic glycoforms circulating in patients with thyroid disorders. Clin. Chem. 2006, 52, 286–297. [Google Scholar] [CrossRef] [Green Version]
- Gesundheit, N.; Magner, J.A.; Chen, T.; Weintraub, B.D. Differential sulfation and sialylation of secreted mouse thyrotropin (TSH) subunits: Regulation by TSH-releasing hormone. Endocrinology 1986, 119, 455–463. [Google Scholar] [CrossRef]
- Szkudlinski, M.W.; Fremont, V.; Ronin, C.; Weintraub, B.D. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol. Rev. 2002, 82, 473–502. [Google Scholar] [CrossRef] [Green Version]
- Trojan, J.; Theodoropoulou, M.; Usadel, K.H.; Stalla, G.K.; Schaaf, L. Modulation of human thyrotropin oligosaccharide structures—Enhanced proportion of sialylated and terminally galactosylated serum thyrotropin isoforms in subclinical and overt primary hypothyroidism. J. Endocrinol. 1998, 158, 359–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wide, L.; Eriksson, K. Unique Pattern of N-Glycosylation, Sialylation, and Sulfonation on TSH Molecules in Serum of Children Up to 18 Months. J. Clin. Endocrinol. Metab. 2019, 104, 4651–4659. [Google Scholar] [CrossRef] [PubMed]
- Beck-Peccoz, P.; Persani, L. Variable biological activity of thyroid-stimulating hormone. Eur. J. Endocrinol. 1994, 131, 331–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persani, L.; Ferretti, E.; Borgato, S.; Faglia, G.; Beck-Peccoz, P. Circulating thyrotropin bioactivity in sporadic central hypothyroidism. J. Clin. Endocrinol. Metab. 2000, 85, 3631–3635. [Google Scholar] [CrossRef] [PubMed]
- Estrada, J.M.; Soldin, D.; Buckey, T.M.; Burman, K.D.; Soldin, O.P. Thyrotropin isoforms: Implications for thyrotropin analysis and clinical practice. Thyroid 2014, 24, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Persani, L.; Borgato, S.; Romoli, R.; Asteria, C.; Pizzocaro, A.; Beck-Peccoz, P. Changes in the degree of sialylation of carbohydrate chains modify the biological properties of circulating thyrotropin isoforms in various physiological and pathological states. J. Clin. Endocrinol. Metab. 1998, 83, 2486–2492. [Google Scholar] [CrossRef] [Green Version]
- Horimoto, M.; Nishikawa, M.; Ishihara, T.; Yoshikawa, N.; Yoshimura, M.; Inada, M. Bioactivity of thyrotropin (TSH) in patients with central hypothyroidism: Comparison between in vivo 3,5,3′-triiodothyronine response to TSH and in vitro bioactivity of TSH. J. Clin. Endocrinol. Metab. 1995, 80, 1124–1128. [Google Scholar] [CrossRef]
- Ertek, S. Molecular economy of nature with two thyrotropins from different parts of the pituitary: Pars tuberalis thyroid-stimulating hormone and pars distalis thyroid-stimulating hormone. Arch. Med. Sci. 2021, 17, 189–195. [Google Scholar] [CrossRef]
- Peters, T.J. All about Albumin: Biochemistry, Genetics, and Medical Applications; Academic Press: Cambridge, MA, USA, 1996. [Google Scholar]
- Fukushita, M.; Watanabe, N.; Yoshimura Noh, J.; Yoshihara, A.; Matsumoto, M.; Suzuki, N.; Yoshimura, R.; Sugino, K.; Ito, K. A case of macro-TSH consisting of IgA-bound TSH. Endocr. J. 2021, 68, 1241–1246. [Google Scholar] [CrossRef]
- Orgiazzi, J. The Concept of Macro-TSH Revisited. Clin. Thyroidol. 2021, 27, 26–29. [Google Scholar] [CrossRef]
- Hattori, N.; Ishihara, T.; Matsuoka, N.; Saito, T.; Shimatsu, A. Anti-thyrotropin autoantibodies in patients with macro-thyrotropin and long-term changes in macro-thyrotropin and serum thyrotropin levels. Thyroid 2017, 27, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Vidarsson, G.; Dekkers, G.; Rispens, T. IgG subclasses and allotypes: From structure to effector functions. Front. Immunol. 2014, 5, 520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richa, V.; Rahul, G.; Sarika, A. Macroprolactin; a frequent cause of misdiagnosed hyperprolactinemia in clinical practice. J. Reprod. Infertil. 2010, 11, 161–167. [Google Scholar] [PubMed]
- Larsen, C.B.; Petersen, E.R.B.; Overgaard, M.; Bonnema, S.J. Macro-TSH: A Diagnostic Challenge. Eur. Thyroid J. 2021, 10, 93–97. [Google Scholar] [CrossRef]
- Hattori, N.; Ishihara, T.; Shimatsu, A. Variability in the detection of macro TSH in different immunoassay systems. Eur. J. Endocrinol. 2016, 174, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, H.; Connacher, A.; Srivastava, R. Unexplained high thyroid stimulating hormone: A “BIG” problem. BMJ Case Rep. 2009, 2009, bcr0120091474. [Google Scholar] [CrossRef] [Green Version]
- Rix, M.; Laurberg, P.; Porzig, C.; Kristensen, S.R. Elevated thyroid-stimulating hormone level in a euthyroid neonate caused by macro thyrotropin-IgG complex. Acta Paediatr. 2011, 100, e135–e137. [Google Scholar] [CrossRef] [PubMed]
- Mills, F.; Jeffery, J.; Mackenzie, P.; Cranfield, A.; Ayling, R.M. An immunoglobulin G complexed form of thyroid-stimulating hormone (macro thyroid-stimulating hormone) is a cause of elevated serum thyroid-stimulating hormone concentration. Ann. Clin. Biochem. 2013, 50, 416–420. [Google Scholar] [CrossRef]
- Picazo-Perea, M.; Ruiz-Gines, M.; Ruiz-Gines, J.; Sastre-Marcos, J.; Agudo-Macazaga, M.; Lorenzo-Lozano, M. Macro-TSH in COVID-19 Patients with an Underlying Thyroid Condition: A Case Series and Literature Review. Ann. Thyroid Res. 2021, 7, 312–319. [Google Scholar]
- Giusti, M.; Conte, L.; Repetto, A.M.; Gay, S.; Marroni, P.; Mittica, M.; Mussap, M. Detection of Polyethylene Glycol Thyrotropin (TSH) Precipitable Percentage (Macro-TSH) in Patients with a History of Thyroid Cancer. Endocrinol. Metab. 2017, 32, 460–465. [Google Scholar] [CrossRef] [PubMed]
- Ohba, K.; Maekawa, M.; Iwahara, K.; Suzuki, Y.; Matsushita, A.; Sasaki, S.; Oki, Y.; Nakamura, H. Abnormal thyroid hormone response to TRH in a case of macro-TSH and the cut-off value for screening cases of inappropriate TSH elevation. Endocr. J. 2020, 67, 125–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peynirci, H.; Ersoy, C.; Sahin, A.; Imamoglu, S. Macro-TSH Can be a Rare Cause of Elevated Serum Thyroid Stimulating Hormone Concentration: A Case Report. Med. Sci. 2014, 3, 1691–1696. [Google Scholar] [CrossRef]
- D’Arcy, R.; Hunter, S.; Spence, K.; McDonnell, M. A Case of macro-TSH masquerading as subclinical hypothyroidism. BMJ Case Rep. 2021, 14, e243436. [Google Scholar] [CrossRef]
- Kirac, C.O.; Abusoglu, S.; Paydas Hataysal, E.; Kebapcilar, A.; Ipekci, S.H.; Ünlü, A.; Kebapcilar, L. A rare cause of subclinical hypothyroidism: Macro-thyroid-stimulating hormone. Diagnosis 2020, 7, 75–77. [Google Scholar] [CrossRef]
- Hattori, N.; Ishihara, T.; Yamagami, K.; Shimatsu, A. Macro TSH in patients with subclinical hypothyroidism. Clin. Endocrinol. 2015, 83, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, H.; Takeoka, K.; Nishi, I.; Shindoh, Y.; Tsukada, Y.; Amino, N. Novel thyrotropin (TSH)-TSH antibody complex in a healthy woman and her neonates. Thyroid 1995, 5, 299–303. [Google Scholar] [CrossRef]
- Verhoye, E.; Van den Bruel, A.; Delanghe, J.R.; Debruyne, E.; Langlois, M.R. Spuriously high thyrotropin values due to anti-thyrotropin antibodies in adult patients. Clin. Chem. Lab. Med. 2009, 47, 604–606. [Google Scholar] [CrossRef]
- Biktagirova, E.M.; Vagapova, G.R.; Semakov, G.P.; Zolotoverkchova, N.I.; Nevzorova, T.A.; Andrianova, I.A.; Evtyugina, N.G.; Akberova, N.I.; Khisamutdinov, A.N.; Abramova, Z.I. Detection of macro-thyrotropinaemia in patients with Hashimotos thyroiditis and subclinical hypothyroidism. Med. Immunol. 2019, 21, 1063–1072. [Google Scholar] [CrossRef]
- Lewis, E.; Lim, R.; Joseph, F.; Ewins, D.; Goenka, N.; Bowles, S.; Faye, S.; Kertesz, G. Recognising macro-TSH: A rare cause of inappropriately high TSH values. Clin. Chem. Lab. Med. 2011, 49, S421. [Google Scholar]
- Ni, J.; Yu, L.; Li, J.; Zhang, L.; Yang, Q.; Kou, C.; Li, S.; Tian, G.; Wang, Y.; Liu, X.; et al. Interference Due to Heterophilic Antibody, Biotin and Thyroid Hormone Autoantibody. Res. Sq. 2021. preprint. [Google Scholar] [CrossRef]
- The American Thyroid Association. Standardization and Harmonization. 2019. Available online: https://www.thyroid.org/wp-content/uploads/publications/lab-services/ata-harmonization-standardization.pdf (accessed on 10 May 2023).
- Baloch, Z.; Carayon, P.; Conte-Devolx, B.; Demers, L.M.; Feldt-Rasmussen, U.; Henry, J.F.; LiVosli, V.A.; Niccoli-Sire, P.; John, R.; Ruf, J.; et al. Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease. Thyroid 2003, 13, 3–126. [Google Scholar] [CrossRef] [PubMed]
- Padoan, A.; Clerico, A.; Zaninotto, M.; Trenti, T.; Tozzoli, R.; Aloe, R.; Alfano, A.; Rizzardi, S.; Dittadi, R.; Migliardi, M.; et al. Percentile transformation and recalibration functions allow harmonization of thyroid-stimulating hormone (TSH) immunoassay results. Clin. Chem. Lab. Med. 2020, 58, 1663–1672. [Google Scholar] [CrossRef] [PubMed]
- Mankarious, S.; Lee, M.; Fischer, S.; Pyun, K.H.; Ochs, H.D.; Oxelius, V.A.; Wedgwood, R.J. The half-lives of IgG subclasses and specific antibodies in patients with primary immunodeficiency who are receiving intravenously administered immunoglobulin. J. Lab. Clin. Med. 1988, 112, 634–640. [Google Scholar]
- Sakai, H.; Fukuda, G.; Suzuki, N.; Watanabe, C.; Odawara, M. Falsely elevated thyroid-stimulating hormone (TSH) level due to macro-TSH. Endocr. J. 2009, 56, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Shimatsu, A.; Hattori, N. Macroprolactinemia: Diagnostic, clinical, and pathogenic significance. Clin. Dev. Immunol. 2012, 2012, 167132. [Google Scholar] [CrossRef] [Green Version]
- Sheikhi, V.; Heidari, Z. Increase in Thyrotropin Is Associated with an Increase in Serum Prolactin in Euthyroid Subjects and Patients with Subclinical Hypothyroidism. Med. J. Islam. Repub. Iran 2021, 35, 167. [Google Scholar] [CrossRef]
- Elenkova, A.; Petrossians, P.; Zacharieva, S.; Beckers, A. High prevalence of autoimmune thyroid diseases in patients with prolactinomas: A cross-sectional retrospective study in a single tertiary referral centre. Ann. Endocrinol. 2016, 77, 37–42. [Google Scholar] [CrossRef]
- Onal, E.D.; Saglam, F.; Sacikara, M.; Ersoy, R.; Cakir, B. Thyroid autoimmunity in patients with hyperprolactinemia: An observational study. Arq. Bras. Endocrinol. Metabol. 2014, 58, 48–52. [Google Scholar] [CrossRef] [Green Version]
- Hekimsoy, Z.; Kafesçiler, S.; Güçlü, F.; Ozmen, B. The prevalence of hyperprolactinaemia in overt and subclinical hypothyroidism. Endocr. J. 2010, 57, 1011–1015. [Google Scholar] [CrossRef] [Green Version]
- Kadoya, M.; Koyama, S.; Morimoto, A.; Miyoshi, A.; Kakutani, M.; Hamamoto, K.; Kurajoh, M.; Shoji, T.; Moriwaki, Y.; Koshiba, M.; et al. Serum Macro TSH Level is Associated with Sleep Quality in Patients with Cardiovascular Risks—HSCAA Study. Sci. Rep. 2017, 7, 44387. [Google Scholar] [CrossRef] [PubMed]
- Reily, C.; Stewart, T.J.; Renfrow, M.B.; Novak, J. Glycosylation in health and disease. Nat. Rev. Nephrol. 2019, 15, 346–366. [Google Scholar] [CrossRef] [PubMed]
- Fiorentino, T.V.; Succurro, E.; Arturi, F.; Giancotti, A.; Peronace, C.; Quirino, A.; Sesti, F.; Andreozzi, F.; Hribal, M.L.; Perticone, F.; et al. Serum IgG2 levels are specifically associated with whole-body insulin-mediated glucose disposal in non-diabetic offspring of type 2 diabetic individuals: A cross-sectional study. Sci. Rep. 2018, 8, 13616. [Google Scholar] [CrossRef] [PubMed]
- Gulcelik, N.E.; Usman, A. Macroprolactinaemia in diabetic patients. Neuro Endocrinol. Lett. 2010, 31, 270–274. [Google Scholar] [PubMed]
- Hattori, N.; Aisaka, K.; Yamada, A.; Matsuda, T.; Shimatsu, A. Prevalence and pathogenesis of macro-TSH in neonates: Analysis of umbilical cord blood from 939 neonates and their mothers. Thyroid 2022, 33, 45–52. [Google Scholar] [CrossRef]
- McCarthy, A.; Moran, C. A grave interference: TSH interference due to macro-TSH post-thyroidectomy for graves” disease. Endocr. Abstr. 2022, 82, WC4. [Google Scholar] [CrossRef]
- Ohba, K. An Update on the Pathophysiology and Diagnosis of Inappropriate Secretion of Thyroid-Stimulating Hormone. Int. J. Mol. Sci. 2021, 22, 6611. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fröhlich, E.; Wahl, R. Pars Distalis and Pars Tuberalis Thyroid-Stimulating Hormones and Their Roles in Macro-Thyroid-Stimulating Hormone Formation. Int. J. Mol. Sci. 2023, 24, 11699. https://doi.org/10.3390/ijms241411699
Fröhlich E, Wahl R. Pars Distalis and Pars Tuberalis Thyroid-Stimulating Hormones and Their Roles in Macro-Thyroid-Stimulating Hormone Formation. International Journal of Molecular Sciences. 2023; 24(14):11699. https://doi.org/10.3390/ijms241411699
Chicago/Turabian StyleFröhlich, Eleonore, and Richard Wahl. 2023. "Pars Distalis and Pars Tuberalis Thyroid-Stimulating Hormones and Their Roles in Macro-Thyroid-Stimulating Hormone Formation" International Journal of Molecular Sciences 24, no. 14: 11699. https://doi.org/10.3390/ijms241411699
APA StyleFröhlich, E., & Wahl, R. (2023). Pars Distalis and Pars Tuberalis Thyroid-Stimulating Hormones and Their Roles in Macro-Thyroid-Stimulating Hormone Formation. International Journal of Molecular Sciences, 24(14), 11699. https://doi.org/10.3390/ijms241411699