The Content of Total Carotenoids, Vitamin C and Antioxidant Properties of 65 Potato Cultivars Characterised under the European Project ECOBREED
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material
3.2. Field Experiments
3.3. Total Carotenoid Content (TC)
3.4. Yellowness Index (YI)
3.5. Genotyping of the Chy2 Loci
3.6. Vitamin C (VC)
3.7. Total Antioxidant Activity (TAA)
3.7.1. Preparation of Samples for Analysis
3.7.2. Measurements DPPH
3.7.3. Measurements FRAP
3.8. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. 2018. Available online: http://www.fao.org/faostat/en/#data (accessed on 8 March 2018).
- Hellmann, H.; Goyer, A.; Navarre, D.A. Antioxidants in potatoes: A functional view on one of the major food crops worldwide. Molecules 2021, 26, 2446. [Google Scholar] [CrossRef] [PubMed]
- Lovat, C.; Nassar, A.M.; Kubow, S.; Li, X.Q.; Donnelly, D.J. Metabolic biosynthesis of potato (Solanum tuberosum L.) antioxidants and implications for human health. Crit. Rev. Food Sci. Nutr. 2016, 56, 2278–2303. [Google Scholar] [CrossRef] [PubMed]
- Samtiya, M.; Aluko, R.E.; Dhewa, T.; Moreno-Rojas, J.M. Potential health benefits of plant food-derived bioactive components: An overview. Foods 2021, 10, 839. [Google Scholar] [CrossRef] [PubMed]
- Grudzińska, M.; Mańkowski, D. Bioactive compounds in yellow, light yellow and cream-coloured potato tubers after short-term storage and boiling. Ital. J. Food Sci. 2020, 32, 4. [Google Scholar]
- Gumul, D.; Ziobro, R.; Noga, M.; Sabat, R. Characterization of five potato cultivars according to their nutritional and pro-health components. Acta Sci. Pol. Technol. Aliment. 2011, 10, 77–81. [Google Scholar] [PubMed]
- Tsao, R. Phytochemical profiles of potato and their roles in human health and wellness. Food. Spec. Issue 2009, 3, 125–135. [Google Scholar]
- Keutgen, A.J.; Wszelaczyńska, E.; Pobereżny, J.; Przewodowska, A.; Przewodowski, W.; Milczarek, D.; Tatarowska, B.; Keutgen, N. Antioxidant properties of potato tubers (Solanum tuberosum L.) as a consequence of genetic potential and growing conditions. PLoS ONE 2019, 14, e0222976. [Google Scholar] [CrossRef]
- Marone, D.; Mastrangelo, A.M.; Borrelli, G.M.; Mores, A.; Laidò, G.; Russo, M.A.; Ficco, D. Specialized metabolites: Physiological and biochemical role in stress resistance strategies to improve their accumulation and new applications in crop breeding and management. Plant Physiol. Biochem. 2022, 172, 48–55. [Google Scholar] [CrossRef]
- Tatarowska, B.; Milczarek, D.; Wszelaczyńska, E.; Pobereżny, J.; Keutgen, N.; Keutgen, A.J.; Flis, B. Carotenoids variability of potato tubers in relation to genotype, growing location and year. Am. J. Potato Res. 2019, 96, 493–504. [Google Scholar] [CrossRef] [Green Version]
- FAO. International Year of the Potato—Potato, Food and Nutrition. 2008. Available online: http://www.potato2008.org/en/potato/IYP-6en.pdf (accessed on 13 January 2022).
- Ezekiel, R.; Singh, N.; Sharma, S.; Kaur, A. Beneficial phytochemicals n potato—A review. Food Res. Int. 2013, 50, 487–496. [Google Scholar] [CrossRef]
- Hamouz, K.; Pazderu, K.; Lachman, J.; Čepl, J.; Kotíková, Z. Effect of cultivar, flesh colour, locality and year on carotenoid content in potato tubers. Plant Soil Environ. 2016, 62, 86–91. [Google Scholar] [CrossRef]
- Hejtmánková, K.; Kotíková, Z.; Hamouz, K.; Pivec, V.; Vacek, J.; Lachman, J. Influence of flesh colour, year and growing area on carotenoid and anthocyanin content in potato tubers. J. Food Compos. Anal. 2013, 32, 20–27. [Google Scholar] [CrossRef]
- Kotíková, Z.; Hejtmankova, A.; Lachman, J.; Hamouz, K.; Trnkova, E.; Dvorak, P. Effect of selected factors on total carotenoid content in potato tubers (Solanum tuberosum L.). Plant Soil Environ. 2007, 53, 355. [Google Scholar] [CrossRef] [Green Version]
- Valcarcel, J.; Reilly, K.; Gaffney, M.; O’Brien, N. Total Carotenoids and L-Ascorbic Acid Content in 60 Varieties of Potato (Solanum tuberosum L.) Grown in Ireland. Potato Res. 2015, 58, 29–41. [Google Scholar] [CrossRef]
- Iwanzik, W.; Tevini, M.; Stute, R.; Hilbert, R. Carotenoid content and composition of various German potato varieties and their importance for tuber flesh colour. Potato Res. 1983, 26, 149–162. [Google Scholar] [CrossRef]
- Andre, C.M.; Oufir, M.; Guignard, C.; Hoffmann, L.; Hausman, J.F.; Evers, D.; Larondelle, Y. Antioxidant profiling of native Andean potato tubers (Solanum tuberosum L.) reveals cultivars with high levels of β-carotene, α-tocopherol, chlorogenic acid and petanin. J. Agric. Food Chem. 2007, 55, 10839–10849. [Google Scholar] [CrossRef]
- Breithaupt, D.E.; Bamedi, A. Carotenoids and carotenoid esters in Potatoes (Solanum tuberosum L.): New Insights into an Ancient Vegetable. J. Agric. Food Chem. 2002, 50, 7175–7181. [Google Scholar] [CrossRef]
- Haynes, K.G.; Clevidence, B.A.; Rao, D.; Vinyard, B.T.; White, J.M. Genotype × environment interactions for potato tuber carotenoid content. J. Am. Soc. Hortic. Sci. 2010, 135, 250–258. [Google Scholar] [CrossRef] [Green Version]
- Bonierbale, M.; Grüneberg, W.; Amoros, W.; Burgos, G.; Salas, E.; Porras, E.; Zum Felde, T. Total and individual carotenoid profiles in Solanum phureja cultivated potatoes: II. Development and application of near-infrared reflectance spectroscopy (NIRS) calibrations for germplasm characterization. J. Food Compos. Anal. 2009, 22, 509–516. [Google Scholar] [CrossRef]
- Andre, C.M.; Ghislain, M.; Bertin, P.; Oufir, M.; del Rosario Herrera, M.; Hoffmann, L.; Evers, D. Andean potato cultivars (Solanum tuberosum L.) as a source of antioxidant and mineral micronutrients. J. Agric. Food Chem. 2007, 55, 366–378. [Google Scholar] [CrossRef]
- Othman, R. Biochemistry and Genetics of Carotenoid Composition in Potato Tubers. Ph.D. Thesis, Lincoln University, Lincoln, New Zealand, 2009; pp. 38–48. [Google Scholar]
- Brown, C.R.; Kim, T.S.; Ganga, Z.; Haynes, K.; de Jong, D.; Jahn, M.; Paran, I.; de Jong, W. Segregation of total carotenoid in high level potato germplasm and its relationship to beta-carotene hydroxylase polymorphism. Am. J. Potato Res. 2006, 83, 365–372. [Google Scholar] [CrossRef]
- Kloosterman, B.; Oortwijn, M.; Uitdewilligen, J.; America, T.; de Vos, R.; Visser, R.G.; Bachem, C.W. From QTL to candidate gene: Genetical genomics of simple and complex traits in potato using a pooling strategy. BMC Genom. 2010, 11, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolters, A.M.A.; Uitdewilligen, J.G.; Kloosterman, B.A.; Hutten, R.C.; Visser, R.G.; van Eck, H.J. Identification of alleles of carotenoid pathway genes important for zeaxanthin accumulation in potato tubers. Plant Mol. Biol. 2010, 73, 659–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, C.R.; Edwards, C.G.; Yang, C.P.; Dean, B.B. Orange flesh trait in potato: Inheritance and carotenoid content. J. Am. Soc. Hortic. Sci. 1993, 118, 145–150. [Google Scholar] [CrossRef]
- Sulli, M.; Mandolino, G.; Sturaro, M.; Onofri, C.; Diretto, G.; Parisi, B.; Giuliano, G. Molecular and biochemical characterization of a potato collection with contrasting tuber carotenoid content. PLoS ONE 2017, 12, e0184143. [Google Scholar] [CrossRef] [Green Version]
- Goo, Y.M.; Kim, T.W.; Ha, S.H.; Back, K.W.; Bae, J.M.; Shin, Y.W.; Lee, C.H.; Ahn, M.J.; Lee, S.W. Expression profiles of genes involved in the carotenoid biosynthetic pathway in yellow-fleshed potato cultivars (Solanum tuberosum L.) from South Korea. J. Plant Biol. 2009, 52, 49–55. [Google Scholar] [CrossRef]
- Vreugdenhil, D.; Bradshaw, J.; Gebhardt, C.; Govers, F.; Taylor, M.A.; MacKerron, D.K.; Ross, H.A. Potato Biology and Biotechnology. Advances and Perspectives; Elsevier: Amsterdam, The Netherlands, 2007; 857p, ISBN 978-0-444-51018-1. [Google Scholar]
- Dale, M.F.; Griffiths, W.; Todd, D. Effects of genotype, environment, and postharvest storage on the total ascorbate content of potato (Solanum tuberosum) tubers. J. Agric. Food Chem. 2003, 51, 244–248. [Google Scholar] [CrossRef]
- Almeida, M.E.M.; Nogueira, J.N. The control of polyphenol oxidase activity in fruits and vegetables: A study of the interaction between the chemical compounds used and heat treatment. Plant Foods Hum. Nutr. 1995, 47, 245–256. [Google Scholar] [CrossRef]
- Bates, C. Bioavailability of vitamin C. Eur. J. Clin. Nutr. 1997, 1, 28–33. [Google Scholar]
- Burgos, G.; Auqui, S.; Amoros, W.; Salas, E.; Bonierbale, M. Ascorbic acid concentration of native Andean potato varieties as affected by environment, cooking and storage. J. Food Compos. Anal. 2009, 22, 533–538. [Google Scholar] [CrossRef]
- Hamouz, K.; Lachman, J.; Dvořák, P.; Hejtmánková, K.; Čepl, J. Antioxidant activity in yellow and purple-fleshed potatoes cultivated in different climatic conditions. Zesz. Probl. Postępów Nauk Rol. 2008, 530, 241–247. [Google Scholar]
- Murnice, I.; Karklina, D.; Galoburda, R.; Santare, R.; Santare, D.; Skrabule, I.; Costa, H.S. Nutritional composition of freshly harvested and stored Latvian potato (Solanum tuberosum L.) varieties depending on traditional cooking methods. J. Food Comp. Anal. 2011, 24, 699–710. [Google Scholar] [CrossRef]
- Hamouz, K.; Lachman, J.; Dvořák, P.; Orsák, M.; Hejtmánková, K.; Čížek, M. Effect of selected factors on the content of ascorbic acid in potatoes with different tuber flesh colour. Plant Soil Environ. 2009, 55, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Han, J.S.; Kozukue, N.; Young, K.S.; Lee, K.R.; Friedman, M. Distribution of ascorbic acid in potato tubers and in home-processed and commercial potato foods. J. Agric. Food Chem. 2004, 52, 6516–6521. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, M.E.; Rossi, A.M.; Samman, N.C. Phenotypic, agronomic and nutritional characteristics of seven varieties of Andean potatoes. J. Food Compos. Anal. 2009, 22, 613–616. [Google Scholar] [CrossRef]
- Nordbotten, A.; Loken, B.; Rimestad, H. Sampling of potatoes to determine representative values for nutrient content in a national food composition table. J. Food Comp. Anal. 2000, 13, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Sawicka, B.; Michałek, W.; Pszczółkowski, P. The relationship of potato tubers chemical composition with selected physiological indicators. Zemdirbyste-Agriculture 2014, 102, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.R. Antioxidants in potato. Am. J. Potato Res. 2005, 82, 163–172. [Google Scholar] [CrossRef]
- Trawczyński, C. Relationship between vitamin C and nitrate content in potato tubers depending on the maturity groups of cultivars. J. Elem. 2021, 26, 971–983. [Google Scholar] [CrossRef]
- Hrabovská, D.; Heldák, J.; Volnová, B. Changes in the content of vitamin C in potato tubers depending on variety. J. Microbiol. Biotechnol. Food Sci. 2013, 2052–2058. [Google Scholar]
- Hejtmánková, K.; Pivec, V.; Trnková, E.; Hamouz, K.; Lachman, J. Quality of coloured varieties of potatoes. Czech J. Food Sci. 2009, 27, 310–313. [Google Scholar] [CrossRef] [Green Version]
- Wichrowska, D. Antioxidant capacity and Nutritional Value of potato tubers (Solanum tuberosum L.) as a Dependence of Growing Conditions and Long-Term Storage. Agriculture 2021, 12, 21. [Google Scholar] [CrossRef]
- Hu, C.; Tsao, R.; Liu, R.; Alan Sullivan, J.; McDonald, M.R. Influence of cultivar and year on phytochemical and antioxidant activity of potato (Solanum tuberosum L.) in Ontario. Can. J. Plant Sci. 2012, 92, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Oh, S.H.; Hwang, I.G.; Kim, H.Y.; Woo, K.S.; Woo, S.H.; Jeong, H.S. Antioxidant contents and antioxidant activities of white and colored potatoes (Solanum tuberosum L.). Prev. Nutr. Food Sci. 2016, 21, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Soh, S.Y.; Baer, H.; Nam, S.Y. Antioxidant and phenolic contents in potatoes (Solanum tuberosum L.) and micropropagated potatoes. Appl. Biol. Chem. 2019, 62, 17. [Google Scholar] [CrossRef]
- Fidrianny, I.; Suhendy, H.; Insanu, M. Correlation of phytochemical content with antioxidant potential of various sweet potato (Ipomoea batatas) in West Java, Indonesia. Asian Pac. J. Trop. Biomed. 2018, 8, 25. [Google Scholar] [CrossRef]
- Seijo-Rodríguez, A.; Escuredo, O.; Rodríguez-Flores, M.S.; Seijo-Coello, M.C. Assessment of Antioxidant Potential of Potato Varieties and the Relationship to Chemical and Colourimetric Measurements. Am. J. Potato Res. 2018, 95, 71–78. [Google Scholar] [CrossRef]
- Milczarek, D.; Tatarowska, B. Evaluation of potato cultivars and breeding lines for carotenoids content in tubers. Plant Breed. Seed Sci. 2017, 75, 11–16. [Google Scholar] [CrossRef]
- ASTM (American Society for Testing and Materials). E 313–05 Standard Practice for Calculating Yellowness and Whiteness Indices from Instrumentally Measured Color Coordinates; ASTM International: West Conshohocken, PA, USA, 2005. [Google Scholar]
Cultivar | YI (1) | FC (2) | TC in µg 100 g−1 DM (3) | Mean Values TC Years 2019–2021 | Chy2 Loci (4) | VC (5) mg 100 g−1 FM 2020 | TAA DPPH (6) | TAA FRAP (7) | ||
---|---|---|---|---|---|---|---|---|---|---|
2019 | 2020 | 2021 | µmol TE 100 mg −1 DM 2020 | |||||||
Ambo | 40.8 | w | 119.3 | 332.7 | 166.0 | 206.0 AB | 0 | 5.7 | 0.53 | 0.48 |
Balatoni Rozsa | 47.2 | w | 272.1 | 188.8 | 186.0 | 215.6 AB | 1 | 2.8 | 0.28 | 0.24 |
Botond | 46.3 | w | 91.8 | 237.3 | 93.0 | 140.7 B | 1 | 5.2 | 0.36 | 0.30 |
Bzura | 48.8 | w | 211.5 | 232.5 | 52.0 | 165.3 AB | 0 | 1.0 | 0.22 | 0.23 |
Cara | 42.4 | w | 130.6 | 517.0 | 80.0 | 242.5 AB | 1 | 6.4 | 0.43 | 0.41 |
Colleen | 48.4 | w | 143.5 | 316.5 | 80.0 | 180.0 AB | 1 | 11.5 | 0.57 | 0.62 |
Denar | 44.3 | w | 269.7 | 290.7 | 180.0 | 246.8 AB | 1 | 1.2 | 0.42 | 0.36 |
Gatsby | 45.2 | w | 156.5 | 264.8 | 207.0 | 209.4 AB | 0 | 4.0 | 0.56 | 0.57 |
Kelly | 35.5 | w | 103.1 | 72.4 | 129.0 | 101.5 B | 0 | 12.0 | 0.13 | 0.18 |
Kokra | 45.0 | w | 470.1 | 150.0 | 52.0 | 224.1 AB | 0 | 8.3 | 0.17 | 0.30 |
Owacja | 47.1 | w | 137.1 | 224.4 | 173.0 | 178.2 AB | 1 | 3.9 | 0.19 | 0.23 |
Premiere | 46.9 | w | 172.6 | 250.3 | 185.0 | 202.6 AB | 1 | 5.6 | 0.22 | 0.31 |
Sarpo Mira | 47.0 | w | 237.3 | 138.7 | 52.0 | 142.7 B | 1 | 3.9 | 0.22 | 0.26 |
Savinja | 42.9 | w | 67.6 | 172.6 | 127.0 | 122.4 B | 1 | 6.2 | 0.52 | 0.48 |
Valor | 39.8 | w | 141.9 | 146.8 | 113.0 | 133.9 B | 0 | 10.3 | 0.32 | 0.33 |
Vipava | 35.8 | w | 345.6 | 91.8 | 49.0 | 162.2 AB | 0 | 7.5 | 0.40 | 0.36 |
White Lady | 45.8 | w | 219.5 | 151.6 | 140.0 | 170.4 AB | 0 | 2.1 | 0.31 | 0.32 |
Yona | 44.7 | w | 141.9 | 156.5 | 49.0 | 115.8 B | 1 | 7.6 | 0.34 | 0.37 |
12-LHI-6 | 57.8 | y | 428.1 | 287.4 | 87.0 | 267.5 AB | 1 | 12.9 | 0.5 | 0.48 |
Agria | 65.7 | y | 436.2 | 437.8 | 145.0 | 339.7 AB | 1 | 11.8 | 0.41 | 0.46 |
Alouette | 59.4 | y | 156.5 | 373.1 | 415.0 | 314.9 AB | 1 | 5.1 | 0.31 | 0.31 |
Anuschka | 71.4 | y | 339.2 | 673.9 | 312.0 | 441.7 AB | 1 | 10.5 | 0.45 | 0.41 |
Basa | 55.8 | y | 84.5 | 248.6 | 60.0 | 131.1 B | 1 | 3.6 | 0.61 | 0.61 |
Belana | 70.4 | y | 405.5 | 497.6 | 821.0 | 574.7 AB | 0 | 4.9 | 0.43 | 0.40 |
Belmonda | 70.0 | y | 303.6 | 555.8 | 508.0 | 455.8 AB | 1 | 4.5 | 0.53 | 0.49 |
Bionta | 66.3 | y | 444.3 | 332.7 | 517.0 | 431.3 AB | 1 | 3.4 | 0.40 | 0.40 |
Caprice | 65.3 | y | 505.7 | 512.2 | 1000.6 | 672.8 AB | 1 | 3.4 | 0.41 | 0.39 |
Capucine | 68.3 | y | 390.9 | 492.8 | 64.0 | 315.9 AB | 1 | 6.0 | 0.20 | 0.25 |
Carolus | 58.6 | y | 358.6 | 314.9 | 863.0 | 512.2 AB | 1 | 10.5 | 0.38 | 0.35 |
Casablanca | 50.3 | y | 114.4 | 169.4 | 290.0 | 191.3 AB | 1 | 9.4 | 0.29 | 0.36 |
Charlotte | 58.5 | y | 151.6 | 313.3 | 249.0 | 238.0 AB | 1 | 3.5 | 0.34 | 0.41 |
Colomba | 51.3 | y | 373.1 | 319.8 | 93.0 | 262.0 AB | 1 | 2.3 | 0.39 | 0.41 |
Damaris | 53.5 | y | 298.8 | 276.1 | 112.0 | 229.0 AB | 1 | 3.9 | 0.50 | 0.50 |
Delila | 52.3 | y | 348.9 | 185.6 | 133.0 | 222.5 AB | 1 | 2.4 | 0.29 | 0.31 |
Ditta | 62.6 | y | 184.0 | 449.1 | 225.0 | 286.0 AB | 1 | 4.3 | 0.57 | 0.55 |
Edony | 61.2 | y | 127.4 | 303.6 | 88.0 | 173.0 AB | 1 | 9.6 | 0.41 | 0.38 |
Elfe | 68.8 | y | 184.8 | 483.1 | 328.0 | 332.0 AB | 1 | 7.9 | 0.47 | 0.46 |
Erika | 59.0 | y | 130.6 | 318.2 | 57.0 | 168.6 AB | 1 | 3.2 | 0.41 | 0.41 |
Fidelia | 65.1 | y | 281.0 | 347.3 | 161.0 | 263.1 AB | 1 | 6.8 | 0.34 | 0.35 |
Fortus | 59.0 | y | 295.5 | 305.2 | 120.0 | 240.2 AB | 1 | 7.6 | 0.38 | 0.37 |
Gardena | 59.3 | y | 212.3 | 316.5 | 1049.0 | 525.9 AB | 1 | 3.8 | 0.42 | 0.36 |
Goldmarie | 64.5 | y | 307.7 | 473.4 | 129.0 | 303.3 AB | 1 | 4.3 | 0.39 | 0.39 |
Granola | 63.3 | y | 378.0 | 450.7 | 93.0 | 307.2 AB | 1 | 1.2 | 0.30 | 0.31 |
Karlena | 62.4 | y | 344.0 | 284.2 | 133.0 | 253.7 AB | 1 | 11.9 | 0.30 | 0.31 |
Levante | 59.4 | y | 96.7 | 281.0 | 501.0 | 292.9 AB | 0 | 12.3 | 0.36 | 0.38 |
Lilly | 67.7 | y | 399.8 | 528.3 | 57.0 | 328.4 AB | 1 | 5.4 | 0.33 | 0.34 |
Lord | 53.7 | y | 227.6 | 344.0 | 272.0 | 281.2 AB | 1 | 2.3 | 0.34 | 0.30 |
Magnolia | 54.9 | y | 187.2 | 264.8 | 119.0 | 190.3 AB | 1 | 2.7 | 0.14 | 0.15 |
Mayan Gold | 80.4 | y | 778.2 | 639.9 | 727.0 | 715.0 A | 1 | 7.9 | 0.18 | 0.24 |
Michalina | 53.7 | y | 205.0 | 534.8 | 113.0 | 284.3 AB | 1 | 2.6 | 0.52 | 0.50 |
Noblesse | 63.3 | y | 399.8 | 365.0 | 186.0 | 317.0 AB | 1 | 8.2 | 0.28 | 0.31 |
Nofy | 56.5 | y | 65.9 | 182.3 | 143.0 | 130.4 B | 0 | 10.7 | 0.24 | 0.30 |
Omega | 66.4 | y | 240.6 | 314.9 | 78.0 | 211.2 AB | 1 | 10.0 | 0.44 | 0.37 |
Otolia | 58.4 | y | 641.5 | 431.3 | 193.0 | 422.0 AB | 0 | 2.6 | 0.36 | 0.32 |
Riviera | 52.7 | y | 146.8 | 219.5 | 101.0 | 155.8 AB | 1 | 2.6 | 0.55 | 0.50 |
Salome | 63.2 | y | 596.3 | 407.1 | 658.0 | 553.8 AB | 1 | 7.8 | 0.40 | 0.37 |
Sarpo Shona | 50.3 | y | 182.3 | 245.4 | 104.0 | 177.3 AB | 0 | 3.5 | 0.22 | 0.26 |
Slavnik | 56.0 | y | 284.2 | 289.1 | 63.0 | 212.1 AB | 1 | 3.3 | 0.40 | 0.27 |
Tajfun | 54.9 | y | 546.1 | 476.6 | 20.0 | 347.6 AB | 1 | 6.7 | 0.35 | 0.34 |
Tinca | 58.5 | y | 171.8 | 237.3 | 85.0 | 164.7 AB | 0 | 12.4 | 0.45 | 0.43 |
Triplo | 64.4 | y | 323.0 | 329.5 | 96.0 | 249.5 AB | 1 | 3.4 | 0.63 | 0.59 |
Twinner | 65.3 | y | 260.0 | 392.5 | 1213.0 | 621.8 AB | 1 | 14.8 | 0.53 | 0.51 |
Twister | 59.7 | y | 465.3 | 298.8 | 126.0 | 296.7 AB | 1 | 9.7 | 0.34 | 0.32 |
Voyager | 55.4 | y | 395.0 | 363.4 | 60.0 | 272.8 AB | 1 | 10.3 | 0.32 | 0.34 |
Wega | 67.0 | y | 187.2 | 704.6 | 175.0 | 355.6 AB | 0 | 7.7 | 0.31 | 0.34 |
Mean value | 56.2 | 274.1 | 330.9 | 234.7 | 279.9 | - | 12.9 | 0.50 | 0.50 |
Sources of Variation | ANOVA | ||||
---|---|---|---|---|---|
Sum of Squares | Degrees of Freedom | Mean Square | F Statistic | Significance | |
ANOVA results for TC | |||||
Cultivar (C) | 3.704.438 | 64 | 57.882 | 1.9978 | *** |
Year (Y) | 304.012 | 2 | 152.006 | 4.0722 | ** |
(C) × (Y) | 3.462.533 | 128 | 27.051 | ns | |
ANOVA results for VC | |||||
Cultivar (C) | 1285.732 | 64 | 20.090 | 2.4049 | *** |
ANOVA results for DPPH | |||||
Cultivar (C) | 1.48101 | 64 | 0.02314 | 2.496 | *** |
ANOVA results for FRAP | |||||
Cultivar (C) | 1.08066 | 64 | 0.01689 | 2.499 | *** |
Variable | Student’s t-Test | ||||
---|---|---|---|---|---|
Mean Yellow | Mean White | t | df | Significance | |
Total carotenoid (TC) | 319.86 µg 100 g−1 DM | 175.56 µg 100 g−1 DM | 4.854 | 193 | *** |
Vitamin C (VC) | 6.49 mg 100 g−1 FM | 5.84 mg 100 g−1 FM | 0.670 | 63 | ns |
DPPH | 0.38 µmol TE 100 mg −1 DM | 0.34 µmol TE 100 mg −1 DM | 1.276 | 63 | ns |
FRAP | 0.38 µmol TE 100 mg −1 DM | 0.35 µmol TE 100 mg −1 DM | 1.010 | 63 | ns |
Variable | Student’s t-Test | ||||
---|---|---|---|---|---|
Mean Chy2+ | Mean Chy2− | t | df | Significance | |
Yellow index (YI) | 57.97 | 50.47 | 2.813 | 63 | ** |
Total carotenoid (TC) | 294.07 µg 100 g−1 DM | 232.68 µg 100 g−1 DM | 1.852 | 193 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tatarowska, B.; Milczarek, D.; Plich, J. The Content of Total Carotenoids, Vitamin C and Antioxidant Properties of 65 Potato Cultivars Characterised under the European Project ECOBREED. Int. J. Mol. Sci. 2023, 24, 11716. https://doi.org/10.3390/ijms241411716
Tatarowska B, Milczarek D, Plich J. The Content of Total Carotenoids, Vitamin C and Antioxidant Properties of 65 Potato Cultivars Characterised under the European Project ECOBREED. International Journal of Molecular Sciences. 2023; 24(14):11716. https://doi.org/10.3390/ijms241411716
Chicago/Turabian StyleTatarowska, Beata, Dorota Milczarek, and Jarosław Plich. 2023. "The Content of Total Carotenoids, Vitamin C and Antioxidant Properties of 65 Potato Cultivars Characterised under the European Project ECOBREED" International Journal of Molecular Sciences 24, no. 14: 11716. https://doi.org/10.3390/ijms241411716
APA StyleTatarowska, B., Milczarek, D., & Plich, J. (2023). The Content of Total Carotenoids, Vitamin C and Antioxidant Properties of 65 Potato Cultivars Characterised under the European Project ECOBREED. International Journal of Molecular Sciences, 24(14), 11716. https://doi.org/10.3390/ijms241411716