Origin and Early Diversification of the Papain Family of Cysteine Peptidases
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Papain Family Is Highly Represented in Omics Databases
2.2. Early Diversification of the Papain Family in the Ancestor of Eukaryotes
2.3. Distribution of the Papain Family in Eukaryotes and Prokaryotes
2.3.1. Papain Family in Eukaryotes
Cath B | Cath C | Cath X | Cath L | Cath F | Cath H | 26/29 kDa Peptidase | Type 1 C1 Long | |
---|---|---|---|---|---|---|---|---|
Diaphoretickes | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
Chloroplastida | ■ | ■ | ■ | ■ | ■ | ■ | ■ | □ |
Glaucophyta | ■ | ■ | ■ | ■ | ■ | ■ | ■ | □ |
Rhodophyta | ■ | ■ | ■ | ■ | ■ | ■ | ■ | □ |
Picozoa | ■ | ■ | ■ | ■ | □ | □ | ■ | □ |
Cryptista | ■ | ■ | ■ | ■ | ■ | ■ | ■ | □ |
Haptophyta | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
Centroheliozoa | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
Provora | ■ | ■ | ■ | ■ | ■ | ■ | □ | □ |
Hemimastigophora | ■ | ■ | ■ | ■ | ■ | □ | ■ | ■ |
Telonemia | ■ | ■ | ■ | ■ | ■ | □ | □ | □ |
Stramenopiles | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
Alveolata | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
Rhizaria | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
Amorphea | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
Amoebozoa | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
Obazoa | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
CRuMs | ■ | ■ | ■ | ■ | ■ | ■ | □ | □ |
Ancyromonadida | ■ | ■ | ■ | ■ | ■ | □ | ■ | □ |
Malawimonadida | ■ | ■ | ■ | ■ | ■ | □ | ■ | □ |
“Excavata” | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
Discoba | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
Metamonada | ■ | ■ | ■ | ■ | ■ | □ | ■ | ■ |
Cath B | Cath C | Cath X | Cath L | Cath F | Cath H | Cath O | 26/29 kDa Peptidase | Type 1 C1 Long | VWFA-C1 | |
---|---|---|---|---|---|---|---|---|---|---|
Opisthokonta | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
Metazoa | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | □ | ■ |
Choanoflagellata | ■ | ■ | ■ | ■ | ■ | □ | ■ | ■ | □ | ■ |
Filasterea | ■ | ■ | ■ | ■ | ■ | □ | ■ | □ | □ | □ |
Tunicaraptor | ■ | ■ | ■ | ■ | □ | ■ | □ | ■ | □ | |
Pluriformea | ■ | ■ | ■ | ■ | □ | ■ | ■ | ■ | □ | □ |
Ichthyosporea | ■ | ■ | ■ | ■ | ■ | □ | ■ | ■ | □ | □ |
Rotosphaerida | □ | □ | □ | □ | □ | □ | □ | □ | □ | □ |
Fungi | □ | □ | □ | □ | □ | □ | □ | □ | □ | ■ |
Breviatea | ■ | ■ | ■ | ■ | ■ | □ | □ | ■ | ■ | □ |
Apusozoa | ■ | □ | □ | ■ | ■ | ■ | ■ | ■ | □ | □ |
Metazoa | ||||||||||
Basal metazoans | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | □ | ■ |
Bilateria | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | □ | ■ |
Protostomia | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | □ | ■ |
Deuterostomia | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | □ | ■ |
2.3.2. Papain Family in Prokaryotes
Taxonomic Group/Phylum | Single Domain C1A Peptidases | Multidomain C1A Peptidases |
---|---|---|
Bacteria | ● | ● |
Acidobacteria | ● | ● |
Aquificae | ● | ● |
Atribacterota | ● | ● |
Caldiserica/Cryosericota group | ● | ● |
Calditrichaeota | ● | ● |
Chrysiogenetes | ● | ● |
Coprothermobacterota | ● | ● |
Deferribacteres | ● | ● |
Desulfobacterota | ● | ● |
Dictyoglomi | ○ | ○ |
Elusimicrobia | ● | ● |
FCB group | ● | ● |
-Bacteroidetes/Chlorobi group | ● | ● |
-Fibrobacteres | ● | ● |
-Gemmatimonadetes | ● | ● |
Fusobacteria | ● | ● |
Myxococcota | ● | ● |
Nitrospinae/Tectomicrobia group | ● | ● |
Nitrospirae | ● | ● |
Pseudomonadota (=Proteobacteria) | ● | ● |
PVC group | ● | ● |
-Chlamydiae | ● | ● |
-Lentisphaerae | ● | ● |
-Planctomycetota | ● | ● |
-Verrucomicrobia | ● | ● |
Spirochaetes | ● | ● |
Synergistetes | ● | ● |
Terrabacteria group | ● | ● |
-Actinomycetota | ● | ● |
-Bacillota (=Firmicutes) | ● | ● |
-Chloroflexi | ● | ● |
-Cyanobacteria/Melainabacteria group | ● | ● |
-Deinococcus-Thermus | ● | ● |
-Tenericutes | ● | ● |
Thermodesulfobacteria | ● | ● |
Thermotogae | ● | ● |
Bacteria candidate phyla | ● | ● |
Archaea | ● | ● |
Asgard group | ● | ● |
Thermoplasmatota | ● | ● |
DPANN group | ● | ● |
Euryarchaeota | ● | ● |
TACK group | ● | ● |
2.4. Diverse Evolutionary Forces Are Reshaping the Papain Family
2.4.1. Gene Duplication
2.4.2. Horizontal Gene Transfer
2.4.3. Gene Loss
2.5. Origin and Early Diversification of the Papain Family
2.6. Structure–Function Relationships in the Papain Family
3. Materials and Methods
3.1. Data Mining
3.2. Phylogenetic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018, 46, D624–D632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawlings, N.D.; Bateman, A. Origins of peptidases. Biochimie 2019, 166, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.; McKerrow, J.H. Cysteine proteases of parasitic organisms. Mol. Biochem. Parasitol. 2002, 120, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Shindo, T.; Van der Hoorn, R.A. Papain-like cysteine proteases: Key players at molecular battlefields employed by both plants and their invaders. Mol. Plant Pathol. 2008, 9, 119–125. [Google Scholar] [CrossRef]
- Misas-Villamil, J.C.; van der Hoorn, R.A.; Doehlemann, G. Papain-like cysteine proteases as hubs in plant immunity. New Phytol. 2016, 212, 902–907. [Google Scholar] [CrossRef] [Green Version]
- van der Hoorn, R.A.; Jones, J.D. The plant proteolytic machinery and its role in defence. Curr. Opin. Plant Biol. 2004, 7, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Unanue, E.R.; Turk, V.; Neefjes, J. Variations in MHC Class II Antigen Processing and Presentation in Health and Disease. Annu. Rev. Immunol. 2016, 34, 265–297. [Google Scholar] [CrossRef]
- Stoka, V.; Turk, V.; Turk, B. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res. Rev. 2016, 32, 22–37. [Google Scholar] [CrossRef]
- Gocheva, V.; Zeng, W.; Ke, D.; Klimstra, D.; Reinheckel, T.; Peters, C.; Hanahan, D.; Joyce, J.A. Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev. 2006, 20, 543–556. [Google Scholar] [CrossRef] [Green Version]
- Olson, O.C.; Joyce, J.A. Cysteine cathepsin proteases: Regulators of cancer progression and therapeutic response. Nat. Rev. Cancer 2015, 15, 712–729. [Google Scholar]
- Zhang, X.; Luo, S.; Wang, M.; Shi, G.P. Cysteinyl cathepsins in cardiovascular diseases. Biochim. Biophys. Acta Proteins Proteom. 2020, 1868, 140360. [Google Scholar] [CrossRef]
- Turk, B.; Stoka, V. Protease signalling in cell death: Caspases versus cysteine cathepsins. FEBS Lett. 2007, 581, 2761–2767. [Google Scholar] [CrossRef] [Green Version]
- Turk, B.; Turk, D.; Turk, V. Protease signalling: The cutting edge. EMBO J. 2012, 31, 1630–1643. [Google Scholar] [CrossRef] [Green Version]
- Repnik, U.; Stoka, V.; Turk, V.; Turk, B. Lysosomes and lysosomal cathepsins in cell death. Biochim. Biophys. Acta 2012, 1824, 22–33. [Google Scholar] [CrossRef]
- Ketterer, S.; Gomez-Auli, A.; Hillebrand, L.E.; Petrera, A.; Ketscher, A.; Reinheckel, T. Inherited diseases caused by mutations in cathepsin protease genes. FEBS J. 2017, 284, 1437–1454. [Google Scholar] [CrossRef] [Green Version]
- López-Otín, C.; Bond, J.S. Proteases: Multifunctional enzymes in life and disease. J. Biol. Chem. 2008, 283, 30433–30437. [Google Scholar] [CrossRef] [Green Version]
- Drenth, J.; Jansonius, J.N.; Koekoek, R.; Swen, H.M.; Wolthers, B.G. Structure of papain. Nature 1968, 218, 929–932. [Google Scholar] [CrossRef]
- Musil, D.; Zucic, D.; Turk, D.; Engh, R.A.; Mayr, I.; Huber, R.; Popovic, T.; Turk, V.; Towatari, T.; Katunuma, N.; et al. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: The structural basis for its specificity. EMBO J. 1991, 10, 2321–2330. [Google Scholar] [CrossRef]
- McGrath, M.E.; Klaus, J.L.; Barnes, M.G.; Brömme, D. Crystal structure of human cathepsin K complexed with a potent inhibitor. Nat. Struct. Biol. 1997, 4, 105–109. [Google Scholar] [CrossRef]
- Fujishima, A.; Imai, Y.; Nomura, T.; Fujisawa, Y.; Yamamoto, Y.; Sugawara, T. The crystal structure of human cathepsin L complexed with E-64. FEBS Lett. 1997, 407, 47–50. [Google Scholar] [CrossRef]
- Guncar, G.; Pungercic, G.; Klemencic, I.; Turk, V.; Turk, D. Crystal structure of MHC class II-associated p41 Ii fragment bound to cathepsin L reveals the structural basis for differentiation between cathepsins L and S. EMBO J. 1999, 18, 793–803. [Google Scholar] [CrossRef] [Green Version]
- Guncar, G.; Podobnik, M.; Pungercar, J.; Strukelj, B.; Turk, V.; Turk, D. Crystal structure of porcine cathepsin H determined at 2.1 A resolution: Location of the mini-chain C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure 1998, 6, 51–61. [Google Scholar] [CrossRef] [Green Version]
- Guncar, G.; Klemencic, I.; Turk, B.; Turk, V.; Karaoglanovic-Carmona, A.; Juliano, L.; Turk, D. Crystal structure of cathepsin X: A flip-flop of the ring of His23 allows carboxy-monopeptidase and carboxy-dipeptidase activity of the protease. Structure 2000, 8, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Somoza, J.R.; Zhan, H.; Bowman, K.K.; Yu, L.; Mortara, K.D.; Palmer, J.T.; Clark, J.M.; McGrath, M.E. Crystal structure of human cathepsin V. Biochemistry 2000, 39, 12543–12551. [Google Scholar] [CrossRef]
- Turk, D.; Janjić, V.; Stern, I.; Podobnik, M.; Lamba, D.; Dahl, S.W.; Lauritzen, C.; Pedersen, J.; Turk, V.; Turk, B. Structure of human dipeptidyl peptidase I (cathepsin C): Exclusion domain added to an endopeptidase framework creates the machine for activation of granular serine proteases. EMBO J. 2001, 20, 6570–6582. [Google Scholar] [CrossRef]
- Turkenburg, J.P.; Lamers, M.B.; Brzozowski, A.M.; Wright, L.M.; Hubbard, R.E.; Sturt, S.L.; Williams, D.H. Structure of a Cys25-->Ser mutant of human cathepsin S. Acta Crystallogr. D Biol. Crystallogr. 2002, 58, 451–455. [Google Scholar] [CrossRef]
- Somoza, J.R.; Palmer, J.T.; Ho, J.D. The crystal structure of human cathepsin F and its implications for the development of novel immunomodulators. J. Mol. Biol. 2002, 322, 559–568. [Google Scholar] [CrossRef]
- Dolenc, I.; Štefe, I.; Turk, D.; Taler-Verčič, A.; Turk, B.; Turk, V.; Stoka, V. Human cathepsin X/Z is a biologically active homodimer. Biochim. Biophys. Acta Proteins Proteom. 2021, 1869, 140567. [Google Scholar] [CrossRef]
- Turk, B.; Turk, D.; Turk, V. Lysosomal cysteine proteases: More than scavengers. Biochim. Biophys. Acta 2000, 1477, 98–111. [Google Scholar] [CrossRef]
- Tušar, L.; Loboda, J.; Impens, F.; Sosnowski, P.; Van Quickelberghe, E.; Vidmar, R.; Demol, H.; Sedeyn, K.; Saelens, X.; Vizovišek, M.; et al. Proteomic data and structure analysis combined reveal interplay of structural rigidity and flexibility on selectivity of cysteine cathepsins. Commun. Biol. 2023, 6, 50. [Google Scholar] [CrossRef]
- Ozhelvaci, F.; Steczkiewicz, K. Identification and classification of papain-like cysteine proteinases. J. Biol. Chem. 2023, 299, 104801. [Google Scholar] [CrossRef] [PubMed]
- Dolenc, I.; Turk, B.; Pungercic, G.; Ritonja, A.; Turk, V. Oligomeric structure and substrate induced inhibition of human cathepsin C. J. Biol. Chem. 1995, 270, 21626–21631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turk, V.; Stoka, V.; Vasiljeva, O.; Renko, M.; Sun, T.; Turk, B.; Turk, D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta 2012, 1824, 68–88. [Google Scholar] [CrossRef] [Green Version]
- Jerala, R.; Zerovnik, E.; Kidric, J.; Turk, V. pH-induced conformational transitions of the propeptide of human cathepsin L. A role for a molten globule state in zymogen activation. J. Biol. Chem. 1998, 273, 11498–11504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozman, J.; Stojan, J.; Kuhelj, R.; Turk, V.; Turk, B. Autocatalytic processing of recombinant human procathepsin B is a bimolecular process. FEBS Lett. 1999, 459, 358–362. [Google Scholar] [CrossRef] [Green Version]
- Turk, B.; Bieth, J.G.; Björk, I.; Dolenc, I.; Turk, D.; Cimerman, N.; Kos, J.; Colic, A.; Stoka, V.; Turk, V. Regulation of the activity of lysosomal cysteine proteinases by pH-induced inactivation and/or endogenous protein inhibitors, cystatins. Biol. Chem. Hoppe Seyler 1995, 376, 225–230. [Google Scholar] [CrossRef]
- Vasiljeva, O.; Dolinar, M.; Pungercar, J.R.; Turk, V.; Turk, B. Recombinant human procathepsin S is capable of autocatalytic processing at neutral pH in the presence of glycosaminoglycans. FEBS Lett. 2005, 579, 1285–1290. [Google Scholar] [CrossRef] [Green Version]
- Dahl, S.W.; Halkier, T.; Lauritzen, C.; Dolenc, I.; Pedersen, J.; Turk, V.; Turk, B. Human recombinant pro-dipeptidyl peptidase I (cathepsin C) can be activated by cathepsins L and S but not by autocatalytic processing. Biochemistry 2001, 40, 1671–1678. [Google Scholar] [CrossRef]
- Barrett, A.J. The cystatins: A diverse superfamily of cysteine peptidase inhibitors. Biomed. Biochim. Acta 1986, 45, 1363–1374. [Google Scholar]
- Turk, V.; Bode, W. The cystatins: Protein inhibitors of cysteine proteinases. FEBS Lett. 1991, 285, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Turk, B.; Stoka, V.; Björk, I.; Boudier, C.; Johansson, G.; Dolenc, I.; Colic, A.; Bieth, J.G.; Turk, V. High-affinity binding of two molecules of cysteine proteinases to low-molecular-weight kininogen. Protein Sci. 1995, 4, 1874–1880. [Google Scholar] [CrossRef] [Green Version]
- Turk, B.; Stoka, V.; Turk, V.; Johansson, G.; Cazzulo, J.J.; Björk, I. High-molecular-weight kininogen binds two molecules of cysteine proteinases with different rate constants. FEBS Lett. 1996, 391, 109–112. [Google Scholar] [CrossRef] [Green Version]
- Turk, V.; Stoka, V.; Turk, D. Cystatins: Biochemical and structural properties, and medical relevance. Front. Biosci. 2008, 13, 5406–5420. [Google Scholar] [CrossRef] [Green Version]
- Kordiš, D.; Turk, V. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes. BMC Evol. Biol. 2009, 9, 266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karrer, K.M.; Peiffer, S.L.; DiTomas, M.E. Two distinct gene subfamilies within the family of cysteine protease genes. Proc. Natl. Acad. Sci. USA 1993, 90, 3063–3067. [Google Scholar] [CrossRef]
- Hughes, A.L. Evolution of cysteine proteinases in eukaryotes. Mol. Phylogenet. Evol. 1994, 3, 310–321. [Google Scholar] [CrossRef]
- Berti, P.J.; Storer, A.C. Alignment/phylogeny of the papain superfamily of cysteine proteases. J. Mol. Biol. 1995, 246, 273–283. [Google Scholar] [CrossRef]
- Burki, F.; Roger, A.J.; Brown, M.W.; Simpson, A.G.B. The New Tree of Eukaryotes. Trends Ecol. Evol. 2020, 35, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Hug, L.A.; Baker, B.J.; Anantharaman, K.; Brown, C.T.; Probst, A.J.; Castelle, C.J.; Butterfield, C.N.; Hernsdorf, A.W.; Amano, Y.; Ise, K.; et al. A new view of the tree of life. Nat. Microbiol. 2016, 1, 16048. [Google Scholar] [CrossRef] [Green Version]
- Richter, D.J.; Berney, C.; Strassert, J.F.H.; Poh, Y.-P.; Herman, E.K.; Muñoz-Gómez, S.A.; Wideman, J.G.; Burki, F.; de Vargas, C. EukProt: A database of genome-scale predicted proteins across the diversity of eukaryotes. Peer Community J. 2022, 2, e56. [Google Scholar] [CrossRef]
- Makarova, K.S.; Wolf, Y.I.; Mekhedov, S.L.; Mirkin, B.G.; Koonin, E.V. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res. 2005, 33, 4626–4638. [Google Scholar] [CrossRef]
- Arnold, B.J.; Huang, I.T.; Hanage, W.P. Horizontal gene transfer and adaptive evolution in bacteria. Nat. Rev. Microbiol. 2022, 20, 206–218. [Google Scholar] [CrossRef]
- Gophna, U.; Altman-Price, N. Horizontal gene transfer in Archaea—From mechanisms to genome evolution. Annu. Rev. Microbiol. 2022, 76, 481–502. [Google Scholar] [CrossRef]
- Richau, K.H.; Kaschani, F.; Verdoes, M.; Pansuriya, T.C.; Niessen, S.; Stüber, K.; Colby, T.; Overkleeft, H.S.; Bogyo, M.; Van der Hoorn, R.A. Subclassification and biochemical analysis of plant papain-like cysteine proteases displays subfamily-specific characteristics. Plant Physiol. 2012, 158, 1583–1599. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Sharma, A.; Niewiara, M.J.; Singh, R.; Ming, R.; Yu, Q. Papain-like cysteine proteases in Carica papaya: Lineage-specific gene duplication and expansion. BMC Genom. 2018, 19, 26. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.W.; Dalton, J.P.; Donnelly, S. Helminth pathogen cathepsin proteases: It’s a family affair. Trends Biochem. Sci. 2008, 33, 601–608. [Google Scholar] [CrossRef] [Green Version]
- Mason, R.W. Emerging functions of placental cathepsins. Placenta 2008, 29, 385–390. [Google Scholar] [CrossRef]
- Rispe, C.; Kutsukake, M.; Doublet, V.; Hudaverdian, S.; Legeai, F.; Simon, J.C.; Tagu, D.; Fukatsu, T. Large gene family expansion and variable selective pressures for cathepsin B in aphids. Mol. Biol. Evol. 2008, 25, 5–17. [Google Scholar] [CrossRef]
- McLellan, H.; Gilroy, E.M.; Yun, B.W.; Birch, P.R.; Loake, G.J. Functional redundancy in the Arabidopsis cathepsin B gene family contributes to basal defence, the hypersensitive response and senescence. New Phytol. 2009, 183, 408–418. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Y.Y.; Li, Q.Y.; Cai, Z.H. Evolutionary History of Cathepsin L (L-like) Family Genes in Vertebrates. Int. J. Biol. Sci. 2015, 11, 1016–1025. [Google Scholar] [CrossRef] [Green Version]
- Akanni, W.A.; Siu-Ting, K.; Creevey, C.J.; McInerney, J.O.; Wilkinson, M.; Foster, P.G.; Pisani, D. Horizontal gene flow from Eubacteria to Archaebacteria and what it means for our understanding of eukaryogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140337. [Google Scholar] [CrossRef] [Green Version]
- Sheinman, M.; Arkhipova, K.; Arndt, P.F.; Dutilh, B.E.; Hermsen, R.; Massip, F. Identical sequences found in distant genomes reveal frequent horizontal transfer across the bacterial domain. Elife 2021, 10, e62719. [Google Scholar] [CrossRef]
- Beiko, R.G.; Harlow, T.J.; Ragan, M.A. Highways of gene sharing in prokaryotes. Proc. Natl. Acad. Sci. USA 2005, 102, 14332–14337. [Google Scholar] [CrossRef]
- Spang, A.; Stairs, C.W.; Dombrowski, N.; Eme, L.; Lombard, J.; Caceres, E.F.; Greening, C.; Baker, B.J.; Ettema, T.J.G. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 2019, 4, 1138–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolhuis, H.; Cretoiu, M.S.; Stal, L.J. Molecular ecology of microbial mats. FEMS Microbiol. Ecol. 2014, 90, 335–350. [Google Scholar]
- Weiss, M.C.; Preiner, M.; Xavier, J.C.; Zimorski, V.; Martin, W.F. The last universal common ancestor between ancient Earth chemistry and the onset of genetics. PLoS Genet. 2018, 14, e1007518. [Google Scholar] [CrossRef] [Green Version]
- López-García, P.; Moreira, D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 2020, 5, 655–667. [Google Scholar] [CrossRef]
- McInerney, J.O.; O’Connell, M.J.; Pisani, D. The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nat. Rev. Microbiol. 2014, 12, 449–455. [Google Scholar] [CrossRef]
- Brix, K.; Dunkhorst, A.; Mayer, K.; Jordans, S. Cysteine cathepsins: Cellular roadmap to different functions. Biochimie 2008, 90, 194–207. [Google Scholar] [CrossRef]
- Leite, N.R.; Faro, A.R.; Dotta, M.A.; Faim, L.M.; Gianotti, A.; Silva, F.H.; Oliva, G.; Thiemann, O.H. The crystal structure of the cysteine protease Xylellain from Xylella fastidiosa reveals an intriguing activation mechanism. FEBS Lett. 2013, 587, 339–344. [Google Scholar] [CrossRef]
- Gong, X.; Zhao, X.; Zhang, W.; Wang, J.; Chen, X.; Hameed, M.F.; Zhang, N.; Ge, H. Structural characterization of the hypothetical protein Lpg2622, a new member of the C1 family peptidases from Legionella pneumophila. FEBS Lett. 2018, 592, 2798–2810. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Wei, Y.; Xiong, Z.J.; Li, J.; Zou, C.; Cairo, C.W.; Klassen, J.S.; Privé, G.G. Crystal structures of human lysosomal EPDR1 reveal homology with the superfamily of bacterial lipoprotein transporters. Commun. Biol. 2019, 2, 52. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, W.J.; Kirby, J.M.; Thiyagarajan, N.; Chambers, C.J.; Davies, A.H.; Roberts, A.K.; Shone, C.C.; Acharya, K.R. The structure of the cysteine protease and lectin-like domains of Cwp84, a surface layer-associated protein from Clostridium difficile. Acta Crystallogr. D Biol. Crystallogr. 2014, 70, 1983–1993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gertz, E.M.; Yu, Y.K.; Agarwala, R.; Schäffer, A.A.; Altschul, S.F. Composition-based statistics and translated nucleotide searches: Improving the TBLASTN module of BLAST. BMC Biol. 2006, 4, 41. [Google Scholar] [CrossRef]
- Sievers, F.; Higgins, D.G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018, 27, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Trifinopoulos, J.; Nguyen, L.T.; von Haeseler, A.; Minh, B.Q. W-IQ-TREE: A fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016, 44, W232–W235. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
Evolutionary Forces | Archaea | Bacteria | Eukaryota | Viruses |
---|---|---|---|---|
Gene duplication | ○ | ○ | ● | ○ |
Gene loss | ● | ● | ● | ● |
Horizontal gene transfer | ● | ● | ● | ● |
Functional diversification | ○ | ○ | ● | ○ |
Gene/domain fusion | ● | ● | ● | ○ |
C1 domain duplication | ○ | ○ | ● | ○ |
Loss of active site | ○ | ○ | ● | ○ |
Change of the peptidase class | ○ | ○ | ● | ○ |
Lineage-specific expansion | ○ | ○ | ● | ○ |
Coevolution of peptidases with their inhibitors (arms race) | ● | ● | ● | ● |
Alternative splicing | ○ | ○ | ● | ○ |
Pseudogenization | ○ | ○ | ● | ○ |
Expression divergence | ○ | ○ | ● | ○ |
Cath B | Cath C | Cath X | Cath L | Cath F | Cath H | 26/29 kDa Peptidase | Type 1 C1 Long | |
---|---|---|---|---|---|---|---|---|
Diaphoretickes | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
Amorphea | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
CRuMs | ■ | ■ | ■ | ■ | ■ | ■ | □ | □ |
Ancyromonadida | ■ | ■ | ■ | ■ | ■ | □ | ■ | □ |
Malawimonadida | ■ | ■ | ■ | ■ | ■ | □ | ■ | □ |
Discoba | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
Metamonada | ■ | ■ | ■ | ■ | ■ | □ | ■ | ■ |
LECA | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
C1A | Cath B | Cath C | Cath X | Cath L | Cath F | Cath H | 26/29 kDa Peptidase | Type 1 C1 Long | |
---|---|---|---|---|---|---|---|---|---|
LECA | □ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ |
FECA | ■ | □ | □ | □ | □ | □ | □ | □ | □ |
α-Proteobacteria | ■ | □ | □ | □ | □ | □ | □ | □ | □ |
Cyanobacteria | ■ | □ | □ | □ | □ | □ | □ | □ | □ |
δ-Proteobacteria | ■ | □ | □ | □ | □ | □ | □ | □ | □ |
Archaea | ■ | □ | □ | □ | □ | □ | □ | □ | □ |
LUCA | ■ | □ | □ | □ | □ | □ | □ | □ | □ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kordiš, D.; Turk, V. Origin and Early Diversification of the Papain Family of Cysteine Peptidases. Int. J. Mol. Sci. 2023, 24, 11761. https://doi.org/10.3390/ijms241411761
Kordiš D, Turk V. Origin and Early Diversification of the Papain Family of Cysteine Peptidases. International Journal of Molecular Sciences. 2023; 24(14):11761. https://doi.org/10.3390/ijms241411761
Chicago/Turabian StyleKordiš, Dušan, and Vito Turk. 2023. "Origin and Early Diversification of the Papain Family of Cysteine Peptidases" International Journal of Molecular Sciences 24, no. 14: 11761. https://doi.org/10.3390/ijms241411761
APA StyleKordiš, D., & Turk, V. (2023). Origin and Early Diversification of the Papain Family of Cysteine Peptidases. International Journal of Molecular Sciences, 24(14), 11761. https://doi.org/10.3390/ijms241411761