Comparison of Immunohistochemical Markers in Oral Submucous Fibrosis and Oral Submucous Fibrosis Transformed to Oral Squamous Cell Carcinoma—A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Method
2.1. Study Design
2.2. Search Strategy
2.3. Study Selection
2.4. Data Extraction
3. Results and Discussion
3.1. Study Selection
3.2. Study Characteristics
3.2.1. Epithelial Markers
3.2.2. Connective Tissue Markers
3.3. Quality Assessment
3.4. Meta-Analysis
3.4.1. Epithelial Markers
3.4.2. Cell Metabolism/Proliferation/Apoptosis Markers
3.5. Publication Bias
3.6. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Warnakulasuriya, S.; Johnson, N.W.; van der Waal, I. Nomenclature and Classification of Potentially Malignant Disorders of the Oral Mucosa. J. Oral Pathol. Med. 2007, 36, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Warnakulasuriya, S.; Kujan, O.; Aguirre-Urizar, J.M.; Bagan, J.V.; González-Moles, M.Á.; Kerr, A.R.; Lodi, G.; Mello, F.W.; Monteiro, L.; Ogden, G.R.; et al. Oral Potentially Malignant Disorders: A Consensus Report from an International Seminar on Nomenclature and Classification, Convened by the WHO Collaborating Centre for Oral Cancer. Oral Dis. 2021, 27, 1862–1880. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Li, H.; Chen, J.; Wang, Y.; Tang, Z. Oral Submucous Fibrosis in Asian Countries. J. Oral Pathol. Med. 2020, 49, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-Y.; Tail, Y.-H.; Wang, W.-C.; Chen, C.-Y.; Kao, Y.-H.; Chen, Y.-K.; Chen, C.-H. Malignant Transformation in 5071 Southern Taiwanese Patients with Potentially Malignant Oral Mucosal Disorders. BMC Oral Health 2014, 14, 99. [Google Scholar] [CrossRef]
- Lorini, L.; Bescós Atín, C.; Thavaraj, S.; Müller-Richter, U.; Alberola Ferranti, M.; Pamias Romero, J.; Sáez Barba, M.; de Pablo García-Cuenca, A.; Braña García, I.; Bossi, P.; et al. Overview of Oral Potentially Malignant Disorders: From Risk Factors to Specific Therapies. Cancers 2021, 13, 3696. [Google Scholar] [CrossRef]
- Jeng, J.H.; Chang, M.C.; Hahn, L.J. Role of Areca Nut in Betel Quid-Associated Chemical Carcinogenesis: Current Awareness and Future Perspectives. Oral Oncol. 2001, 37, 477–492. [Google Scholar] [CrossRef]
- Ray, J.G.; Ranganathan, K.; Chattopadhyay, A. Malignant Transformation of Oral Submucous Fibrosis: Overview of Histopathological Aspects. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 122, 200–209. [Google Scholar] [CrossRef]
- Haque, M.F.; Meghji, S.; Khitab, U.; Harris, M. Oral Submucous Fibrosis Patients Have Altered Levels of Cytokine Production. J. Oral Pathol. Med. 2000, 29, 123–128. [Google Scholar] [CrossRef]
- Gayathri, K.; Malathi, N.; Gayathri, V.; Adtani, P.N.; Ranganathan, K. Molecular Pathways of Oral Submucous Fibrosis and Its Progression to Malignancy. Arch. Oral Biol. 2023, 148, 105644. [Google Scholar] [CrossRef]
- Cheng, R.-H.; Wang, Y.-P.; Chang, J.Y.-F.; Pan, Y.-H.; Chang, M.-C.; Jeng, J.-H. Genetic Susceptibility and Protein Expression of Extracellular Matrix Turnover-Related Genes in Oral Submucous Fibrosis. Int. J. Mol. Sci. 2020, 21, 8104. [Google Scholar] [CrossRef]
- Angadi, P.V.; Krishnapillai, R. Evaluation of PTEN Immunoexpression in Oral Submucous Fibrosis: Role in Pathogenesis and Malignant Transformation. Head Neck. Pathol. 2012, 6, 314–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiba, I.; Muthumala, M.; Yamazaki, Y.; Uz Zaman, A.; Iizuka, T.; Amemiya, A.; Shibata, T.; Kashiwazaki, H.; Sugiura, C.; Fukuda, H. Characteristics of Mutations in the P53 Gene of Oral Squamous-Cell Carcinomas Associated with Betel-Quid Chewing in Sri Lanka. Int. J. Cancer 1998, 77, 839–842. [Google Scholar] [CrossRef]
- Cruz, I.B.; Snijders, P.J.; Meijer, C.J.; Braakhuis, B.J.; Snow, G.B.; Walboomers, J.M.; van der Waal, I. P53 Expression above the Basal Cell Layer in Oral Mucosa Is an Early Event of Malignant Transformation and Has Predictive Value for Developing Oral Squamous Cell Carcinoma. J. Pathol. 1998, 184, 360–368. [Google Scholar] [CrossRef]
- Cox, S.C.; Walker, D.M. Epithelial Growth Fraction and Expression of P53 Tumour Suppressor Gene in Oral Submucous Fibrosis. Aust. Dent. J. 1996, 41, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Moles, M.A.; Ruiz-Avila, I.; Rodriguez-Archilla, A.; Martinez-Lara, I. Suprabasal Expression of Ki-67 Antigen as a Marker for the Presence and Severity of Oral Epithelial Dysplasia. Head Neck. 2000, 22, 658–661. [Google Scholar] [CrossRef]
- McAlinden, R.L.; Maxwell, P.; Napier, S.; Hamilton, P.; Cowan, C.G.; Lundy, F.T.; Lamey, P.J.; Marley, J.J. Bcl-2 Expression in Sequential Biopsies of Potentially Malignant Oral Mucosal Lesions Assessed by Immunocytochemistry. Oral. Dis. 2000, 6, 318–326. [Google Scholar] [CrossRef]
- Ranganathan, K.; Kavitha, R. Proliferation and Apoptosis Markers in Oral Submucous Fibrosis-PMC. J. Oral. Maxillofac. Pathol. 2011, 15, 148–153. [Google Scholar] [CrossRef]
- Chen, P.N.; Lin, C.W.; Yang, S.F.; Chang, Y.C. Oral Submucous Fibrosis Stimulates Invasion and Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma by Activating MMP-2 and IGF-IR-PubMed. J. Cell. Mol. Med. 2021, 25, 9814–9825. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Yang, S.-F.; Chen, Y.-J.; Chou, M.-Y.; Chang, Y.-C. The Upregulation of Insulin-like Growth Factor-1 in Oral Submucous Fibrosis. Oral Oncol. 2005, 41, 940–946. [Google Scholar] [CrossRef]
- Zhou, S.; Qu, X.; Yu, Z.; Zhong, L.; Ruan, M.; Ma, C.; Wang, M.; Zhang, C.; Jian, X. Survivin as a Potential Early Marker in the Carcinogenesis of Oral Submucous Fibrosis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, 575–581. [Google Scholar] [CrossRef]
- Raju, K.L.; Haragannavar, V.C.; Patil, S.; Rao, R.S.; Nagaraj, T.; Augustine, D.; Venkatesiah, S.S.; Nambiar, S. Expression of HTERT in Oral Submucous Fibrosis and Oral Squamous Cell Carcinoma—An Immunohistochemical Analysis. Pathol. Oncol. Res. 2020, 26, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Veeravarmal, V.; Austin, R.D.; Nagini, S.; Nassar, M.H.M. Expression of Β1integrin in Normal Epithelium, Oral Submucous Fibrosis and Oral Squamous Cell Carcinoma. Pathol. Res. Pract. 2018, 214, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Veeravarmal, V.; Austin, R.D.; Siddavaram, N.; Thiruneelakandan, S.; Nassar, M.H.M. Caspase-3 Expression in Normal Oral Epithelium, Oral Submucous Fibrosis and Oral Squamous Cell Carcinoma. J. Oral Maxillofac. Pathol. 2016, 20, 445–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, P.; Thennavan, A.; Sen, S.; Chandrashekar, C.; Radhakrishnan, R. Translational Approach Utilizing COX-2, P53, and MDM2 Expressions in Malignant Transformation of Oral Submucous Fibrosis. J. Oral Sci. 2015, 57, 169–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, R.; Hallikeri, K.; Sudhakaran, A. PTEN and α-SMA Expression and Diagnostic Role in Oral Submucous Fibrosis and Oral Squamous Cell Carcinoma with Concomitant Oral Submucous Fibrosis. J. Oral Maxillofac. Res. 2021, 12, e3. [Google Scholar] [CrossRef]
- Shah, A.M.; Jain, K.; Desai, R.S.; Bansal, S.; Shirsat, P.; Prasad, P.; Bodhankar, K. The Role of Increased Connective Tissue Growth Factor in the Pathogenesis of Oral Submucous Fibrosis and Its Malignant Transformation-An Immunohistochemical Study. Head Neck. Pathol. 2021, 15, 817–830. [Google Scholar] [CrossRef]
- Trivedy, C.; Warnakulasuriya, K.A.; Tavassoli, M.; Steingrimsdottir, H.; Penhallow, J.; Maher, R.; Johnson, N.W. P53 Aberrations in Oral Submucous Fibrosis and Oral Squamous Cell Carcinoma Detected by Immunocytochemistry and PCR-SSCP. J. Oral Pathol. Med. 1998, 27, 72–77. [Google Scholar] [CrossRef]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A. PRISMA-P Group Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Syst. Rev. 2015, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Gadbail, A.R.; Chaudhary, M.S.; Sarode, S.C.; Gondivkar, S.M.; Belekar, L.; Mankar-Gadbail, M.P.; Dande, R.; Tekade, S.A.; Yuwanati, M.B.; Patil, S. Ki67, CD105 and α-Smooth Muscle Actin Expression in Disease Progression Model of Oral Submucous Fibrosis. J. Investig. Clin. Dent. 2019, 10, e12443. [Google Scholar] [CrossRef]
- He, X.; Xu, C.; Wu, X.; Wang, M.; Guo, Y.; Zhang, W.; Sun, Y.; Stha, A. Expression and Methylation of Dickkopf-1 in the Pathogenesis and Malignant Transformation of Oral Submucous Fibrosis. J. Oral Pathol. Med. 2020, 49, 809–815. [Google Scholar] [CrossRef]
- Stang, A. Critical Evaluation of the Newcastle-Ottawa Scale for the Assessment of the Quality of Nonrandomized Studies in Meta-Analyses. Eur. J. Epidemiol. 2010, 25, 603–605. [Google Scholar] [CrossRef] [Green Version]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; for the STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. Bull. World Health Organ. 2007, 85, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Qian, Y.; Lin, L.; Chen, W.; Yang, L.; Hu, X.; Tian, K.; Xia, K.; Su, T. Differential Expression of Organic Cation Transporter 3 in Oral Submucous Fibrosis-Associated Buccal Squamous Cell Carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2018, 126, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Trivedy, C.; Warnakulasuriya, K.A.; Hazarey, V.K.; Tavassoli, M.; Sommer, P.; Johnson, N.W. The Upregulation of Lysyl Oxidase in Oral Submucous Fibrosis and Squamous Cell Carcinoma. J. Oral Pathol. Med. 1999, 28, 246–251. [Google Scholar] [CrossRef]
- Silva, L.-C.; Fonseca, F.-P.; Almeida, O.-P.; Mariz, B.-A.; Lopes, M.-A.; Radhakrishnan, R.; Sharma, M.; Kowalski, L.-P.; Vargas, P.-A. CD1a+ and CD207+ Cells Are Reduced in Oral Submucous Fibrosis and Oral Squamous Cell Carcinoma. Med. Oral Patol. Oral Cir. Bucal. 2020, 25, e49–e55. [Google Scholar] [CrossRef]
- Yadahalli, R.; Kheur, S.; Reddy, M.; Gupta, A. To Correlate the Immunohistochemical Analysis of P16 and Ki-67 in Oral Squamous Cell Carcinoma with the Background of Oral Submucous Fibrosis. Med. J. Dr. D.Y. Patil Vidyapeeth 2021, 14, 26–30. [Google Scholar] [CrossRef]
- Shih, Y.-H.; Wang, T.-H.; Shieh, T.-M.; Tseng, Y.-H. Oral Submucous Fibrosis: A Review on Etiopathogenesis, Diagnosis, and Therapy. Int. J. Mol. Sci. 2019, 20, 2940. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.-C.; Cheng, A.-J.; Lee, L.-Y.; Huang, Y.-C.; Chang, J.T.-C. Multifaceted Mechanisms of Areca Nuts in Oral Carcinogenesis: The Molecular Pathology from Precancerous Condition to Malignant Transformation. J. Cancer 2019, 10, 4054–4062. [Google Scholar] [CrossRef] [Green Version]
- Valente, G.; Pagano, M.; Carrozzo, M.; Carbone, M.; Bobba, V.; Palestro, G.; Gandolfo, S. Sequential Immunohistochemical P53 Expression in Biopsies of Oral Lichen Planus Undergoing Malignant Evolution. J. Oral Pathol. Med. 2001, 30, 135–140. [Google Scholar] [CrossRef]
- Ramos-García, P.; González-Moles, M.Á.; Warnakulasuriya, S. Significance of P53 Overexpression in the Prediction of the Malignant Transformation Risk of Oral Potentially Malignant Disorders: A Systematic Review and Meta-Analysis. Oral Oncol. 2022, 126, 105734. [Google Scholar] [CrossRef]
- Rintala, M.; Vahlberg, T.; Salo, T.; Rautava, J. Proliferative Verrucous Leukoplakia and Its Tumor Markers: Systematic Review and Meta-Analysis. Head Neck 2019, 41, 1499–1507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buschmann, T.; Fuchs, S.Y.; Lee, C.-G.; Pan, Z.-Q.; Ronai, Z. SUMO-1 Modification of Mdm2 Prevents Its Self-Ubiquitination and Increases Mdm2 Ability to Ubiquitinate P53. Cell 2000, 101, 753–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira Alves, M.; Balducci, I.; Rodarte Carvalho, Y.; Cabral, L.; Nunes, F.; Almeida, J. Evaluation of the Expression of P53, MDM2, and SUMO-1 in Oral Lichen Planus. Oral Dis. 2013, 19, 775–780. [Google Scholar] [CrossRef] [PubMed]
- Villa, A.; Celentano, A.; Glurich, I.; Borgnakke, W.S.; Jensen, S.B.; Peterson, D.E.; Delli, K.; Ojeda, D.; Vissink, A.; Farah, C.S. World Workshop on Oral Medicine VII: Prognostic Biomarkers in Oral Leukoplakia: A Systematic Review of Longitudinal Studies. Oral Dis. 2019, 25 (Suppl. S1), 64–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, L.; Mello, F.W.; Warnakulasuriya, S. Tissue Biomarkers for Predicting the Risk of Oral Cancer in Patients Diagnosed with Oral Leukoplakia: A Systematic Review. Oral Dis. 2021, 27, 1977–1992. [Google Scholar] [CrossRef]
- Sagari, S.; Sanadhya, S.; Doddamani, M.; Rajput, R. Molecular Markers in Oral Lichen Planus: A Systematic Review. J. Oral Maxillofac. Pathol. 2016, 20, 115–121. [Google Scholar] [CrossRef] [Green Version]
- LaPak, K.M.; Burd, C.E. The Molecular Balancing Act of P16INK4a in Cancer and Aging. Mol. Cancer Res. 2014, 12, 167–183. [Google Scholar] [CrossRef] [Green Version]
- Salehinejad, J.; Sharifi, N.; Amirchaghmaghi, M.; Ghazi, N.; Shakeri, M.T.; Ghazi, A. Immunohistochemical Expression of P16 Protein in Oral Squamous Cell Carcinoma and Lichen Planus. Ann. Diagn. Pathol. 2014, 18, 210–213. [Google Scholar] [CrossRef]
- Cruz, I.; Napier, S.S.; van der Waal, I.; Snijders, P.J.F.; Walboomers, J.M.M.; Lamey, P.J.; Cowan, C.G.; Gregg, T.A.; Maxwell, P.; Meijer, C.J.L.M. Suprabasal P53 Immunoexpression Is Strongly Associated with High Grade Dysplasia and Risk for Malignant Transformation in Potentially Malignant Oral Lesions from Northern Ireland. J. Clin. Pathol. 2002, 55, 98–104. [Google Scholar] [CrossRef]
- Wu, W.; Wang, Z.; Zhou, Z. Role of the Human Papillomavirus in Malignant Transformation of Oral Leukoplakia Distinct from Oropharyngeal Squamous Cell Carcinoma: A Study of 76 Patients with Internal-Control Specimens. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 128, 273–279. [Google Scholar] [CrossRef]
- Zhang, X.; Kim, K.-Y.; Zheng, Z.; Bazarsad, S.; Kim, J. Nomogram for Risk Prediction of Malignant Transformation in Oral Leukoplakia Patients Using Combined Biomarkers. Oral Oncol. 2017, 72, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Rattay, T.; McConkey, C.; Helliwell, T.; Mehanna, H. Biomarkers in Dysplasia of the Oral Cavity: A Systematic Review. Oral Oncol. 2009, 45, 647–653. [Google Scholar] [CrossRef]
- Celentano, A.; Glurich, I.; Borgnakke, W.S.; Farah, C.S. World Workshop on Oral Medicine VII: Prognostic Biomarkers in Oral Leukoplakia and Proliferative Verrucous Leukoplakia-A Systematic Review of Retrospective Studies. Oral Dis. 2021, 27, 848–880. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Ge, G. Lysyl Oxidase, Extracellular Matrix Remodeling and Cancer Metastasis. Cancer Microenviron 2012, 5, 261–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lucero, H.A.; Kagan, H.M. Lysyl Oxidase: An Oxidative Enzyme and Effector of Cell Function. Cell Mol. Life Sci. 2006, 63, 2304–2316. [Google Scholar] [CrossRef]
- Saxena, D.; Mahjour, F.; Findlay, A.D.; Mously, E.A.; Kantarci, A.; Trackman, P.C. Multiple Functions of Lysyl Oxidase Like-2 in Oral Fibroproliferative Processes. J. Dent. Res. 2018, 97, 1277–1284. [Google Scholar] [CrossRef]
- Peinado, H.; Del Carmen Iglesias-de la Cruz, M.; Olmeda, D.; Csiszar, K.; Fong, K.S.K.; Vega, S.; Nieto, M.A.; Cano, A.; Portillo, F. A Molecular Role for Lysyl Oxidase-like 2 Enzyme in Snail Regulation and Tumor Progression. EMBO J. 2005, 24, 3446–3458. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.-M.; Zhao, W.; Yang, Y.-B.; Lü, B.-N. Expression of LOX in Colorectal Cancer Tissues and Its Relationship with Progress and Prognosis. Sichuan Da Xue Xue Bao Yi Xue Ban 2017, 48, 566–569. [Google Scholar]
- Kasashima, H.; Yashiro, M.; Kinoshita, H.; Fukuoka, T.; Morisaki, T.; Masuda, G.; Sakurai, K.; Kubo, N.; Ohira, M.; Hirakawa, K. Lysyl Oxidase Is Associated with the Epithelial–Mesenchymal Transition of Gastric Cancer Cells in Hypoxia. Gastric. Cancer 2016, 19, 431–442. [Google Scholar] [CrossRef]
- Sakai, M.; Kato, H.; Sano, A.; Tanaka, N.; Inose, T.; Kimura, H.; Sohda, M.; Nakajima, M.; Kuwano, H. Expression of Lysyl Oxidase Is Correlated with Lymph Node Metastasis and Poor Prognosis in Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol 2009, 16, 2494–2501. [Google Scholar] [CrossRef]
- Ekanayaka, R.P.; Tilakaratne, W.M. Oral Submucous Fibrosis: Review on Mechanisms of Malignant Transformation. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 122, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.F.; Harris, M.; Meghji, S.; Speight, P.M. An Immunohistochemical Study of Oral Submucous Fibrosis. J. Oral Pathol. Med. 1997, 26, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Saluja, T.S.; Ali, M.; Mishra, P.; Kumar, V.; Singh, S.K. Prognostic Value of Cancer Stem Cell Markers in Potentially Malignant Disorders of Oral Mucosa: A Meta-Analysis. Cancer Epidemiol Biomark. Prev. 2019, 28, 144–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayanar, G.; Reddy, M.G.S.; Kakodkar, P.; Dony, E.C. Malignant Transformation Rate of Oral Submucous Fibrosis: A Systematic Review and Meta-Analysis. Oral Surg. 2023, 16, 220–227. [Google Scholar] [CrossRef]
Epithelial Markers | Cellular Distribution | Tissue Distribution | Intensity of Expression | No. of Positive Cases | IRS/Labeling Index/Quickscore/H-Score | NOS | ||||
---|---|---|---|---|---|---|---|---|---|---|
OSMF | OSMF + OSCC | OSMF | OSMF + OSCC | OSMF | OSMF + OSCC | OSMF | OSMF + OSCC | |||
Survivin [20] | Cytoplasm | Basal/parabasal and prickle cell layer | NA | Weak to moderate | Strong | 14/50 | 50/52 | 6.5 | 5.38 | 8 |
Dickkopf-1 [30] | Cytoplasm | NA | NA | NA | Weak | NA | NA | 6.7 | 100.3 | 6 |
COX-2 [24] | Cytoplasm | Basal and supra basal | Throughout epithelium and invading islands | Moderate to strong | Strong | 10/20 | 10/10 | |||
hTERT [21] | Cytoplasm and nucleus | Basal and suprabasal layers | Tumour islands | Moderate | Strong | 14/20 | 5/5 | 6.5 ± 1.981 | 7.2 ± 1.095 | 6 |
CTGF [26] | Cytoplasm and nucleus | Basal layer of epithelium | epithelium as well as tumor islands | NA | Strong | 35/40 | 10/10 | 3.75 | 6.7 | 7 |
Caspase-3 [23] | Nucleus | Basal | NA | Moderate | Weak | NA | NA | NA | NA | 6 |
Ki-67 [36] | Nucleus | Basal cell layer | NA | Weak | Strong | 0/10 | 10/10 | NA | NA | 6 |
Ki 67 [29] | Nucleus | NA | NA | Weak | NA | NA | NA | 28.23 ± 5.76 | 57.85 ± 8.51 | 7 |
MDM2 [24] | Nucleus | NA | Epithelium and infiltrating islands | Weak | Strong | 4/20 | 10/10 | NA | NA | 8 |
PTEN [25] | Nucleus | Basal and parabasal layer | Peripheral cells of tumour island | Weak | No | NA | NA | NA | NA | 6 |
p16 [36] | Nucleus | All layers of epithelium | NA | NA | No | NA | 0/10 | NA | NA | 6 |
p53 [24] | Nucleus | NA | Epithelium and infiltrating islands | Moderate | Strong | 9/20 | 10/10 | NA | NA | 8 |
p53 [27] | Nucleus | Basal layer | Epihelial cells limited to few focal areas | NA | Strong | 13/21 | 2/6 | NA | NA | 6 |
OCT-3 [33] | Cell Membrane | NA | NA | Weak | Strong | NA | NA | NA | NA | 6 |
β1 integrin [22] | Cell membrane | Basal and suprabasal layers | Peripheral and central cells of tumour islands | Moderate and strong | Strong | 55/81 | 16/16 | 6 | ||
CD1a [35] | Cell membrane | Basal cell layer | NA | NA | NA | NA | NA | NA | NA | 7 |
CD207 [35] | Cell membrane | Basal cell layer | NA | NA | NA | NA | NA | NA | NA | 7 |
CD303 [35] | Cell membrane | NA | NA | NA | NA | NA | NA | NA | NA | 7 |
Connective Tissue Markers | Cellular Distribution | Tissue Distribution | Intensity of Expression | Number of Positive Cases | IRS/Quickscore | NOS | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Non-Transformed Group | Transformed Group | Non-Transformed Group | Transformed Group | Non-Transformed Group | Transformed Group | Non-Transformed Group | Transformed Group | Non-Transformed Group | Transformed Group | ||
α-SMA [25] | Cytoplasm | Cytoplasm | Around vessel walls in myofibroblast | Myofibroblast in connective tissue stroma | Weak | Weak | 0/10 | 2/30 | NA | NA | 6 |
α-SMA [29] | Cytoplasm | Cytoplasm | Throughout the stroma | Neoplastic infiltrated islands | Weak | NA | NA | NA | NA | NA | 7 |
CTGF [26] | Nucleus and cytoplasm | Nucleus and cytoplasm | around blood vessels and in skeletal muscles | NA | NA | High | 40/40 | 10/10 | 4.03 | 6.7 | 7 |
CD105 [29] | Cytoplasm | Cytoplasm | NA | NA | NA | NA | NA | NA | NA | NA | 7 |
LO [34] | Cytoplasmic process of fibroblast and extracellularly in upper third of lamina propria | Extracellular matrix (focaly in the stromal reaction of the tumour directly adjacent to invading epithelila islands | Upper third of Lamina Propria | Stromal reaction of tumour directly adjacent to invading epithelium | Moderate and strong | Weak | 7/13 | 0/6 | NA | NA |
Egger’s Test (Epithelial Cytoplasmic Markers) | |||
---|---|---|---|
p-Value | CI (Lower Limit) | CI (Upper Limit) | |
Epithelial Cytoplasmic Markers (n = 4) | 0.538 | −5.878 | 6.760 |
Epithelial Nuclear Markers (n = 5) | 0.940 | −0.870 | 0.916 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohapatra, D.; Panda, S.; Mohanty, N.; Panda, S.; Lewkowicz, N.; Lapinska, B. Comparison of Immunohistochemical Markers in Oral Submucous Fibrosis and Oral Submucous Fibrosis Transformed to Oral Squamous Cell Carcinoma—A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2023, 24, 11771. https://doi.org/10.3390/ijms241411771
Mohapatra D, Panda S, Mohanty N, Panda S, Lewkowicz N, Lapinska B. Comparison of Immunohistochemical Markers in Oral Submucous Fibrosis and Oral Submucous Fibrosis Transformed to Oral Squamous Cell Carcinoma—A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences. 2023; 24(14):11771. https://doi.org/10.3390/ijms241411771
Chicago/Turabian StyleMohapatra, Diksha, Swagatika Panda, Neeta Mohanty, Saurav Panda, Natalia Lewkowicz, and Barbara Lapinska. 2023. "Comparison of Immunohistochemical Markers in Oral Submucous Fibrosis and Oral Submucous Fibrosis Transformed to Oral Squamous Cell Carcinoma—A Systematic Review and Meta-Analysis" International Journal of Molecular Sciences 24, no. 14: 11771. https://doi.org/10.3390/ijms241411771
APA StyleMohapatra, D., Panda, S., Mohanty, N., Panda, S., Lewkowicz, N., & Lapinska, B. (2023). Comparison of Immunohistochemical Markers in Oral Submucous Fibrosis and Oral Submucous Fibrosis Transformed to Oral Squamous Cell Carcinoma—A Systematic Review and Meta-Analysis. International Journal of Molecular Sciences, 24(14), 11771. https://doi.org/10.3390/ijms241411771