Glycosylation of Quercetin by Selected Entomopathogenic Filamentous Fungi and Prediction of Its Products’ Bioactivity
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Biotransformation Procedure
3.2. Product Samples
3.3. Analysis
3.4. Micro-Organisms
3.5. HPLC
3.6. Pharmacokinetics, Drug Nature, Biological Activity Prediction
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rubin Thapa, M.; Jae Kyung, S. A review on structure, modifications and structure-activity relation of quercetin and its derivatives. J. Microbiol. Biotechnol. 2020, 30, 11–20. [Google Scholar]
- Dymarska, M.; Janeczko, T.; Kostrzewa-Susłow, E. Glycosylation of 3-hydroxyflavone, 3-methoxyflavone, quercetin and baicalein in fungal cultures of the genus Isaria. Molecules 2018, 23, 2477. [Google Scholar] [CrossRef] [Green Version]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Petersen, B.; Egert, S.; Bosy-Westphal, A.; Müller, M.J.; Wolffram, S.; Hubbermann, E.M.; Rimbach, G.; Schwarz, K. Bioavailability of quercetin in humans and the influence of food matrix comparing quercetin capsules and different apple sources. Food Res. Int. 2016, 88, 159–165. [Google Scholar] [CrossRef]
- Strugała, P.; Tronina, T.; Huszcza, E.; Gabrielska, J. Bioactivity in vitro of quercetin glycoside obtained in Beauveria bassiana culture and its interaction with liposome membranes. Molecules 2017, 22, 1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miltonprabu, S.; Tomczyk, M.; Skalicka-Woźniak, K.; Rastrelli, L.; Daglia, M.; Nabavi, S.F.; Alavian, S.M.; Nabavi, S.M. Hepatoprotective effect of quercetin: From chemistry to medicine. Food Chem. Toxicol. 2017, 108, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Dajas, F.; Abin-Carriquiry, J.A.; Arredondo, F.; Blasina, F.; Echeverry, C.; Martínez, M.; Rivera, F.; Vaamonde, L. Quercetin in brain diseases: Potential and limits. Neurochem. Int. 2015, 89, 140–148. [Google Scholar] [CrossRef]
- Carvalho, D.; Paulino, M.; Polticelli, F.; Arredondo, F.; Williams, R.J.; Abin-Carriquiry, J.A. Structural evidence of quercetin multi-target bioactivity: A reverse virtual screening strategy. Eur. J. Pharm. Sci. 2017, 106, 393–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Sun, C.; Mao, L.; Ma, P.; Liu, F.; Yang, J.; Gao, Y. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Technol. 2016, 56, 21–38. [Google Scholar] [CrossRef]
- Suganthy, N.; Devi, K.P.; Nabavi, S.F.; Braidy, N.; Nabavi, S.M. Bioactive effects of quercetin in the central nervous system: Focusing on the mechanisms of actions. Biomed. Pharmacother. 2016, 84, 892–908. [Google Scholar] [CrossRef] [PubMed]
- Rajanandh, M.; Satishkumar, M.; Elango, K.; Suresh, B. Moringa oleifera Lam. A herbal medicine for hyperlipidemia: A pre–clinical report. Asian Pac. J. Trop. Dis. 2012, 2, S790–S795. [Google Scholar] [CrossRef]
- Jayachandran, M.; Zhang, T.; Ganesan, K.; Xu, B.; Chung, S.S.M. Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 2018, 829, 112–120. [Google Scholar] [CrossRef]
- Cao, H.; Xu, H.; Zhu, G.; Liu, S. Isoquercetin ameliorated hypoxia/reoxygenation-induced H9C2 cardiomyocyte apoptosis via a mitochondrial-dependent pathway. Biomed. Pharmacother. 2017, 95, 938–943. [Google Scholar] [CrossRef]
- Wang, C.-P.; Li, J.-L.; Zhang, L.-Z.; Zhang, X.-C.; Yu, S.; Liang, X.-M.; Ding, F.; Wang, Z.-W. Isoquercetin protects cortical neurons from oxygen–glucose deprivation–reperfusion induced injury via suppression of TLR4–NF-κB signal pathway. Neurochem. Int. 2013, 63, 741–749. [Google Scholar] [CrossRef]
- Lee, C.W.; Seo, J.Y.; Lee, J.; Choi, J.W.; Cho, S.; Bae, J.Y.; Sohng, J.K.; Kim, S.O.; Kim, J.; Park, Y.I. 3-O-Glucosylation of quercetin enhances inhibitory effects on the adipocyte differentiation and lipogenesis. Biomed. Pharmacother. 2017, 95, 589–598. [Google Scholar] [CrossRef]
- Wen, J.; Liu, B.; Yuan, E.; Ma, Y.; Zhu, Y. Preparation and physicochemical properties of the complex of naringenin with hydroxypropyl-β-cyclodextrin. Molecules 2010, 15, 4401–4407. [Google Scholar] [CrossRef] [Green Version]
- Pulley, G.N. Solubility of naringin in water. Ind. Eng. Chem. Anal. Ed. 1936, 8, 360. [Google Scholar] [CrossRef]
- Suzuki, Y.; Suzuki, K.; Yoneyama, M.; Miyake, T. 4G-alpha-D-glucopyranosyl Rutin, and Its Preparation and Uses. U.S. Patent No. 5,171,573, 15 December 1992. [Google Scholar]
- Saija, A.; Tomaino, A.; Trombetta, D.; Luisa Pellegrino, M.; Tita, B.; Messina, C.; Bonina, F.P.; Rocco, C.; Nicolosi, G.; Castelli, F. ‘In vitro’ antioxidant and photoprotective properties and interaction with model membranes of three new quercetin esters. Eur. J. Pharm. Biopharm. 2003, 56, 167–174. [Google Scholar] [CrossRef]
- Hollman, P.C.; Bijsman, M.N.; Van Gameren, Y.; Cnossen, E.P.; De Vries, J.H.; Katan, M.B. The sugar moiety is a major determinant of the absorption of dietary flavonoid glycosides in man. Free Radic. Res. 1999, 31, 569–573. [Google Scholar] [CrossRef]
- Reinboth, M.; Wolffram, S.; Abraham, G.; Ungemach, F.R.; Cermak, R. Oral bioavailability of quercetin from different quercetin glycosides in dogs. Br. J. Nutr. 2010, 104, 198–203. [Google Scholar] [CrossRef] [Green Version]
- Morand, C.; Manach, C.; Crespy, V.; Remesy, C. Quercetin 3-O-β-glucoside is better absorbed than other quercetin forms and is not present in rat plasma. Free Radic. Res. 2000, 33, 667–676. [Google Scholar] [CrossRef]
- Lairson, L.; Henrissat, B.; Davies, G.; Withers, S. Glycosyltransferases: Structures, functions, and mechanisms. Annu. Rev. Biochem. 2008, 77, 521–555. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Zhang, L.; Wang, C.; Wang, X.; Xu, Y.-m.; Yu, H.; Wu, P.; Li, S.; Han, L.; Gunatilaka, A.L. Methylglucosylation of aromatic amino and phenolic moieties of drug-like biosynthons by combinatorial biosynthesis. Proc. Natl. Acad. Sci. USA 2018, 115, E4980–E4989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, L.; Zhang, L.; Bai, J.; Yue, Q.; Zhang, M.; Li, J.; Wang, C.; Xu, Y. Methylglucosylation of phenolic compounds by fungal glycosyltransferase-methyltransferase functional modules. J. Agric. Food Chem. 2019, 67, 8573–8580. [Google Scholar] [CrossRef] [PubMed]
- Veitch, N.C.; Grayer, R.J. Flavonoids and their glycosides, including anthocyanins. Nat. Prod. Rep. 2011, 28, 1626–1695. [Google Scholar] [CrossRef]
- He, B.; Bai, X.; Tan, Y.; Xie, W.; Feng, Y.; Yang, G.-Y. Glycosyltransferases: Mining, engineering and applications in biosynthesis of glycosylated plant natural products. Synth. Syst. Biotechnol. 2022, 7, 602–620. [Google Scholar] [CrossRef]
- Zhan, J.; Gunatilaka, A.L. Microbial transformation of curvularin. J. Nat. Prod. 2005, 68, 1271–1273. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-Y.; Qian, L.-W.; Zhang, J.; Liu, J.-H.; Yu, B.-Y. New approaches to the structural modification of olean-type pentacylic triterpenes via microbial oxidation and glycosylation. Tetrahedron 2011, 67, 4206–4211. [Google Scholar] [CrossRef]
- Zhang, W.; Ye, M.; Zhan, J.; Chen, Y.; Guo, D. Microbial glycosylation of four free anthraquinones by Absidia coerulea. Biotechnol. Lett. 2004, 26, 127–131. [Google Scholar] [CrossRef]
- Bartmańska, A.; Tronina, T.; Huszcza, E. Transformation of 8-prenylnaringenin by Absidia coerulea and Beauveria bassiana. Bioorg. Med. Chem. Lett. 2012, 22, 6451–6453. [Google Scholar] [CrossRef]
- Dou, F.; Wang, Z.; Li, G.; Dun, B. Microbial Transformation of Flavonoids by Isaria fumosorosea ACCC 37814. Molecules 2019, 24, 1028. [Google Scholar] [CrossRef] [Green Version]
- Kozłowska, E.; Dymarska, M.; Kostrzewa-Susłow, E.; Janeczko, T. Cascade biotransformation of estrogens by Isaria fumosorosea KCh J2. Sci. Rep. 2019, 9, 10734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dymarska, M.; Janeczko, T.; Kostrzewa-Susłow, E. Glycosylation of methoxylated flavonoids in the cultures of Isaria fumosorosea KCH J2. Molecules 2018, 23, 2578. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Zhang, P.; Cui, Y.; Li, K.; Qiao, X.; Zhang, Y.T.; Li, S.M.; Cox, R.J.; Wu, B.; Ye, M. Regio-and Stereospecific O-Glycosylation of Phenolic Compounds Catalyzed by a Fungal Glycosyltransferase from Mucor hiemalis. Adv. Synth. Catal. 2017, 359, 995–1006. [Google Scholar] [CrossRef]
- Xie, K.; Dou, X.; Chen, R.; Chen, D.; Fang, C.; Xiao, Z.; Dai, J. Two novel fungal phenolic UDP glycosyltransferases from Absidia coerulea and Rhizopus japonicus. Appl. Environ. Microbiol. 2017, 83, e03103-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackenzie, P.I.; Owens, I.S.; Burchell, B.; Bock, K.W.; Bairoch, A.; Belanger, A.; Fournel-Gigleux, S.; Green, M.; Hum, D.W.; Iyanagi, T. The UDP glycosyltransferase gene superfamily: Recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 1997, 7, 255–269. [Google Scholar] [CrossRef]
- Braemer, R.; Tsoutsias, Y.; Hurabielle, M.; Paris, M. Biotransformations of quercetin and apigenin by a cell suspension culture of Cannabis sativa. Planta Med. 1987, 53, 225–226. [Google Scholar] [CrossRef]
- Popova, P.; Zarev, Y.; Ionkova, I. Biotransformation of quercetin, kaempferol and apigenin to monoglycosylated derivatives by in vitro suspension cultures of Astragalus vesicarius ssp. carniolicus. Pharmacia 2021, 68, 307–311. [Google Scholar] [CrossRef]
- Zi, J.; Valiente, J.; Zeng, J.; Zhan, J. Metabolism of quercetin by Cunninghamella elegans ATCC 9245. J. Biosci. Bioeng. 2011, 112, 360–362. [Google Scholar] [CrossRef]
- Jia-Qi, X.; Ni, F.; Bo-Yang, Y.; Qian-Qian, W.; Zhang, J. Biotransformation of quercetin by Gliocladium deliquescens NRRL 1086. Chin. J. Nat. Med. 2017, 15, 615–624. [Google Scholar]
- Rao, K.V.; Weisner, N.T. Microbial transformation of quercetin by Bacillus cereus. Appl. Environ. Microbiol. 1981, 42, 450–452. [Google Scholar] [CrossRef] [PubMed]
- Rao, J.; Sharma, N.; Hamilton, J.; Boyd, D.; Cooper, J. Biotransformation of the pentahydroxy flavone quercetin by Rhizobium loti and Bradyrhizobium strains (Lotus). Appl. Environ. Microbiol. 1991, 57, 1563–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosny, M.; Dhar, K.; Rosazza, J.P. Hydroxylations and methylations of quercetin, fisetin, and catechin by Streptomyces griseus. J. Nat. Prod. 2001, 64, 462–465. [Google Scholar] [CrossRef]
- Zhan, J.; Leslie Gunatilaka, A. Selective 4′-O-methylglycosylation of the pentahydroxy-flavonoid quercetin by Beauveria bassiana ATCC 7159. Biocatal. Biotransform. 2006, 24, 396–399. [Google Scholar] [CrossRef]
- Ren, J.; Tang, W.; Barton, C.D.; Price, O.M.; Mortensen, M.W.; Phillips, A.; Wald, B.; Hulme, S.E.; Stanley, L.P.; Hevel, J. A highly versatile fungal glucosyltransferase for specific production of quercetin-7-O-β-d-glucoside and quercetin-3-O-β-d-glucoside in different hosts. Appl. Microbiol. Biotechnol. 2022, 106, 227–245. [Google Scholar] [CrossRef]
- Sordon, S.; Popłoński, J.; Tronina, T.; Huszcza, E. Microbial glycosylation of daidzein, genistein and biochanin A: Two new glucosides of biochanin A. Molecules 2017, 22, 81. [Google Scholar] [CrossRef] [Green Version]
- Sordon, S.; Popłoński, J.; Tronina, T.; Huszcza, E. Regioselective O-glycosylation of flavonoids by fungi Beauveria bassiana, Absidia coerulea and Absidia glauca. Bioorg. Chem. 2019, 93, 102750. [Google Scholar] [CrossRef]
- Kozłowska, E.; Sycz, J.; Janeczko, T. Hydroxylation of Progesterone and Its Derivatives by the Entomopathogenic Strain Isaria farinosa KCh KW1. 1. Int. J. Mol. Sci. 2022, 23, 7015. [Google Scholar] [CrossRef]
- Krawczyk-Łebek, A.; Dymarska, M.; Janeczko, T.; Kostrzewa-Susłow, E. Glycosylation of methylflavonoids in the cultures of entomopathogenic filamentous fungi as a tool for obtaining new biologically active compounds. Int. J. Mol. Sci. 2022, 23, 5558. [Google Scholar] [CrossRef]
- Kozłowska, E.; Urbaniak, M.; Hoc, N.; Grzeszczuk, J.; Dymarska, M.; Stępień, Ł.; Pląskowska, E.; Kostrzewa-Susłow, E.; Janeczko, T. Cascade biotransformation of dehydroepiandrosterone (DHEA) by Beauveria species. Sci. Rep. 2018, 8, 13449. [Google Scholar] [CrossRef] [Green Version]
- Łużny, M.; Tronina, T.; Kozłowska, E.; Kostrzewa-Susłow, E.; Janeczko, T. Biotransformation of 5, 7-Methoxyflavones by Selected Entomopathogenic Filamentous Fungi. J. Agric. Food Chem. 2021, 69, 3879–3886. [Google Scholar] [CrossRef]
- Krawczyk-Łebek, A.; Dymarska, M.; Janeczko, T.; Kostrzewa-Susłow, E. 4’-Methylflavanone glycosides obtained using biotransformation in the entomopathogenic filamentous fungi cultures as potential anticarcinogenic, antimicrobial, and hepatoprotective agents. Int. J. Mol. Sci. 2022, 23, 5373. [Google Scholar] [CrossRef] [PubMed]
- Łużny, M.; Tronina, T.; Kozłowska, E.; Dymarska, M.; Popłoński, J.; Łyczko, J.; Kostrzewa-Susłow, E.; Janeczko, T. Biotransformation of methoxyflavones by selected entomopathogenic filamentous fungi. Int. J. Mol. Sci. 2020, 21, 6121. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Wang, X. Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Lett. 2009, 583, 3303–3309. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Han, W.; Xie, C.; Hou, J.; Fang, Q.; Gu, J.; Wang, P.G.; Cheng, J. Comparing the acceptor promiscuity of a Rosa hybrida glucosyltransferase RhGT1 and an engineered microbial glucosyltransferase OleDPSA toward a small flavonoid library. Carbohydr. Res. 2013, 368, 73–77. [Google Scholar] [CrossRef]
- Pandey, R.P.; Gurung, R.B.; Parajuli, P.; Koirala, N.; Sohng, J.K. Assessing acceptor substrate promiscuity of YjiC-mediated glycosylation toward flavonoids. Carbohydr. Res. 2014, 393, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Dymarska, M.; Grzeszczuk, J.; Urbaniak, M.; Janeczko, T.; Pląskowska, E.; Stępień, Ł.; Kostrzewa-Susłow, E. Glycosylation of 6-methylflavone by the strain Isaria fumosorosea KCH J2. PLoS ONE 2017, 12, e0184885. [Google Scholar] [CrossRef]
- Cermak, R.; Landgraf, S.; Wolffram, S. The bioavailability of quercetin in pigs depends on the glycoside moiety and on dietary factors. J. Nutr. 2003, 133, 2802–2807. [Google Scholar] [CrossRef] [Green Version]
- Manach, C.; Morand, C.; Crespy, V.; Demigné, C.; Texier, O.; Régérat, F.; Rémésy, C. Quercetin is recovered in human plasma as conjugated derivatives which retain antioxidant properties. FEBS Lett. 1998, 426, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Ader, P.; Wessmann, A.; Wolffram, S. Bioavailability and metabolism of the flavonol quercetin in the pig. Free Radic. Biol. Med. 2000, 28, 1056–1067. [Google Scholar] [CrossRef]
- Day, A.J.; DuPont, M.S.; Ridley, S.; Rhodes, M.; Rhodes, M.J.; Morgan, M.R.; Williamson, G. Deglycosylation of flavonoid and isoflavonoid glycosides by human small intestine and liver β-glucosidase activity. FEBS Lett. 1998, 436, 71–75. [Google Scholar] [CrossRef] [Green Version]
- Almeida, A.F.; Borge, G.I.A.; Piskula, M.; Tudose, A.; Tudoreanu, L.; Valentová, K.; Williamson, G.; Santos, C.N. Bioavailability of quercetin in humans with a focus on interindividual variation. Compr. Rev. Food Sci. Food Saf. 2018, 17, 714–731. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.; Tam, C.C.; Rolston, M.; Alves, P.; Chen, L.; Meng, S.; Hong, H.; Chang, S.K.C.; Yokoyama, W. Quercetin Ameliorates Insulin Resistance and Restores Gut Microbiome in Mice on High-Fat Diets. Antioxidants 2021, 10, 1251. [Google Scholar] [CrossRef]
- Wang, T.; Liu, L.; Deng, J.; Jiang, Y.; Yan, X.; Liu, W. Analysis of the mechanism of action of quercetin in the treatment of hyperlipidemia based on metabolomics and intestinal flora. Food Funct. 2023, 14, 2112–2127. [Google Scholar] [CrossRef] [PubMed]
- Sim, G.-S.; Lee, B.-C.; Cho, H.S.; Lee, J.W.; Kim, J.-H.; Lee, D.-H.; Kim, J.-H.; Pyo, H.-B.; Moon, D.C.; Oh, K.-W. Structure activity relationship of antioxidative property of flavonoids and inhibitory effect on matrix metalloproteinase activity in UVA-irradiated human dermal fibroblast. Arch. Pharm. Res. 2007, 30, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Chaillou, L.L.; Nazareno, M.A. New method to determine antioxidant activity of polyphenols. J. Agric. Food Chem. 2006, 54, 8397–8402. [Google Scholar] [CrossRef] [PubMed]
- Safdar, M.N.; Kausar, T.; Jabbar, S.; Mumtaz, A.; Ahad, K.; Saddozai, A.A. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. J. Food Drug Anal. 2017, 25, 488–500. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-S.; Lee, J.-H. Correlation between solid content and antioxidant activities in Umbelliferae salad plants. Prev. Nutr. Food Sci. 2020, 25, 84. [Google Scholar] [CrossRef]
- Silalahi, J. Anticancer and health protective properties of citrus fruit components. Asia Pac. J. Clin. Nutr. 2002, 11, 79–84. [Google Scholar] [CrossRef]
- Itoh, T.; Imano, M.; Nishida, S.; Tsubaki, M.; Mizuguchi, N.; Hashimoto, S.; Ito, A.; Satou, T. Increased apoptotic neuronal cell death and cognitive impairment at early phase after traumatic brain injury in aged rats. Brain Struct. Funct. 2013, 218, 209–220. [Google Scholar] [CrossRef]
- Klinkenberg, I.; Sambeth, A.; Blokland, A. Acetylcholine and attention. Behav. Brain Res. 2011, 221, 430–442. [Google Scholar] [CrossRef]
- McCann, S.K.; Roulston, C.L. NADPH oxidase as a therapeutic target for neuroprotection against ischaemic stroke: Future perspectives. Brain Sci. 2013, 3, 561–598. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Kim, K.J.; Kim, S. Comparative effect of quercetin and quercetin-3-O-β-d-glucoside on fibrin polymers, blood clots, and in rodent models. J. Biochem. Mol. Toxicol. 2016, 30, 548–558. [Google Scholar] [CrossRef] [PubMed]
- Michala, A.S.; Pritsa, A. Quercetin: A Molecule of Great Biochemical and Clinical Value and Its Beneficial Effect on Diabetes and Cancer. Diseases 2022, 10, 37. [Google Scholar] [CrossRef]
- Ruiz, M.; Fernández, M.; Pico, Y.; Manes, J.; Asensi, M.; Carda, C.; Asensio, G.; Estrela, J. Dietary administration of high doses of pterostilbene and quercetin to mice is not toxic. J. Agric. Food Chem. 2009, 57, 3180–3186. [Google Scholar] [CrossRef] [PubMed]
- Harwood, M.; Danielewska-Nikiel, B.; Borzelleca, J.; Flamm, G.; Williams, G.; Lines, T. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem. Toxicol. 2007, 45, 2179–2205. [Google Scholar] [CrossRef]
- Kozłowska, E.; Hoc, N.; Sycz, J.; Urbaniak, M.; Dymarska, M.; Grzeszczuk, J.; Kostrzewa-Susłow, E.; Stępień, Ł.; Pląskowska, E.; Janeczko, T. Biotransformation of steroids by entomopathogenic strains of Isaria farinosa. Microb. Cell Fact. 2018, 17, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbaniak, M.; Waśkiewicz, A.; Trzebny, A.; Koczyk, G.; Stępień, Ł. Cyclodepsipeptide biosynthesis in hypocreales fungi and sequence divergence of the non-ribosomal peptide synthase genes. Pathogens 2020, 9, 552. [Google Scholar] [CrossRef] [PubMed]
- Durairaj, P.; Malla, S.; Nadarajan, S.P.; Lee, P.-G.; Jung, E.; Park, H.H.; Kim, B.-G.; Yun, H. Fungal cytochrome P450 monooxygenases of Fusarium oxysporum for the synthesis of ω-hydroxy fatty acids in engineered Saccharomyces cerevisiae. Microb. Cell Fact. 2015, 14, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Lu, F.; Sun, T.; Du, L. Expression of ksdD gene encoding 3-ketosteroid-∆1-dehydrogenase from Arthrobacter simplex in Bacillus subtilis. Lett. Appl. Microbiol. 2007, 44, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Koshimura, M.; Utsukihara, T.; Hara, A.; Mizobuchi, S.; Horiuchi, C.A.; Kuniyoshi, M. Hydroxylation of steroid compounds by Gelasinospora retispora. J. Mol. Catal. B Enzym. 2010, 67, 72–77. [Google Scholar] [CrossRef]
- Kozłowska, E.; Urbaniak, M.; Kancelista, A.; Dymarska, M.; Kostrzewa-Susłow, E.; Stępień, Ł.; Janeczko, T. Biotransformation of dehydroepiandrosterone (DHEA) by environmental strains of filamentous fungi. RSC Adv. 2017, 7, 31493–31501. [Google Scholar] [CrossRef] [Green Version]
Strain | Time of Biotransformation [Days] | Conversion [%] after 1, 3, 7 and 10 Days of Biotransformation | ||||
---|---|---|---|---|---|---|
Substrate | Products | Other Products | ||||
1 | 2 | 3 | 4 | |||
Beauveria bassiana KCh J1.5 | 1 | 64 | 36 | - | - | - |
3 | 30 | 70 | - | - | - | |
7 | 4 | 96 | - | - | - | |
10 | 1 | 99 | - | - | - | |
Beauveria bassiana KCh BBT | 1 | 68 | 32 | - | - | - |
3 | 44 | 55 | - | - | - | |
7 | 32 | 68 | - | - | - | |
10 | 28 | 72 | - | - | - | |
Beauveria bassiana KCh J3.2 | 1 | 95 | - | - | - | 5 |
3 | 1 | 4 | - | - | 95 | |
Beauveria bassiana KCh J2.1 | 10 | 91 | 2 | - | - | 7 |
Beauveria bassiana KCh J1 | 10 | 95 | - | - | - | 5 |
Beauveria caledonica KCh J3.3 | 1 | 97 | 3 | - | - | - |
3 | 80 | 20 | - | - | - | |
7 | 68 | 32 | - | - | - | |
10 | 50 | 13 | - | - | 37 | |
Beauveria caledonica KCh J3.4 | 10 | 99 | - | - | - | 1 |
Isaria farinosa KCh KW 1.1 | 1 | 96 | 0.4 | 0.1 | 0.6 | 3 |
3 | 91 | 1.5 | 0.8 | 1.9 | 4 | |
7 | 86 | 2.9 | 1.5 | 3.5 | 6 | |
10 | 79 | 2.8 | 0.9 | 3.5 | 13 | |
Isaria tenuipes MU35 | 1 | 80 | 1.7 | 2 | 16 | - |
3 | 61 | 2.6 | 3.3 | 33 | - | |
7 | 13 | 4 | 7 | 70 | - | |
10 | 10 | 6 | 12 | 67 | 4 | |
Isaria tenuipes CYS30 | 1 | 81 | 1.5 | 3.2 | 13 | - |
3 | 43 | 4.2 | 7 | 43 | - | |
7 | 19 | 6 | 10 | 62 | 3 | |
10 | 6 | 7 | 13 | 69 | 5 | |
Metapochonia bulbillosa CYS17 | 10 | 96 | - | - | - | 4 |
Beauveria feline ENC3 | 10 | 99 | - | - | - | 1 |
Lecanicillium lecanii DSM 63098 | 10 | 99 | - | - | - | 1 |
Lecanicillium lecanii NK3 | 10 | 99 | - | - | - | 1 |
Metarhizium anisopliae MU4 | 10 | 10 | - | - | 4 | 86 |
Activity/Parameter | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Lipophilicity (Consensus Log Po/w) | 1.23 | −0.02 | 0.00 | −0.48 |
Water solubility | 0.17 mg/mL; 5.73 × 10−4 mol/L | 3.03 mg/mL; 6.32 × 10−3 mol/L | 3.03 mg/mL; 6.32 × 10−3 mol/L | 14.30 mg/mL; 3.08 × 10−2 mol/L |
Gastrointestinal absorption | High | Low | Low | Low |
BBB permeant | No | No | No | No |
P-gp substrate | No | No | No | No |
CYP1A2 inhibitor | Yes | No | No | No |
CYP2C19 inhibitor | No | No | No | No |
CYP2C9 inhibitor | No | No | No | No |
CYP2D6 inhibitor | Yes | No | No | No |
CYP3A4 inhibitor | Yes | No | No | No |
Log Kp (skin permeation) | −7.05 cm/s | −8.97 cm/s | −8.97 cm/s | −8.88 cm/s |
Bioavailability score | 0.55 | 0.17 | 0.17 | 0.17 |
Activity | 1 | 2 | 3 | 4 | ||||
---|---|---|---|---|---|---|---|---|
Pa | Pi | Pa | Pi | Pa | Pi | Pa | Pi | |
Membrane permeability inhibitor | 0.938 | 0.003 | 0.978 | 0.001 | 0.979 | 0.001 | 0.981 | 0.001 |
Membrane integrity agonist | 0.973 | 0.002 | 0.977 | 0.002 | 0.983 | 0.001 | 0.989 | 0.001 |
Hemostatic | 0.771 | 0.003 | 0.977 | 0.001 | 0.979 | 0.001 | 0.987 | 0.001 |
Free radical scavenger | 0.811 | 0.003 | 0.973 | 0.001 | 0.978 | 0.001 | 0.978 | 0.001 |
Monophenol monooxygenase inhibitor | 0.792 | 0.003 | 0.970 | 0.001 | 0.981 | 0.001 | 0.983 | 0.001 |
Cardioprotectant | 0.833 | 0.003 | 0.968 | 0.001 | 0.974 | 0.001 | 0.984 | 0.001 |
Anticarcinogenic | 0.757 | 0.007 | 0.961 | 0.001 | 0.969 | 0.001 | 0.965 | 0.001 |
Hepatoprotectant | 0.706 | 0.007 | 0.955 | 0.002 | 0.964 | 0.001 | 0.961 | 0.001 |
Chemopreventive | 0.717 | 0.006 | 0.949 | 0.002 | 0.954 | 0.002 | 0.956 | 0.002 |
Vasoprotector | 0.824 | 0.004 | 0.948 | 0.002 | 0.934 | 0.002 | 0.947 | 0.002 |
UDP-glucuronosyltransferase substrate | 0.857 | 0.004 | 0.936 | 0.003 | 0.906 | 0.003 | 0.954 | 0.002 |
Lipid peroxidase inhibitor | 0.788 | 0.004 | 0.934 | 0.002 | 0.943 | 0.002 | 0.976 | 0.002 |
Proliferative diseases treatment | 0.614 | 0.010 | 0.913 | 0.002 | 0.929 | 0.002 | 0.921 | 0.002 |
Capillary fragility treatment | 0.737 | 0.001 | 0.882 | 0.000 | 0.888 | 0.000 | 0.913 | 0.000 |
Antioxidant | 0.872 | 0.003 | 0.846 | 0.003 | 0.877 | 0.003 | 0.913 | 0.003 |
Antimutagenic | 0.940 | 0.001 | 0.720 | 0.005 | 0.714 | 0.006 | 0.763 | 0.004 |
Name of Fungal Strain | Identified Fungal Species | Sequence Identity | Accession Numbers |
---|---|---|---|
CYS17 | Metapochonia bulbillosa | 99% identity with Metapochonia bulbillosa, | Acc. Numbers: OK661050.1, DQ132810.1, MK164206.1 |
CYS30 | Isaria tenuipes | 100% identity with Isaria tenuipes, | Acc. Numbers: MT966070.1, MT966058.1, MT966055.1 |
MU35 | Isaria tenuipes | 100% identity with Isaria tenuipes, | Acc. Numbers: MT966070.1, MT966058.1, MT966055.1 |
MU4 | Metarhizium anisopliae | 100% identity with Metarhizium anisopliae, | Acc. Numbers: FJ177507.1, and 99%: FJ177475.1, EU307928.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tronina, T.; Łużny, M.; Dymarska, M.; Urbaniak, M.; Kozłowska, E.; Piegza, M.; Stępień, Ł.; Janeczko, T. Glycosylation of Quercetin by Selected Entomopathogenic Filamentous Fungi and Prediction of Its Products’ Bioactivity. Int. J. Mol. Sci. 2023, 24, 11857. https://doi.org/10.3390/ijms241411857
Tronina T, Łużny M, Dymarska M, Urbaniak M, Kozłowska E, Piegza M, Stępień Ł, Janeczko T. Glycosylation of Quercetin by Selected Entomopathogenic Filamentous Fungi and Prediction of Its Products’ Bioactivity. International Journal of Molecular Sciences. 2023; 24(14):11857. https://doi.org/10.3390/ijms241411857
Chicago/Turabian StyleTronina, Tomasz, Mateusz Łużny, Monika Dymarska, Monika Urbaniak, Ewa Kozłowska, Michał Piegza, Łukasz Stępień, and Tomasz Janeczko. 2023. "Glycosylation of Quercetin by Selected Entomopathogenic Filamentous Fungi and Prediction of Its Products’ Bioactivity" International Journal of Molecular Sciences 24, no. 14: 11857. https://doi.org/10.3390/ijms241411857
APA StyleTronina, T., Łużny, M., Dymarska, M., Urbaniak, M., Kozłowska, E., Piegza, M., Stępień, Ł., & Janeczko, T. (2023). Glycosylation of Quercetin by Selected Entomopathogenic Filamentous Fungi and Prediction of Its Products’ Bioactivity. International Journal of Molecular Sciences, 24(14), 11857. https://doi.org/10.3390/ijms241411857