Effects of Human Leukocyte Antigen DRB1 Genetic Polymorphism on Anti-Cyclic Citrullinated Peptide (ANTI-CCP) and Rheumatoid Factor (RF) Expression in Rheumatoid Arthritis (RA) Patients
Abstract
:1. Introduction
2. Results
2.1. Subjects and GWAS
2.2. Genotype and Allele Frequencies of HLA-DRB1 rs9270481 SNP in RA Patients with/without RF and Anti-CCP Biomarkers
2.3. Analysis of Soluble HLA-DRB1 Molecules in the Serum of RA Patients
2.4. Correlation between Inflammatory Status and RA Patients with/without RF and Anti-CCP Biomarkers
2.5. Biological Pathways and Functions Relevant to HLA-DRB1
3. Discussion
4. Material and Methods
4.1. Data Mining
4.2. Single-Nucleotide-Polymorphism (SNP) Data Processing
4.3. Genome-Wide Association Study (GWAS)
4.4. Determination of Soluble HLA-DRB1 Molecules in the Serum of RA Patients
4.5. Explore the Relationship between Inflammatory Status and RA Patients with/without RF and Anti-CCP Biomarkers
4.6. Analysis of Biological Pathway
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cross, M.; Smith, E.; Hoy, D.; Carmona, L.; Wolfe, F.; Vos, T.; Williams, B.; Gabriel, S.; Lassere, M.; Johns, N.; et al. The global burden of rheumatoid arthritis: Estimates from the global burden of disease 2010 study. Ann. Rheum. Dis. 2014, 73, 1316–1322. [Google Scholar]
- Myasoedova, E.; Crowson, C.S.; Kremers, H.M.; Therneau, T.M.; Gabriel, S.E. Is the incidence of rheumatoid arthritis rising?: Results from Olmsted County, Minnesota, 1955–2007. Arthritis Rheum. 2010, 62, 1576–1582. [Google Scholar]
- Hunter, T.M.; Boytsov, N.N.; Zhang, X.; Schroeder, K.; Michaud, K.; Araujo, A.B. Prevalence of rheumatoid arthritis in the United States adult population in healthcare claims databases, 2004–2014. Rheumatol. Int. 2017, 37, 1551–1557. [Google Scholar]
- Eriksson, J.K.; Neovius, M.; Ernestam, S.; Lindblad, S.; Simard, J.F.; Askling, J. Incidence of rheumatoid arthritis in Sweden: A nationwide population-based assessment of incidence, its determinants, and treatment penetration. Arthritis Care Res. 2013, 65, 870–878. [Google Scholar]
- England, B.R.; Sayles, H.; Michaud, K.; Caplan, L.; Davis, L.A.; Cannon, G.W.; Sauer, B.C.; Solow, E.B.; Reimold, A.M.; Kerr, G.S.; et al. Cause-Specific Mortality in Male US Veterans with Rheumatoid Arthritis. Arthritis Care Res. 2016, 68, 36–45. [Google Scholar]
- Sparks, J.A.; Chang, S.C.; Liao, K.P.; Lu, B.; Fine, A.R.; Solomon, D.H.; Costenbader, K.H.; Karlson, E.W. Rheumatoid Arthritis and Mortality Among Women During 36 Years of Prospective Follow-Up: Results from the Nurses’ Health Study. Arthritis Care Res. 2016, 68, 753–762. [Google Scholar]
- Wolfe, F.; Zwillich, S.H. The long-term outcomes of rheumatoid arthritis: A 23-year prospective, longitudinal study of total joint replacement and its predictors in 1600 patients with rheumatoid arthritis. Arthritis Rheum. 1998, 41, 1072–1082. [Google Scholar]
- Harris, E.D., Jr. Rheumatoid arthritis. Pathophysiology and implications for therapy. N. Engl. J. Med. 1990, 322, 1277–1289. [Google Scholar]
- Yamamoto, K.; Yamada, R. Genome-wide single nucleotide polymorphism analyses of rheumatoid arthritis. J. Autoimmun. 2015, 25, 12–15. [Google Scholar]
- Katz, P.P.; Morris, A.; Yelin, E.H. Prevalence and predictors of disability in valued life activities among individuals with rheumatoid arthritis. Ann. Rheum. Dis. 2006, 65, 763–769. [Google Scholar] [CrossRef]
- Matcham, F.; Scott, I.C.; Rayner, L.; Hotopf, M.; Kingsley, G.H.; Norton, S.; Scott, D.L.; Steer, S. The impact of rheumatoid arthritis on quality-of-life assessed using the SF-36: A systematic review and meta-analysis. Semin. Arthritis Rheum. 2014, 44, 123–130. [Google Scholar]
- Eberhardt, K.; Larsson, B.M.; Nived, K.; Lindqvist, E. Work disability in rheumatoid arthritis--development over 15 years and evaluation of predictive factors over time. J. Rheumatol. 2007, 34, 481–487. [Google Scholar]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar]
- van Zeben, D.; Hazes, J.M.; Zwinderman, A.H.; Cats, A.; Schreuder, G.M.; D’Amaro, J.; Breedveld, F.C. Association of HLA-DR4 with a more progressive disease course in patients with rheumatoid arthritis. Results of a followup study. Arthritis Rheum. 1991, 34, 822–830. [Google Scholar]
- Wagner, U.; Kaltenhäuser, S.; Sauer, H.; Arnold, S.; Seidel, W.; Häntzschel, H.; Kalden, J.R.; Wassmuth, R. HLA markers and prediction of clinical course and outcome in rheumatoid arthritis. Arthritis Rheum. 1997, 40, 341–351. [Google Scholar]
- Ohnishi, Y.; Tanaka, T.; Ozaki, K.; Yamada, R.; Suzuki, H.; Nakamura, Y. A high-throughput SNP typing system for genome-wide association studies. J. Hum. Genet. 2001, 46, 471–477. [Google Scholar]
- Ozaki, K.; Ohnishi, Y.; Iida, A.; Sekine, A.; Yamada, R.; Tsunoda, T.; Sato, H.; Sato, H.; Hori, M.; Nakamura, Y.; et al. Functional SNPs in the lymphotoxin-alpha gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 2002, 32, 650–654. [Google Scholar]
- Suzuki, A.; Yamada, R.; Chang, X.; Tokuhiro, S.; Sawada, T.; Suzuki, M.; Nagasaki, M.; Nakayama-Hamada, M.; Kawaida, R.; Ono, M.; et al. Functional haplotypes of PADI4, encoding citrullinating enzyme peptidylarginine deiminase 4, are associated with rheumatoid arthritis. Nat. Genet. 2003, 34, 395–402. [Google Scholar]
- Shen, R.; Ren, X.; Jing, R.; Shen, X.; Chen, J.; Ju, S.; Yang, C. Rheumatoid Factor, Anti-Cyclic Citrullinated Peptide Antibody, C-Reactive Protein, and Erythrocyte Sedimentation Rate for the Clinical Diagnosis of Rheumatoid Arthritis. Lab. Med. 2015, 46, 226–229. [Google Scholar]
- Chen, S.Y.; Wan, L.; Huang, C.M.; Huang, Y.C.; Sheu, J.J.; Lin, Y.J.; Liu, S.P.; Lan, Y.C.; Lai, C.H.; Lin, C.W.; et al. Association of the C-285T and A5954G polymorphisms in the DNA repair gene OGG1 with the susceptibility of rheumatoid arthritis. Rheumatol. Int. 2012, 32, 1165–1169. [Google Scholar]
- Okada, Y.; Wu, D.; Trynka, G.; Raj, T.; Terao, C.; Ikari, K.; Kochi, Y.; Ohmura, K.; Suzuki, A.; Yoshida, S.; et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 2014, 506, 376–381. [Google Scholar] [PubMed] [Green Version]
- Eyre, S.; Bowes, J.; Diogo, D.; Lee, A.; Barton, A.; Martin, P.; Zhernakova, A.; Stahl, E.; Viatte, S.; McAllister, K.; et al. High-density genetic mapping identifies new susceptibility loci for rheumatoid arthritis. Nat. Genet. 2012, 44, 1336–1340. [Google Scholar] [CrossRef] [PubMed]
- Padyukov, L.; Seielstad, M.; Ong, R.T.; Ding, B.; Rönnelid, J.; Seddighzadeh, M.; Alfredsson, L.; Klareskog, L.; Epidemiological Investigation of Rheumatoid Arthritis (EIRA) study group. A genome-wide association study suggests contrasting associations in ACPA-positive versus ACPA-negative rheumatoid arthritis. Ann. Rheum. Dis. 2011, 70, 259–265. [Google Scholar] [PubMed]
- Knevel, R.; Gröndal, G.; Huizinga, T.W.; Visser, A.W.; Jónsson, H.; Víkingsson, A.; Geirsson, A.J.; Steinsson, K.; van der Helm-van Mil, A.H.M. Genetic predisposition of the severity of joint destruction in rheumatoid arthritis: A population-based study. Ann. Rheum. Dis. 2012, 71, 707–709. [Google Scholar] [PubMed]
- Orozco, G.; Eyre, S.; Hinks, A.; Ke, X.; Wellcome Trust Case Control consortium YEAR Consortium; Wilson, A.G.; Bax, D.E.; Morgan, A.W.; Emery, P.; Steer, S.; et al. Association of CD40 with rheumatoid arthritis confirmed in a large UK case-control study. Ann. Rheum. Dis. 2010, 69, 813–816. [Google Scholar] [CrossRef]
- Padyukov, L. Genetics of rheumatoid arthritis. Semin. Immunopathol. 2022, 44, 47–62. [Google Scholar]
- Ting, Y.T.; Petersen, J.; Ramarathinam, S.H.; Scally, S.W.; Loh, K.L.; Thomas, R.; Suri, A.; Baker, D.G.; Purcell, A.W.; Reid, H.H.; et al. The interplay between citrullination and HLA-DRB1 polymorphism in shaping peptide binding hierarchies in rheumatoid arthritis. J. Biol. Chem. 2018, 293, 3236–3251. [Google Scholar]
- Dedmon, L.E. The genetics of rheumatoid arthritis. Rheumatology 2020, 59, 2661–2670. [Google Scholar]
- Aletaha, D.; Smolen, J.S. Diagnosis and Management of Rheumatoid Arthritis: A Review. JAMA 2018, 320, 1360–1372. [Google Scholar]
- Wysocki, T.; Olesińska, M.; Paradowska-Gorycka, A. Current Understanding of an Emerging Role of HLA-DRB1 Gene in Rheumatoid Arthritis-From Research to Clinical Practice. Cells 2020, 9, 1127. [Google Scholar]
- Shiina, T.; Hosomichi, K.; Inoko, H.; Kulski, J.K. The HLA genomic loci map: Expression, interaction, diversity and disease. J. Hum. Genet. 2009, 54, 15–39. [Google Scholar]
- Rojas, J.M.; McArdle, S.E.; Horton, R.B.; Bell, M.; Mian, S.; Li, G.; Ali, S.A.; Rees, R.C. Peptide immunisation of HLA-DR-transgenic mice permits the identification of a novel HLA-DRbeta1*0101- and HLA-DRbeta1*0401-restricted epitope from p53. Cancer Immunol. Immunother. 2005, 54, 243–253. [Google Scholar] [CrossRef]
- Crux, N.B.; Elahi, S. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections? Front. Immunol. 2017, 8, 832. [Google Scholar]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar]
- Browning, B.L.; Zhou, Y.; Browning, S.R. A One-Penny Imputed Genome from Next-Generation Reference Panels. Am. J. Hum. Genet. 2018, 103, 338–348. [Google Scholar] [PubMed] [Green Version]
- Liu, T.Y.; Lin, C.F.; Wu, H.T.; Wu, Y.L.; Chen, Y.C.; Liao, C.C.; Chou, Y.P.; Chao, D.; Chang, Y.S.; Lu, H.F.; et al. Comparison of multiple imputation algorithms and verification using whole-genome sequencing in the CMUH genetic biobank. Biomedicine 2021, 11, 57–65. [Google Scholar]
- Liao, W.L.; Tsai, F.J. Personalized medicine in Type 2 Diabetes. Biomedicine 2014, 4, 8. [Google Scholar] [CrossRef]
- Liu, T.Y.; Liao, W.L.; Wang, T.Y.; Chan, C.J.; Chang, J.G.; Chen, Y.C.; Lu, H.F.; Yang, H.H.; Chen, S.Y.; Tsai, F.J. Genome-wide association study of hyperthyroidism based on electronic medical record from Taiwan. Front Med. 2022, 9, 830621. [Google Scholar]
- Achudhan, D.; Liu, S.C.; Lin, Y.Y.; Lee, H.P.; Wang, S.W.; Huang, W.C.; Wu, Y.C.; Kuo, Y.H.; Tang, C.H. Antcin K inhibits VEGF-dependent angiogenesis in human rheumatoid arthritis synovial fibroblasts. J. Food Biochem. 2022, 46, e14022. [Google Scholar]
- Tang, Y.H.; Wang, Y.H.; Chen, C.C.; Chan, C.J.; Tsai, F.J.; Chen, S.Y. Genetic and Functional Effects of Adiponectin in Type 2 Diabetes Mellitus Development. Int. J. Mol. Sci. 2022, 23, 13544. [Google Scholar] [PubMed]
- Chu, Y.; Jiang, H.; Ju, J.; Li, Y.; Gong, L.; Wang, X.; Yang, W.; Deng, Y. A metabolomic study using HPLC-TOF/MS coupled with ingenuity pathway analysis: Intervention effects of Rhizoma Alismatis on spontaneous hypertensive rats. J. Pharm. Biomed. Anal. 2016, 117, 446–452. [Google Scholar] [PubMed]
- Liu, S.C.; Tsai, C.H.; Wu, T.Y.; Tsai, C.H.; Tsai, F.J.; Chung, J.G.; Huang, C.Y.; Yang, J.S.; Hsu, Y.M.; Yin, M.C.; et al. Soya-cerebroside reduces IL-1β-induced MMP-1 production in chondrocytes and inhibits cartilage degradation: Implications for the treatment of osteoarthritis. Food Agric. Immunol. 2019, 30, 620–632. [Google Scholar]
dbSNP ID | RA Patient_RF/Anti-CCP_Positive | RA Patient_RF/Anti-CCP_Negative | OR (95% CI) | p Value | |
---|---|---|---|---|---|
(N = 805) | (N = 1043) | ||||
rs9270481 | |||||
Genotype | (N = 797) | (N = 1036) | |||
CC | 79 (9.9) | 283 (27.3) | 4.55 (3.37–6.15) | 1.97 × 10−23 | |
CT | 408 (51.2) | 509 (49.1) | 1.59 (1.28–1.96) | ||
TT | 310 (38.9) | 244 (23.6) | Ref | ||
Allele frequency | |||||
C | 566 (35.5) | 1075 (51.9) | 1.96 (1.71–2.24) | 4.89 × 10−23 | |
T | 1028 (64.5) | 997 (48.1) | Ref |
Male + Female 1802 (100%) | Male 376 (20.87%) | Female 1426 (79.13%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
RF+/anti-CCP+ | RF−/anti-CCP− | p Value | RF+/anti-CCP+ | RF−/anti-CCP− | p Value | RF+/anti-CCP+ | RF−/anti-CCP− | p Value | ||
795 (44.12) | 1007 (55.88) | 173 (46.01) | 203 (53.99) | 622 (43.62) | 804 (56.38) | |||||
ESR | Normal | 390 (49.06) | 700 (69.51) | <0.001 | 84 (48.55) | 138 (67.98) | <0.001 | 306 (49.20) | 562 (69.90) | <0.001 |
Abnormal | 405 (50.94) | 307 (30.49) | 89 (51.45) | 65 (32.02) | 316 (50.80) | 242 (30.10) | ||||
CRP | Normal | 517 (65.03) | 755 (74.98) | <0.001 | 84 (48.55) | 131 (64.53) | <0.005 | 433 (69.61) | 624 (77.61) | <0.001 |
Abnormal | 278 (34.97) | 252 (25.02) | 89 (51.45) | 72 (35.47) | 189 (30.39) | 180 (22.39) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Huang, C.-M.; Liu, T.-Y.; Wu, N.; Chan, C.-J.; Shih, P.-Y.; Chen, H.-H.; Chen, S.-Y.; Tsai, F.-J. Effects of Human Leukocyte Antigen DRB1 Genetic Polymorphism on Anti-Cyclic Citrullinated Peptide (ANTI-CCP) and Rheumatoid Factor (RF) Expression in Rheumatoid Arthritis (RA) Patients. Int. J. Mol. Sci. 2023, 24, 12036. https://doi.org/10.3390/ijms241512036
Chen Y-C, Huang C-M, Liu T-Y, Wu N, Chan C-J, Shih P-Y, Chen H-H, Chen S-Y, Tsai F-J. Effects of Human Leukocyte Antigen DRB1 Genetic Polymorphism on Anti-Cyclic Citrullinated Peptide (ANTI-CCP) and Rheumatoid Factor (RF) Expression in Rheumatoid Arthritis (RA) Patients. International Journal of Molecular Sciences. 2023; 24(15):12036. https://doi.org/10.3390/ijms241512036
Chicago/Turabian StyleChen, Yu-Chia, Chung-Ming Huang, Ting-Yuan Liu, Ning Wu, Chia-Jung Chan, Peng-Yu Shih, Hsin-Han Chen, Shih-Yin Chen, and Fuu-Jen Tsai. 2023. "Effects of Human Leukocyte Antigen DRB1 Genetic Polymorphism on Anti-Cyclic Citrullinated Peptide (ANTI-CCP) and Rheumatoid Factor (RF) Expression in Rheumatoid Arthritis (RA) Patients" International Journal of Molecular Sciences 24, no. 15: 12036. https://doi.org/10.3390/ijms241512036
APA StyleChen, Y. -C., Huang, C. -M., Liu, T. -Y., Wu, N., Chan, C. -J., Shih, P. -Y., Chen, H. -H., Chen, S. -Y., & Tsai, F. -J. (2023). Effects of Human Leukocyte Antigen DRB1 Genetic Polymorphism on Anti-Cyclic Citrullinated Peptide (ANTI-CCP) and Rheumatoid Factor (RF) Expression in Rheumatoid Arthritis (RA) Patients. International Journal of Molecular Sciences, 24(15), 12036. https://doi.org/10.3390/ijms241512036