Nanostructured Aluminum Oxyhydroxide—A Prospective Support for Functional Porphyrin-Based Materials
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koifman, O.I.; Ageeva, T.A.; Beletskaya, I.P.; Averin, A.D.; Yakushev, A.A.; Tomilova, L.G.; Dubinina, T.V.; Tsivadze, A.Y.; Gorbunova, Y.G.; Martynov, A.G.; et al. Macroheterocyclic Compounds—A Key Building Block in New Functional Materials and Molecular Devices. Macroheterocycles 2020, 13, 311–467. [Google Scholar] [CrossRef]
- Tsolekile, N.; Nelana, S.; Oluwafemi, O.S. Porphyrin as Diagnostic and Therapeutic Agent. Molecules 2019, 24, 2669. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Huang, B.; Nawaz, M.H.; Zhang, W. Recent Advances of Multi-Dimensional Porphyrin-Based Functional Materials in Photodynamic Therapy. Coord. Chem. Rev. 2020, 420, 213410. [Google Scholar] [CrossRef]
- Koifman, O.I.; Ageeva, T.A.; Kuzmina, N.S.; Otvagin, V.F.; Nyuchev, A.V.; Fedorov, A.Y.; Belykh, D.V.; Lebedeva, N.S.; Yurina, E.S.; Syrbu, S.A.; et al. Synthesis Strategy of Tetrapyrrolic Photosensitizers for Their Practical Application in Photodynamic Therapy. Macroheterocycles 2022, 15, 207–304. [Google Scholar] [CrossRef]
- Wei, T.; Sun, X.; Li, X.; Ågren, H.; Xie, Y. Systematic Investigations on the Roles of the Electron Acceptor and Neighboring Ethynylene Moiety in Porphyrins for Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 21956–21965. [Google Scholar] [CrossRef] [PubMed]
- Zeng, K.; Tong, Z.; Ma, L.; Zhu, W.-H.; Wu, W.; Xie, Y. Molecular Engineering Strategies for Fabricating Efficient Porphyrin-Based Dye-Sensitized Solar Cells. Energy Environ. Sci. 2020, 13, 1617–1657. [Google Scholar] [CrossRef]
- Annoni, E.; Pizzotti, M.; Ugo, R.; Quici, S.; Morotti, T.; Bruschi, M.; Mussini, P. Synthesis, Electronic Characterisation and Significant Second-Order Non-Linear Optical Responses of Meso-Tetraphenylporphyrins and Their Zn II Complexes Carrying a Push or Pull Group in the β Pyrrolic Position. Eur. J. Inorg. Chem. 2005, 2005, 3857–3874. [Google Scholar] [CrossRef]
- Tessore, F.; Biroli, A.O.; Di Carlo, G.; Pizzotti, M. Porphyrins for Second Order Nonlinear Optics (NLO): An Intriguing History. Inorganics 2018, 6, 81. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Marissa, L.; Colin, G.; Jesus, A.; David, M. A Biomimetic SH2 Cross-Coupling Mechanism for Quaternary Sp3 -Carbon Formation. Science 2021, 4322, 1–10. [Google Scholar]
- Abdulaeva, I.A.; Birin, K.P.; Bessmertnykh-Lemeune, A.; Tsivadze, A.Y.; Gorbunova, Y.G. Heterocycle-Appended Porphyrins: Synthesis and Challenges. Coord. Chem. Rev. 2020, 407, 213108. [Google Scholar] [CrossRef]
- Senge, M.O. Stirring the Porphyrin Alphabet Soup—Functionalization Reactions for Porphyrins. Chem. Commun. 2011, 47, 1943–1960. [Google Scholar] [CrossRef] [Green Version]
- Grzegorzek, N.; Zieleniewska, A.; Schür, A.; Maichle-Mössmer, C.; Killian, M.S.; Guldi, D.M.; Chernick, E.T. Electronically Tuned Asymmetric Meso-Substituted Porphyrins for p-Type Solar Cells. Chempluschem 2019, 84, 766–771. [Google Scholar] [CrossRef] [PubMed]
- Marschner, S.M.; Haldar, R.; Fuhr, O.; Wöll, C.; Bräse, S. Modular Synthesis of Trans-A2B2-Porphyrins with Terminal Esters: Systematically Extending the Scope of Linear Linkers for Porphyrin-Based MOFs. Chem. A Eur. J. 2021, 27, 1390–1401. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, K.; Yorimitsu, H.; Osuka, A. Facile Preparation of β-Haloporphyrins as Useful Precursors of β-Substituted Porphyrins. Org. Lett. 2014, 16, 972–975. [Google Scholar] [CrossRef]
- Beletskaya, I.P.; Tyurin, V.S.; Uglov, A.; Stern, C.; Guilard, R. Survey of Synthetic Routes for Synthesis and Substitution in Porphyrins. In Handbook of Porphyrin Science; Guilard, R., Kadish, K.M., Smith, K.M., Eds.; World Scientific Publishing: Singapore, 2012; pp. 81–279. [Google Scholar]
- Pereira, C.F.; Figueira, F.; Mendes, R.F.; Rocha, J.; Hupp, J.T.; Farha, O.K.; Simoães, M.M.Q.; Tomé, J.P.C.; Paz, F.A.A. Bifunctional Porphyrin-Based Nano-Metal-Organic Frameworks: Catalytic and Chemosensing Studies. Inorg. Chem. 2018, 57, 3855–3864. [Google Scholar] [CrossRef]
- Lin, Q.; Mao, C.; Kong, A.; Bu, X.; Zhao, X.; Feng, P. Porphyrinic Coordination Lattices with Fluoropillars. J. Mater. Chem. A 2017, 5, 21189–21195. [Google Scholar] [CrossRef]
- Birin, K.P.; Abdulaeva, I.A.; Polivanovskaya, D.A.; Sinel’shchikova, A.A.; Demina, L.I.; Baranchikov, A.E.; Gorbunova, Y.G.; Tsivadze, A.Y. Immobilization of Heterocycle-Appended Porphyrins on UiO-66 and UiO-67 MOFs. Russ. J. Inorg. Chem. 2021, 66, 193–201. [Google Scholar] [CrossRef]
- Chen, L.; Ye, J.W.; Wang, H.P.; Pan, M.; Yin, S.Y.; Wei, Z.W.; Zhang, L.Y.; Wu, K.; Fan, Y.N.; Su, C.Y. Ultrafast Water Sensing and Thermal Imaging by a Metal-Organic Framework with Switchable Luminescence. Nat. Commun. 2017, 8, 15985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Jiang, S.D.; Yan, Y.; Wang, W.; Li, J.; Leng, K.; Japip, S.; Liu, J.; Xu, H.; Liu, Y.; et al. A Solution-Processable and Ultra-Permeable Conjugated Microporous Thermoset for Selective Hydrogen Separation. Nat. Commun. 2020, 11, 1633. [Google Scholar] [CrossRef] [Green Version]
- Morris, R.E.; Wheatley, P.S. Gas Storage in Nanoporous Materials. Angew. Chemie Int. Ed. 2008, 47, 4966–4981. [Google Scholar] [CrossRef]
- Li, X.; Zhao, H.; Liang, J.; Luo, Y.; Chen, G.; Shi, X.; Lu, S.; Gao, S.; Hu, J.; Liu, Q.; et al. A-Site Perovskite Oxides: An Emerging Functional Material for Electrocatalysis and Photocatalysis. J. Mater. Chem. A 2021, 9, 6650–6670. [Google Scholar] [CrossRef]
- Abdulaeva, I.A.; Birin, K.P.; Chassagnon, R.; Bessmertnykh-Lemeune, A. Hybrid Materials Based on Imidazo[4,5-b]Porphyrins for Catalytic Oxidation of Sulfides. Catalysts 2023, 13, 402. [Google Scholar] [CrossRef]
- Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of Hybrid Organic–Inorganic Nanocomposites. J. Mater. Chem. 2005, 15, 3559. [Google Scholar] [CrossRef]
- Gómez-Romero, P.; Sanchez, C. (Eds.) Functional Hybrid Materials; Wiley: Hoboken, NJ, USA, 2003; ISBN 9783527304844. [Google Scholar]
- Goesmann, H.; Feldmann, C. Nanoparticulate Functional Materials. Angew. Chemie Int. Ed. 2010, 49, 1362–1395. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A. Functional Materials: From Hard to Soft Porous Frameworks. Angew. Chemie Int. Ed. 2010, 49, 8328–8344. [Google Scholar] [CrossRef]
- Tanaka, T.; Osuka, A. Conjugated Porphyrin Arrays: Synthesis, Properties and Applications for Functional Materials. Chem. Soc. Rev. 2015, 44, 943–969. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.D.; Xu, R.; Chai, G.L.; Zhang, T.; Zang, K.; Nan, B.; Lin, H.; Liang, Y.L.; Lv, J.; Luo, J.; et al. Cobalt Single-Atoms Anchored on Porphyrinic Triazine-Based Frameworks as Bifunctional Electrocatalysts for Oxygen Reduction and Hydrogen Evolution Reactions. J. Mater. Chem. A 2019, 7, 1252–1259. [Google Scholar] [CrossRef]
- Li, M.; Ishihara, S.; Ji, Q.; Akada, M.; Hill, J.P.; Ariga, K. Paradigm Shift from Self-Assembly to Commanded Assembly of Functional Materials: Recent Examples in Porphyrin/Fullerene Supramolecular Systems. Sci. Technol. Adv. Mater. 2012, 13, 053001. [Google Scholar] [CrossRef]
- Gorbunova, Y.G.; Enakieva, Y.Y.; Volostnykh, M.V.; Sinelshchikova, A.A.; Abdulaeva, I.A.; Birin, K.P.; Tsivadze, A.Y. Porous Porphyrin-Based Metal-Organic Frameworks: Synthesis, Structure, Sorption Properties and Application Prospects. Russ. Chem. Rev. 2022, 91, RCR5038. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, F.; Chen, Z.; Ding, J.; Xue, B.; Lu, C. Porous Carbons Embedded with Nitrogen-Coordinated Cobalt as an Exceptional Electrochemical Catalyst for High-Performance Zn–Air Batteries. New J. Chem. 2020, 44, 12850–12856. [Google Scholar] [CrossRef]
- Hao, W.; Chen, D.; Li, Y.; Yang, Z.; Xing, G.; Li, J.; Chen, L. Facile Synthesis of Porphyrin Based Covalent Organic Frameworks via an A 2 B 2 Monomer for Highly Efficient Heterogeneous Catalysis. Chem. Mater. 2019, 31, 8100–8105. [Google Scholar] [CrossRef]
- Jahan, M.; Bao, Q.; Loh, K.P. Electrocatalytically Active Graphene-Porphyrin MOF Composite for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2012, 134, 6707–6713. [Google Scholar] [CrossRef] [PubMed]
- Won, D.I.; Lee, J.S.; Ba, Q.; Cho, Y.J.; Cheong, H.Y.; Choi, S.; Kim, C.H.; Son, H.J.; Pac, C.; Kang, S.O. Development of a Lower Energy Photosensitizer for Photocatalytic CO2 Reduction: Modification of Porphyrin Dye in Hybrid Catalyst System. ACS Catal. 2018, 8, 1018–1030. [Google Scholar] [CrossRef]
- Birin, K.P.; Shlykov, I.V.; Senchikhin, I.N.; Demina, L.I.; Gorbunova, Y.G.; Tsivadze, A.Y. An Approach towards Modification of UiO-Type MOFs with Phosphonate-Substituted Porphyrins. Polyhedron 2022, 219, 115794. [Google Scholar] [CrossRef]
- Zhang, L.; Cole, J.M. Anchoring Groups for Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2015, 7, 3427–3455. [Google Scholar] [CrossRef]
- Stern, C.; Lemeune, A.B.; Gorbunova, Y.; Tsivadze, A.; Guilard, R. Effect of the Anchoring Group in Porphyrin Sensitizers: Phosphonate versus Carboxylate Linkages. Turkish J. Chem. 2014, 38, 980–993. [Google Scholar] [CrossRef]
- Chen, F.; Li, X.; Hihath, J.; Huang, Z.; Tao, N. Effect of Anchoring Groups on Single-Molecule Conductance: Comparative Study of Thiol-, Amine-, and Carboxylic-Acid-Terminated Molecules. J. Am. Chem. Soc. 2006, 128, 15874–15881. [Google Scholar] [CrossRef]
- Krishnakumar, B.; Ravikumar, S.; Pandiyan, V.; Nithya, V.; Sylvestre, S.; Sivakumar, P.; Surya, C.; John, N.A.A.; Sobral, A.J.F.N. Synthesis, Characterization of Porphyrin and CdS Modified Spherical Shaped SiO2 for Reactive Red 120 Degradation under Direct Sunlight. J. Mol. Struct. 2020, 1210, 128021. [Google Scholar] [CrossRef]
- Krishnakumar, B.; Balakrishna, A.; Nawabjan, S.A.; Pandiyan, V.; Aguiar, A.; Sobral, A.J.F.N. Solar and Visible Active Amino Porphyrin/SiO2ZnO for the Degradation of Naphthol Blue Black. J. Phys. Chem. Solids 2017, 111, 364–371. [Google Scholar] [CrossRef]
- Abdulaeva, I.A.; Birin, K.P.; Michalak, J.; Romieu, A.; Stern, C.; Bessmertnykh-Lemeune, A.; Guilard, R.; Gorbunova, Y.G.; Tsivadze, A.Y. On the Synthesis of Functionalized Porphyrins and Porphyrin Conjugates via β-Aminoporphyrins. New J. Chem. 2016, 40, 5758–5774. [Google Scholar] [CrossRef]
- Korobkov, S.M.; Birin, K.P.; Gorbunova, Y.G.; Tsivadze, A.Y. A2BC-Type Meso-Imidazolylporphyrins—New Class of Prospective Polyfunctional Molecules. Dyes Pigment. 2022, 207, 110696. [Google Scholar] [CrossRef]
- Shremzer, E.S.; Polivanovskaia, D.A.; Birin, K.P.; Gorbunova, Y.G.; Tsivadze, A.Y. π-Expanded Pyrazinoporphyrins for Photocatalysis: How Many Rings Are Required? Dyes Pigment. 2023, 210, 110935. [Google Scholar] [CrossRef]
- Polivanovskaia, D.A.; Abdulaeva, I.A.; Birin, K.P.; Gorbunova, Y.G.; Tsivadze, A.Y. Diaryl-Pyrazinoporphyrins—Prospective Photocatalysts for Efficient Sulfoxidation. J. Catal. 2022, 413, 342–352. [Google Scholar] [CrossRef]
- Khodan, A.; Nguyen, T.H.N.; Esaulkov, M.; Kiselev, M.R.; Amamra, M.; Vignes, J.-L.; Kanaev, A. Porous Monoliths Consisting of Aluminum Oxyhydroxide Nanofibrils: 3D Structure, Chemical Composition, and Phase Transformations in the Temperature Range 25–1700 °C. J. Nanoparticle Res. 2018, 20, 194. [Google Scholar] [CrossRef]
- Martynov, A.G.; Bykov, A.V.; Gorbunova, Y.G.; Khodan, A.N.; Tsivadze, A.Y. New Hybrid Materials Based on Nanostructured Aluminum Oxyhydroxide and Terbium(III) Bis(Tetra-15-Crown-5-Phthalocyaninate). Prot. Met. Phys. Chem. Surfaces 2018, 54, 185–191. [Google Scholar] [CrossRef]
- Khodan, A.N.; Bykov, A.V.; Kiselev, M.R. The Effect of Chemical Modification of the Surface by Oxysilanes on Changes in the Structural and Phase States of Highly Porous Aluminum Oxyhydroxides at Annealing up to 1200 °C. Prot. Met. Phys. Chem. Surfaces 2023, 59, 149–154. [Google Scholar] [CrossRef]
- Khodan, A.; Kanaev, A.; Esaulkov, M.; Kiselev, M.; Nadtochenko, V. Effects of Surface Chemical Modification by Ethoxysilanes on the Evolution of 3D Structure and Composition of Porous Monoliths Consisting of Alumina Hydroxide Nanofibrils in the Temperature Range 25–1700 °C. Nanomaterials 2022, 12, 3591. [Google Scholar] [CrossRef]
- Herritsch, J.; Luy, J.-N.; Rohlf, S.; Gruber, M.; Klein, B.P.; Kalläne, M.; Schweyen, P.; Bröring, M.; Rossnagel, K.; Tonner, R.; et al. Influence of Ring Contraction on the Electronic Structure of Nickel Tetrapyrrole Complexes: Corrole vs Porphyrin. ECS J. Solid State Sci. Technol. 2020, 9, 061005. [Google Scholar] [CrossRef]
- Johnson, P.S.; García-Lastra, J.M.; Kennedy, C.K.; Jersett, N.J.; Boukahil, I.; Himpsel, F.J.; Cook, P.L. Crystal Fields of Porphyrins and Phthalocyanines from Polarization- Dependent 2p-to-3d Multiplets. J. Chem. Phys. 2014, 140, 114706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berríos, C.; Cárdenas-Jirón, G.I.; Marco, J.F.; Gutiérrez, C.; Ureta-Zañartu, M.S. Theoretical and Spectroscopic Study of Nickel(II) Porphyrin Derivatives. J. Phys. Chem. A 2007, 111, 2706–2714. [Google Scholar] [CrossRef]
- Krasnikov, S.A.; Preobrajenski, A.B.; Sergeeva, N.N.; Brzhezinskaya, M.M.; Nesterov, M.A.; Cafolla, A.A.; Senge, M.O.; Vinogradov, A.S. Electronic Structure of Ni(II) Porphyrins and Phthalocyanine Studied by Soft X-Ray Absorption Spectroscopy. Chem. Phys. 2007, 332, 318–324. [Google Scholar] [CrossRef]
- Enakieva, Y.Y.; Sinelshchikova, A.A.; Grigoriev, M.S.; Chernyshev, V.V.; Kovalenko, K.A.; Stenina, I.A.; Yaroslavtsev, A.B.; Gorbunova, Y.G.; Tsivadze, A.Y. Highly Proton-Conductive Zinc Metal-Organic Framework Based On Nickel(II) Porphyrinylphosphonate. Chem. A Eur. J. 2019, 25, 10552–10556. [Google Scholar] [CrossRef]
- Mele, G.; Del Sole, R.; Vasapollo, G.; Marcì, G.; Garcìa-Lòpez, E.; Palmisano, L.; Coronado, J.M.; Hernández-Alonso, M.D.; Malitesta, C.; Guascito, M.R. TRMC, XPS, and EPR Characterizations of Polycrystalline TiO2 Porphyrin Impregnated Powders and Their Catalytic Activity for 4-Nitrophenol Photodegradation in Aqueous Suspension. J. Phys. Chem. B 2005, 109, 12347–12352. [Google Scholar] [CrossRef]
- Tougaard, S. Practical Guide to the Use of Backgrounds in Quantitative XPS. J. Vac. Sci. Technol. A 2021, 39, 011201. [Google Scholar] [CrossRef]
- Armarego, W.L.F.; Chai, C.L.L. Purification of Laboratory Chemicals; Elsevier/Butterworth-Heinemann: Amsterdam, The Netherlands, 2009; ISBN 9781856175678. [Google Scholar]
- Shirley, D.A. High-Resolution x-Ray Photoemission Spectrum of the Valence Bands of Gold. Phys. Rev. B 1972, 5, 4709–4714. [Google Scholar] [CrossRef] [Green Version]
- Birin, K.P.; Gorbunova, Y.G.; Tsivadze, A.Y. New Approach for Post-Functionalization of Meso-Formylporphyrins. RSC Adv. 2015, 5, 67242–67246. [Google Scholar] [CrossRef]
- Linstead, R.P.; Doering, W.E. The Stereochemistry of Catalytic Hydrogenation. II. The Preparation of the Six Inactive Perhydrodiphenic 1 Acids. J. Am. Chem. Soc. 1942, 64, 1991–2003. [Google Scholar] [CrossRef]
- Vignes, J.L.; Frappart, C.; Di Costanzo, T.; Rouchaud, J.C.; Mazerolles, L.; Michel, D. Ultraporous Monoliths of Alumina Prepared at Room Temperature by Aluminium Oxidation. J. Mater. Sci. 2008, 43, 1234–1240. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korobkov, S.M.; Birin, K.P.; Khodan, A.N.; Grafov, O.Y.; Gorbunova, Y.G.; Tsivadze, A.Y. Nanostructured Aluminum Oxyhydroxide—A Prospective Support for Functional Porphyrin-Based Materials. Int. J. Mol. Sci. 2023, 24, 12165. https://doi.org/10.3390/ijms241512165
Korobkov SM, Birin KP, Khodan AN, Grafov OY, Gorbunova YG, Tsivadze AY. Nanostructured Aluminum Oxyhydroxide—A Prospective Support for Functional Porphyrin-Based Materials. International Journal of Molecular Sciences. 2023; 24(15):12165. https://doi.org/10.3390/ijms241512165
Chicago/Turabian StyleKorobkov, Stepan M., Kirill P. Birin, Anatole N. Khodan, Oleg Yu. Grafov, Yulia G. Gorbunova, and Aslan Yu. Tsivadze. 2023. "Nanostructured Aluminum Oxyhydroxide—A Prospective Support for Functional Porphyrin-Based Materials" International Journal of Molecular Sciences 24, no. 15: 12165. https://doi.org/10.3390/ijms241512165
APA StyleKorobkov, S. M., Birin, K. P., Khodan, A. N., Grafov, O. Y., Gorbunova, Y. G., & Tsivadze, A. Y. (2023). Nanostructured Aluminum Oxyhydroxide—A Prospective Support for Functional Porphyrin-Based Materials. International Journal of Molecular Sciences, 24(15), 12165. https://doi.org/10.3390/ijms241512165