Phytochemicals and Vitamin D for a Healthy Life and Prevention of Diseases
Abstract
:1. Introduction
2. Brief Methodology of the Review Article
3. Phytochemicals and Vitamin D
3.1. Onions
3.2. Citrus Fruits
3.3. Tea
3.4. Soybeans
3.5. Turmeric
3.6. Cacao
3.7. Grapes
3.8. Health Promotion Effect of Vitamin D and Interactions with Phytochemicals
4. The Idea of ME-BYO (mibyou)
4.1. Lifestyle-Related Diseases and Underlying Conditions
Diseases | Phytochemicals/ Vitamin D | Main Findings and Markers | Dose | Subjects | First Author, Year [Ref.] | |
---|---|---|---|---|---|---|
Lifestyle- related diseases | Metabolic syndrome/ anti-obese | Quercetin | Visceral fat area (VFA) in low HLD subjects ↓ | 9 g/day: 12 w | Human (CRT) | Nishimura, M., 2019 [19] |
Hesperidin | Blood glucose ↓, Liver weight ↓, NAFLD ↓, NO ↓, IL-6 ↓, TNF-α ↓ | 50 mg–10 g/kg: 70 min–4 w | Mouse/rat | Xiong, H., 2019 [22] | ||
PPAR-γ ↓, C/EBPβ ↓, SREBP1 ↓, ROS ↓, ACDC ↑, IL-6 ↓, TNF-α ↓, NO ↓ | 0.1–50 μM: 1 min-8 d | In vitro | ||||
Nobiletin | Serum amylase ↓, Pancreatic myeloperoxidase activity ↓, Inflammatory factors ↓, p-p38 ↓, AKT ↓ | 50 mg/kg | Mouse | Chagas, MDSS, 2022 [24] | ||
Sudachitin | Bmal1 ↑, Liver triglyceride ↓, TGF-β, TNF-α ↓ | 50 or 100 mg/kg | Rat | Mawatari, K., 2023 [27] | ||
Tea catechins | Body weight ↓, BMI ↓, Blood LDL/HDL ratio ↓ | EGCG 146 mg + hesperidin 178 mg/day: 12 w | Human (RCT) | Yoshitomi, R., 2021 [28] | ||
Glycerol ↓ | 2.3, 11.5 μM | In vitro | Chen, S., 2015 [31] | |||
Liver β oxidation activity ↓ | 0.1–0.5% (w/w) | Mouse | Murase, T., 2002 [32] | |||
Cocoa flavanols | Insulin ↑, Moderate low blood sugar level | Chocolate bar 20–100 g/day containing 15–500 mg polyphenol | Human | Strat, K.M., 2016 [39] | ||
Prebiotics effects for gut microbiota ↑, Gut barrier function ↑, Endotoxin absorption ↓ | Addition of cocoa powder 0.5–10% (v/v) in diet (mouse/rat) | Mouse/rat | ||||
Vitamin D | Osteoporosis ↓ | Subject with serum 25-hydroxyvitamin D < 25 nM (10 ng/mL) needs more trial | Human | Gallagher, J.C., 2023 [82] | ||
Diabetes | Naringin | Serum IL-6 ↓ | Mediterranean Diet Intervention: 12 w | Human (CRT) | Al-Aubaidy HA, 2021 [23] | |
Anthocyanins | Myocardial infarction risk ↓, Diabetes risk ↓, Mortality of cardiovascular diseases ↓ | Daily intake of blueberry or anthocyanins 25–500 mg/day | Human | Kalt, W., 2020 [43] | ||
Retinal inflammation ↓ | Bilberry extract 500 mg/kg/day: 4 d | Mouse | ||||
Grape polyphenols (in grape pomace (GP)) | Prevotella ↓, Firmicutes ↓ miR-222 ↑ in responder subjects. | 8 g/day: 6 w | Human (RCT) | Ramos-Romero, S., 2021 [78] | ||
Blood sugar spikes | Cacao polyphenols | Insulin ↑, Serum GLP-1 ↑ | 635 mg/day | Human (RCT) | Kawakami, Y., 2021 [40] | |
Grape polyphenols (in grape juice) | Hunger ↓, Appetite ↓ | 355 mL/day: 8 w | Human (RCT) | Coelho, O.G.L., 2021 [71] | ||
Cardiovascular disease | Resveratrol | LDL ↓, Triglyceride ↓ | 250–1000 mg/kg/day | Human | Bonnefont-Rousselot, D., 2016 [41] | |
miRNA expression ↑ | 5 mg/kg/day: 21 d | Rat | ||||
Rutin | Carbohydrate absorption in small intestine ↓, Glucose generation in the tissue ↓, Tissue glucose incorporation ↑, insulin secretion ↑ | 50 or 100 mg/kg | Rat | Ghorbani, A., 2017 [26] | ||
Lifestyle- related diseases | Cardiovascular disease | Grape polyphenols (in GP) | Blood pressure ↓ Fasting blood glucose ↓ | 2 g/day: 6 w | Human (RCT) | Taladrid, D., 2022 [68] |
Grape polyphenols (in black seed raisin) | Diastolic blood pressure (DBP) ↓ Serum total antioxidant capacity (TAC) ↑ | 90 g/day: 5 w | Human (RCT) | Shishehbor, F., 2022 [69] | ||
Grape polyphenols (in GSE) | Blood pressure ↓ | 300 mg/day: 16 w | Human (RCT) | Schön, C., 2021 [47] | ||
Atherosclerosis | Quercetin | Serum quercetin-3-glucuronide (Q3GA) ↑, Cardiovascular disease risk ↓ | 350–500 g of cooked onion paste roasted with salad oil. | Human | Kawai, Y., 2008 [42] | |
Q3GA accumulation in macrophages ↑, Form cell formation ↓ | 1 μM | In vitro | ||||
Liver failure | Curcumin | Lung fibrosis ↓, NF-κΒ ↓ | 1500 mg/day: 12 w | Human (RCT) | Saadati, S., 2019 [38] | |
Dementia | Hesperidin | Cognitive function ↑, Executing function ↑, Episodic memory ↑ | 32 or 275 mg/day: 8 w | Human | Hajialyani, M., 2019 [21] | |
Nobiletin | AD pathology ↑, Motor function ↑, Cognitive function ↑, Aβ ↓, Tau hyperphosphorylation ↓ | 10–50 mg/kg, i.p. or p.o. | Mouse/rat | Nakajima, A., 2019 [25] | ||
Catechins | Cognitive impairment ↓ | Green tea intake 1–6 cups/week (systematic review) | Human | Kakutani, S., 2019 [33] | ||
Anti-ageing | Procyanidins | Physical dysfunction ↓, Pathophysiology ↓, Survival of aged mice ↑ | PCC1 20 mg/kg i.p. | Mouse | Xu, Q., 2021 [44] | |
Cell viability ↑, Apoptosis in senescent cells ↑, BCL-2 ↓, Caspase 3, 9 ↑ | PCC1 100 μM | In vitro | ||||
Intestinal disorders | Oleanolic acid | Large intestine contraction ↑ | 1–100 μM (measurement in mouse tissue) | Mouse | Alemi, F., 2013 [46] | |
Flavonoids | Faecalibacterium prausnitzii ↑, Ruminococcaceae ↑, Klebsiella spp. ↓, Prevotella spp. ↓, F/B ratio ↓ | Dried fruits (prunes) approximate 100 g/day | Human | Alasalvar, C., 2023 [117] | ||
TNF-α ↓, Leukocyte attachment ↓, micromolecular permeability ↓, Τissue injury ↓ | Micronised flavonoid fraction (Daflon) 500 mg (mouse) | Mouse | Kumazawa, Y., 2006 [118] | |||
TNF-α ↓, Cell membrane LPS-induced raft accumulation ↓ | 200 μM | In vitro | ||||
Raisin phytochemicals | Faecalibacterium prausnitzii ↑, Bacteroidetes spp. ↑, Ruminococcus spp. ↑ | Dried raisins 85 g/day: 2 w | Human | Wijayabahu, A.T., 2019 [119] | ||
Grape polyphenols (in grape powder) | Gut microbiota α diversity index ↑ Verrucomicrobia ↑ Akkermansia ↑ | 46 g/day: 4 w | Human (RCT) | Yang, J., 2021 [72] | ||
Vitamin D | Bone metabolism ↑, risk of falls ↓ | 25(OH)D3 between 20 and 125 nM to obtain the certain skeletal effects without toxic effects | Human | Sassi, F., 2018 [120] | ||
Intestinal disorders | Vitamin D | VitD deficiency induces VDR ↑, VDBP ↑, P450 CYP27b1 ↑, Th1 ↑, Th2 ↑, Th17 ↑, Treg ↓ | Normal: 1000, Deficiency: >25 IU VitD3/kg | Mouse | Huang, F., 2020 [121] | |
Lung diseases | COVID-19 | EGCG | Viral infectious ability (TCID50) ↓, Viral RNA reproduction ↓, Second viral generation ↓ | 1 mM, 40 μM, 60 μM | In vitro | Ohgitani, E., 2021 [29] |
Viral infectious ability (TCID50) ↓, Second viral generation ↓ | Tea catechins in saliva | In vitro | Ohgitani, E., 2021 [30] | |||
Vitamin D | LL-37/leukocyte count ratio as a hospital admission indicator | Mean serum calcitriol levels (active vitamin D hormone) were within the reference range of 20–79 ng/L | Human | Keutmann, M., 2022 [122] | ||
Phytochemicals and vitamin D | Perturb viral cellular infection by vitamin D, Anti-oxidative effects ↑, Anti-inflammation ↑ | Meta analysis showed improvement of COPD | Human | Iddir, M., 2020 [84] | ||
Lung fibrosis | Quercetin | Fibrosis inducing p16 expressed senescent fibroblast ↓ | Quercetin 50 mg/kg + Dasatinib 5 mg/kg p.o.: 3 times | Mouse | Schafer, M.J., 2017 [123] | |
Quercetin and vitamin D | TNF-α ↓ | Sufficient serum vitamin D level is over 30 ng/mL | Human | Santa, K., 2023 [12] | ||
TNF-α ↓ | Quercetin 5 μΜ | In vitro | ||||
K-FGF | Serum IgE ↓, Neutrophil numbers ↓, PCA reaction ↓ | 100 mg/kg/day: 17 d | Mouse | Tominaga, T., 2010 [49] | ||
K-FGF | Th1/Th2 balance ↑, Antigen specific IgE production ↓ | 450 or 675 mg/day | Human | Kumazawa, Y., 2014 [50] | ||
Sepsis | Hesperidin | TNF-α ↓, Serum LPS ↓ | 1 mg | Mouse | Kawaguchi, K., 2004 [124] | |
Caspase 3 ↓, BCL-2 ↓, TLR4 ↓, HSP70 ↓, MyD88 ↓, TNF-α ↓, IL-6 ↓ | Hesperidin 10–20 mg/kg i.v. | Mouse | Mahomoodally, M.F., 2022 [125] | |||
Naringin | TNF-α ↓, IL-6 ↓, NF-κΒ ↓, iNOS ↓, HO-1 ↑ | Naringin 50–100 mg/kg p.o. | ||||
Quercetin | TNF-α ↓, IL-1β ↓, HMGB1 ↓, iNOS ↓, NO production ↓ | Quercetin 1–100 mg/kg i.p. | ||||
Resveratrol | TNF-α ↓, MMP-9 ↓, IL-6 ↓, iNOS ↓, NLRP3 ↓, E-selectin/ICAM- -1 ↓, SIRT-1 ↑, IL-10 ↑ | Resveratrol 1–60 mg/kg i.p. | ||||
Curcumin | IL-1β ↓, IL-6 ↓, TNF-α ↓, Caspase ↓, SMAD3 ↓, PPAR-γ ↑ | Curcumin 50–200 mg/kg i.p. | Rat | |||
Cyanidin | IL-1β ↓, IL-6 ↓, TNF-α ↓, PG ↓, Anti-oxidative effect ↑ | Cyanidins 10–30 mg/kg i.p. | ||||
Silymarin | IL-1β ↓, PGE2 ↓, IL-6 ↓, TNF-α ↓ | Silymarin 50–100 mg/kg i.p. | ||||
Vitamin D | Correlation of vitamin D and LL-37 levels | Placebo, 200,000 IU, 400,000 IU: 24 h within severe sepsis or septic shock | Human (RCT) | Quraishi, S.A., 2023 [126] |
4.2. Intestinal Disorders and Gut Microbiota
4.3. COVID-19 and Lung Disorders
4.4. Sepsis and Infectious Diseases
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dragoș, D.; Petran, M.; Gradinaru, T.C.; Gilca, M. Phytochemicals and Inflammation: Is Bitter Better? Plants 2022, 11, 2991. [Google Scholar] [CrossRef]
- Peplow, M. Synthetic biology’s first malaria drug meets market resistance. Nature 2016, 530, 389–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, M. KAMPOmics: A framework for multidisciplinary and comprehensive research on Japanese traditional medicine. Gene 2022, 831, 146555. [Google Scholar] [CrossRef] [PubMed]
- Santacroce, L.; Colella, M.; Charitos, I.A.; Di Domenico, M.; Palmirotta, R.; Jirillo, E. Microbial and Host Metabolites at the Backstage of Fever: Current Knowledge about the Co-Ordinate Action of Receptors and Molecules Underlying Pathophysiology and Clinical Implications. Metabolites 2023, 13, 461. [Google Scholar] [CrossRef]
- Santa, K.; Kumazawa, Y.; Nagaoka, I. The Potential Use of Grape Phytochemicals for Preventing the Development of Intestine-Related and Subsequent Inflammatory Diseases. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 794–802. [Google Scholar] [CrossRef]
- Uto, N.S.; Amitani, H.; Atobe, Y.; Sameshima, Y.; Sakaki, M.; Rokot, N.; Ataka, K.; Amitani, M.; Inui, A. Herbal Medicine Ninjin’yoeito in the Treatment of Sarcopenia and Frailty. Front. Nutr. 2018, 5, 126. [Google Scholar] [CrossRef] [Green Version]
- Zang, L.; Shimada, Y.; Nakayama, H.; Katsuzaki, H.; Kim, Y.; Chu, D.C.; Juneja, L.R.; Kuroyanagi, J.; Nishimura, N. Preventive Effects of Green Tea Extract against Obesity Development in Zebrafish. Molecules 2021, 26, 2627. [Google Scholar] [CrossRef]
- Abou Jaoude, G.J.; Garcia Baena, I.; Nguhiu, P.; Siroka, A.; Palmer, T.; Goscé, L.; Allel, K.; Sinanovic, E.; Skordis, J.; Haghparast-Bidgoli, H. National tuberculosis spending efficiency and its associated factors in 121 low-income and middle-income countries, 2010–2019: A data envelopment and stochastic frontier analysis. Lancet Glob. Health 2022, 10, e649–e660. [Google Scholar] [CrossRef]
- Chen, L.; Yu, T.; Zhai, Y.; Nie, H.; Li, X.; Ding, Y. Luteolin Enhances Transepithelial Sodium Transport in the Lung Alveolar Model: Integrating Network Pharmacology and Mechanism Study. Int. J. Mol. Sci. 2023, 24, 10112. [Google Scholar] [CrossRef] [PubMed]
- Halpin, D.M.G.; Vogelmeier, C.F.; Agusti, A. COVID-19 and COPD: Lessons beyond the pandemic. Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 321, L978–L982. [Google Scholar] [CrossRef]
- Halpin, D.M.G.; Criner, G.J.; Papi, A.; Singh, D.; Anzueto, A.; Martinez, F.J.; Agusti, A.A.; Vogelmeier, C.F. Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2021, 203, 24–36. [Google Scholar] [CrossRef] [PubMed]
- Santa, K. Grape Phytochemicals and Vitamin D in the Alleviation of Lung Disorders. Endocr. Metab. Immune Disord. Drug Targets 2022, 22, 1276–1292. [Google Scholar] [CrossRef] [PubMed]
- Nagaoka, I.; Tamura, H.; Reich, J. Therapeutic Potential of Cathelicidin Peptide LL-37, an Antimicrobial Agent, in a Murine Sepsis Model. Int. J. Mol. Sci. 2020, 21, 5973. [Google Scholar] [CrossRef]
- Santa, K. Healthy Diet, Grape Phytochemicals, and Vitamin D: Preventing Chronic Inflammation and Keeping Good Microbiota. Endocr. Metab. Immune Disord. Drug Targets 2023, 6, 777–800. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Shan, J.; Zhong, L.; Liang, B.; Zhang, D.; Li, M.; Tang, H. Dietary Phytochemicals that Can Extend Longevity by Regulation of Metabolism. Plant Foods Hum. Nutr. 2022, 77, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Arai, S.; Morinaga, Y.; Yoshikawa, T.; Ichiishi, E.; Kiso, Y.; Yamazaki, M.; Morotomi, M.; Shimizu, M.; Kuwata, T.; Kaminogawa, S. Recent trends in functional food science and the industry in Japan. Biosci. Biotechnol. Biochem. 2002, 66, 2017–2029. [Google Scholar] [CrossRef] [PubMed]
- Quideau, S.; Deffieux, D.; Douat-Casassus, C.; Pouységu, L. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. Engl. 2011, 50, 586–621. [Google Scholar] [CrossRef]
- de Souza Farias, S.A.; da Costa, K.S.; Martins, J.B.L. Analysis of Conformational, Structural, Magnetic, and Electronic Properties Related to Antioxidant Activity: Revisiting Flavan, Anthocyanidin, Flavanone, Flavonol, Isoflavone, Flavone, and Flavan-3-ol. ACS Omega 2021, 6, 8908–8918. [Google Scholar] [CrossRef]
- Nishimura, M.; Muro, T.; Kobori, M.; Nishihira, J. Effect of Daily Ingestion of Quercetin-Rich Onion Powder for 12 Weeks on Visceral Fat: A Randomised, Double-Blind, Placebo-Controlled, Parallel-Group Study. Nutrients 2019, 12, 91. [Google Scholar] [CrossRef] [Green Version]
- Miyake, T.; Kuge, M.; Matsumoto, Y.; Shimada, M. α-glucosyl-rutin activates immediate early genes in human induced pluripotent stem cells. Stem Cell Res. 2021, 56, 102511. [Google Scholar] [CrossRef]
- Hajialyani, M.; Hosein Farzaei, M.; Echeverría, J.; Nabavi, S.M.; Uriarte, E.; Sobarzo-Sánchez, E. Hesperidin as a Neuroprotective Agent: A Review of Animal and Clinical Evidence. Molecules 2019, 24, 648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, H.; Wang, J.; Ran, Q.; Lou, G.; Peng, C.; Gan, Q.; Hu, J.; Sun, J.; Yao, R.; Huang, Q. Hesperidin: A Therapeutic Agent For Obesity. Drug Des. Devel. Ther. 2019, 13, 3855–3866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Aubaidy, H.A.; Dayan, A.; Deseo, M.A.; Itsiopoulos, C.; Jamil, D.; Hadi, N.R.; Thomas, C.J. Twelve-Week Mediterranean Diet Intervention Increases Citrus Bioflavonoid Levels and Reduces Inflammation in People with Type 2 Diabetes Mellitus. Nutrients 2021, 13, 1133. [Google Scholar] [CrossRef]
- Chagas, M.D.S.S.; Behrens, M.D.; Moragas-Tellis, C.J.; Penedo, G.X.M.; Silva, A.R.; Gonçalves-de-Albuquerque, C.F. Flavonols and Flavones as Potential anti-Inflammatory, Antioxidant, and Antibacterial Compounds. Oxid. Med. Cell. Longev. 2022, 2022, 9966750. [Google Scholar] [CrossRef]
- Nakajima, A.; Ohizumi, Y. Potential Benefits of Nobiletin, A Citrus Flavonoid, against Alzheimer’s Disease and Parkinson’s Disease. Int. J. Mol. Sci. 2019, 20, 3380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghorbani, A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed. Pharmacother. 2017, 96, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Mawatari, K.; Koike, N.; Nohara, K.; Wirianto, M.; Uebanso, T.; Shimohata, T.; Shikishima, Y.; Miura, H.; Nii, Y.; Burish, M.J.; et al. The Polymethoxyflavone Sudachitin Modulates the Circadian Clock and Improves Liver Physiology. Mol. Nutr. Food Res. 2023, 67, e2200270. [Google Scholar] [CrossRef]
- Yoshitomi, R.; Yamamoto, M.; Kumazoe, M.; Fujimura, Y.; Yonekura, M.; Shimamoto, Y.; Nakasone, A.; Kondo, S.; Hattori, H.; Haseda, A.; et al. The combined effect of green tea and α-glucosyl hesperidin in preventing obesity: A randomized placebo-controlled clinical trial. Sci. Rep. 2021, 11, 19067. [Google Scholar] [CrossRef]
- Ohgitani, E.; Shin-Ya, M.; Ichitani, M.; Kobayashi, M.; Takihara, T.; Kawamoto, M.; Kinugasa, H.; Mazda, O. Significant Inactivation of SARS-CoV-2 in vitro by a Green Tea Catechin, a Catechin-Derivative, and Black Tea Galloylated Theaflavins. Molecules 2021, 26, 3572. [Google Scholar] [CrossRef]
- Ohgitani, E.; Shin-Ya, M.; Ichitani, M.; Kobayashi, M.; Takihara, T.; Kawamoto, M.; Kinugasa, H.; Mazda, O. Rapid Inactivation In Vitro of SARS-CoV-2 in Saliva by Black Tea and Green Tea. Pathogens 2021, 10, 721. [Google Scholar] [CrossRef]
- Chen, S.; Osaki, N.; Shimotoyodome, A. Green tea catechins enhance norepinephrine-induced lipolysis via a protein kinase A-dependent pathway in adipocytes. Biochem. Biophys. Res. Commun. 2015, 461, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Murase, T.; Nagasawa, A.; Suzuki, J.; Hase, T.; Tokimitsu, I. Beneficial effects of tea catechins on diet-induced obesity: Stimulation of lipid catabolism in the liver. Int. J. Obes. 2002, 26, 1459–1464. [Google Scholar] [CrossRef] [Green Version]
- Kakutani, S.; Watanabe, H.; Murayama, N. Green Tea Intake and Risks for Dementia, Alzheimer’s Disease, Mild Cognitive Impairment, and Cognitive Impairment: A Systematic Review. Nutrients 2019, 11, 1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, Z.; Nisar, M.F.; Li, M.; Zhang, C.; Wan, C.C. Theaflavin Chemistry and Its Health Benefits. Oxid. Med. Cell. Longev. 2021, 2021, 6256618. [Google Scholar] [CrossRef]
- Nakai, S.; Fujita, M.; Kamei, Y. Health Promotion Effects of Soy Isoflavones. J. Nutr. Sci. Vitaminol. (Tokyo) 2020, 66, 502–507. [Google Scholar] [CrossRef]
- Mayo, B.; Vázquez, L.; Flórez, A.B. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients 2019, 11, 2231. [Google Scholar] [CrossRef] [Green Version]
- Yamagata, K.; Yamori, Y. Potential Effects of Soy Isoflavones on the Prevention of Metabolic Syndrome. Molecules 2021, 26, 5863. [Google Scholar] [CrossRef]
- Saadati, S.; Sadeghi, A.; Mansour, A.; Yari, Z.; Poustchi, H.; Hedayati, M.; Hatami, B.; Hekmatdoost, A. Curcumin and inflammation in non-alcoholic fatty liver disease: A randomized, placebo controlled clinical trial. BMC Gastroenterol. 2019, 19, 133. [Google Scholar] [CrossRef] [PubMed]
- Strat, K.M.; Rowley, T.J., 4th; Smithson, A.T.; Tessem, J.S.; Hulver, M.W.; Liu, D.; Davy, B.M.; Davy, K.P.; Neilson, A.P. Mechanisms by which cocoa flavanols improve metabolic syndrome and related disorders. J. Nutr. Biochem. 2016, 35, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, Y.; Watanabe, Y.; Mazuka, M.; Yagi, N.; Sawazaki, A.; Koganei, M.; Natsume, M.; Kuriki, K.; Morimoto, T.; Asai, T.; et al. Effect of cacao polyphenol-rich chocolate on postprandial glycemia, insulin, and incretin secretion in healthy participants. Nutrition 2021, 85, 111128. [Google Scholar] [CrossRef]
- Bonnefont-Rousselot, D. Resveratrol and Cardiovascular Diseases. Nutrients 2016, 8, 250. [Google Scholar] [CrossRef] [PubMed]
- Kawai, Y.; Nishikawa, T.; Shiba, Y.; Saito, S.; Murota, K.; Shibata, N.; Kobayashi, M.; Kanayama, M.; Uchida, K.; Terao, J. Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: Implication in the anti-atherosclerotic mechanism of dietary flavonoids. J. Biol. Chem. 2008, 283, 9424–9434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Fu, Q.; Li, Z.; Liu, H.; Wang, Y.; Lin, X.; He, R.; Zhang, X.; Ju, Z.; Campisi, J.; et al. The flavonoid procyanidin C1 has senotherapeutic activity and increases lifespan in mice. Nat. Metab. 2021, 3, 1706–1726. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, N.; Fushimi, T.; Fujii, Y. Hormetic response to B-type procyanidin ingestion involves stress-related neuromodulation via the gut-brain axis: Preclinical and clinical observations. Front. Nutr. 2022, 9, 969823. [Google Scholar] [CrossRef]
- Alemi, F.; Poole, D.P.; Chiu, J.; Schoonjans, K.; Cattaruzza, F.; Grider, J.R.; Bunnett, N.W.; Corvera, C.U. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 2013, 144, 145–154. [Google Scholar] [CrossRef]
- Schön, C.; Allegrini, P.; Engelhart-Jentzsch, K.; Riva, A.; Petrangolini, G. Grape Seed Extract Positively Modulates Blood Pressure and Perceived Stress: A Randomized, Double-Blind, Placebo-Controlled Study in Healthy Volunteers. Nutrients 2021, 13, 654. [Google Scholar] [CrossRef] [PubMed]
- Odai, T.; Terauchi, M.; Kato, K.; Hirose, A.; Miyasaka, N. Effects of Grape Seed Proanthocyanidin Extract on Vascular Endothelial Function in Participants with Prehypertension: A Randomized, Double-Blind, Placebo-Controlled Study. Nutrients 2019, 11, 2844. [Google Scholar] [CrossRef] [Green Version]
- Tominaga, T.; Kawaguchi, K.; Kanesaka, M.; Kawauchi, H.; Jirillo, E.; Kumazawa, Y. Suppression of type-I allergic responses by oral administration of grape marc fermented with Lactobacillus plantarum. Immunopharmacol. Immunotoxicol. 2010, 32, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Kumazawa, Y.; Takimoto, H.; Matsumoto, T.; Kawaguchi, K. Potential use of dietary natural products, especially polyphenols, for improving type-1 allergic symptoms. Curr. Pharm. Des. 2014, 20, 857–863. [Google Scholar] [CrossRef]
- Chadorshabi, S.; Hallaj-Nezhadi, S.; Ghasempour, Z. Red onion skin active ingredients, extraction and biological properties for functional food applications. Food Chem. 2022, 386, 132737. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Du, K.; Hou, S.; Yang, R.; Qi, L.; Li, J.; Chang, Y. A comprehensive strategy integrating metabolomics with multiple chemometric for discovery of function related active markers for assessment of foodstuffs: A case of hawthorn (Crataegus cuneata) fruits. Food Chem 2022, 383, 132464. [Google Scholar] [CrossRef] [PubMed]
- Kumari, N.; Kumar, M.; Radha; Lorenzo, J.M.; Sharma, D.; Puri, S.; Pundir, A.; Dhumal, S.; Bhuyan, D.J.; Jayanthy, G.; et al. Onion and garlic polysaccharides: A review on extraction, characterization, bioactivity, and modifications. Int. J. Biol. Macromol. 2022, 219, 1047–1061. [Google Scholar] [CrossRef]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic composition, antioxidant potential and health benefits of citrus peel. Food Res. Int. 2020, 132, 109114. [Google Scholar] [CrossRef] [PubMed]
- Nishino, A.; Maoka, T.; Yasui, H. Preventive Effects of β-Cryptoxanthin, a Potent Antioxidant and Provitamin A Carotenoid, on Lifestyle-Related Diseases-A Central Focus on Its Effects on Non-Alcoholic Fatty Liver Disease (NAFLD). Antioxidants 2021, 11, 43. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Vyas, S.; Bhattacharya, S.; Sharma, M. Catechin prodrugs and analogs: A new array of chemical entities with improved pharmacological and pharmacokinetic properties. Nat. Prod. Rep. 2013, 30, 1438–1454. [Google Scholar] [CrossRef]
- Soni, V.K.; Mehta, A.; Ratre, Y.K.; Tiwari, A.K.; Amit, A.; Singh, R.P.; Sonkar, S.C.; Chaturvedi, N.; Shukla, D.; Vishvakarma, N.K. Curcumin, a traditional spice component, can hold the promise against COVID-19? Eur. J. Pharmacol. 2020, 886, 173551. [Google Scholar] [CrossRef]
- Kocaadam, B.; Şanlier, N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit. Rev. Food Sci. Nutr. 2017, 57, 2889–2895. [Google Scholar] [CrossRef]
- Román, G.C.; Jackson, R.E.; Gadhia, R.; Román, A.N.; Reis, J. Mediterranean diet: The role of long-chain ω-3 fatty acids in fish; polyphenols in fruits, vegetables, cereals, coffee, tea, cacao and wine; probiotics and vitamins in prevention of stroke, age-related cognitive decline, and Alzheimer disease. Rev. Neurol. (Paris) 2019, 175, 724–741. [Google Scholar] [CrossRef]
- Lee, K.W.; Kim, Y.J.; Lee, H.J.; Lee, C.Y. Cocoa has more phenolic phytochemicals and a higher antioxidant capacity than teas and red wine. J. Agric. Food Chem. 2003, 51, 7292–7295. [Google Scholar] [CrossRef]
- Gu, L.; House, S.E.; Wu, X.; Ou, B.; Prior, R.L. Procyanidin and catechin contents and antioxidant capacity of cocoa and chocolate products. J. Agric. Food Chem. 2006, 54, 4057–4061. [Google Scholar] [CrossRef]
- Santa, K.; Kumazawa, Y.; Nagaoka, I. Prevention of Metabolic Syndrome by Phytochemicals and Vitamin, D. Int. J. Mol. Sci. 2023, 24, 2627. [Google Scholar] [CrossRef] [PubMed]
- Alappat, B.; Alappat, J. Anthocyanin Pigments: Beyond Aesthetics. Molecules 2020, 25, 5500. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Liu, J.; Meng, C.; Huang, C.; Liu, F.; Xia, C. Oleanolic acid alleviates ANIT-induced cholestatic liver injury by activating Fxr and Nrf2 pathways to ameliorate disordered bile acids homeostasis. Phytomedicine 2022, 102, 154173. [Google Scholar] [CrossRef] [PubMed]
- Nho, H.; Kim, K.A. Effects of Grape Seed Extract Supplementation on Endothelial Function and Endurance Performance in Basketball Players. Int. J. Environ. Res. Public Health 2022, 19, 14223. [Google Scholar] [CrossRef]
- Buerkli, S.; Salvioni, L.; Koller, N.; Zeder, C.; Teles, M.J.; Porto, G.; Habermann, J.H.; Dubach, I.L.; Vallelian, F.; Frey, B.M.; et al. The effect of a natural polyphenol supplement on iron absorption in adults with hereditary hemochromatosis. Eur. J. Nutr. 2022, 61, 2967–2977. [Google Scholar] [CrossRef]
- Van Doren, W.W.; Iqbal, U.H.; Helmer, D.A.; Litke, D.R.; Simon, J.E.; Wu, Q.; Zhao, D.; Yin, Z.; Ho, L.; Osinubi, O.; et al. Changes in polyphenol serum levels and cognitive performance after dietary supplementation with Concord grape juice in veterans with Gulf War Illness. Life Sci. 2022, 292, 119797. [Google Scholar] [CrossRef]
- Taladrid, D.; de Celis, M.; Belda, I.; Bartolomé, B.; Moreno-Arribas, M.V. Hypertension- and glycaemia-lowering effects of a grape-pomace-derived seasoning in high-cardiovascular risk and healthy subjects. Interplay with the gut microbiome. Food Funct. 2022, 13, 2068–2082. [Google Scholar] [CrossRef]
- Shishehbor, F.; Joola, P.; Malehi, A.S.; Jalalifar, M.A. The effect of black seed raisin on some cardiovascular risk factors, serum malondialdehyde, and total antioxidant capacity in hyperlipidemic patients: A randomized controlled trials. Ir. J. Med. Sci. 2022, 191, 195–204. [Google Scholar]
- Bell, L.; Whyte, A.R.; Lamport, D.J.; Spencer, J.P.E.; Butler, L.T.; Williams, C.M. Grape seed polyphenol extract and cognitive function in healthy young adults: A randomised, placebo-controlled, parallel-groups acute-on-chronic trial. Nutr. Neurosci. 2022, 25, 54–63. [Google Scholar]
- Coelho, O.G.L.; Alfenas, R.C.G.; Debelo, H.; Wightman, J.D.; Ferruzzi, M.G.; Mattes, R.D. Effects of Concord grape juice flavor intensity and phenolic compound content on glycemia, appetite and cognitive function in adults with excess body weight: A randomized double-blind crossover trial. Food Funct. 2021, 12, 11469–11481. [Google Scholar] [PubMed]
- Yang, J.; Kurnia, P.; Henning, S.M.; Lee, R.; Huang, J.; Garcia, M.C.; Surampudi, V.; Heber, D.; Li, Z. Effect of Standardized Grape Powder Consumption on the Gut Microbiome of Healthy Subjects: A Pilot Study. Nutrients 2021, 13, 3965. [Google Scholar]
- Tutino, V.; De Nunzio, V.; Milella, R.A.; Gasparro, M.; Cisternino, A.M.; Gigante, I.; Lanzilotta, E.; Iacovazzi, P.A.; Lippolis, A.; Lippolis, T.; et al. Impact of Fresh Table Grape Intake on Circulating microRNAs Levels in Healthy Subjects: A Significant Modulation of Gastrointestinal Cancer-Related Pathways. Mol. Nutr. Food Res. 2021, 65, e2100428. [Google Scholar] [PubMed]
- García-Díez, E.; Cuesta-Hervás, M.; Veses-Alcobendas, A.M.; Alonso-Gordo, Ó.; García-Maldonado, E.; Martínez-Suárez, M.; Herranz, B.; Vaquero, M.P.; Álvarez, M.D.; Pérez-Jiménez, J. Acute supplementation with grapes in obese subjects did not affect postprandial metabolism: A randomized, double-blind, crossover clinical trial. Eur. J. Nutr. 2021, 60, 2671–2681. [Google Scholar] [PubMed]
- Das, M.; Das, A.C.; Panda, S.; Greco Lucchina, A.; Mohanty, R.; Manfredi, B.; Rovati, M.; Giacomello, M.S.; Colletti, L.; Mortellaro, C.; et al. Clinical efficacy of grape seed extract as an adjuvant to scaling and root planing in treatment of periodontal pockets. J. Biol. Regul. Homeost Agents. 2021, 35, 89–96. [Google Scholar] [PubMed]
- Dani, C.; Dias, K.M.; Trevizol, L.; Bassôa, L.; Fraga, I.; Proença, I.C.T.; Pochmann, D.; Elsner, V.R. The impact of red grape juice (Vitis labrusca) consumption associated with physical training on oxidative stress, inflammatory and epigenetic modulation in healthy elderly women. Physiol. Behav. 2021, 229, 113215. [Google Scholar]
- Vors, C.; Rancourt-Bouchard, M.; Couillard, C.; Gigleux, I.; Couture, P.; Lamarche, B. Sex May Modulate the Effects of Combined Polyphenol Extract and L-citrulline Supplementation on Ambulatory Blood Pressure in Adults with Prehypertension: A Randomized Controlled Trial. Nutrients 2021, 13, 399. [Google Scholar]
- Ramos-Romero, S.; Léniz, A.; Martínez-Maqueda, D.; Amézqueta, S.; Fernández-Quintela, A.; Hereu, M.; Torres, J.L.; Portillo, M.P.; Pérez-Jiménez, J. Inter-Individual Variability in Insulin Response after Grape Pomace Supplementation in Subjects at High Cardiometabolic Risk: Role of Microbiota and miRNA. Mol. Nutr. Food Res. 2021, 65, e2000113. [Google Scholar]
- Magrone, T.; Jirillo, E.; Magrone, M.; Russo, M.A.; Romita, P.; Massari, F.; Foti, C. Red Grape Polyphenol Oral Administration Improves Immune Response in Women Affected by Nickel-Mediated Allergic Contact Dermatitis. Endocr. Metab. Immune Disord. Drug Targets 2021, 21, 374–384. [Google Scholar]
- Nanri, A.; Mizoue, T.; Goto, A.; Noda, M.; Sawada, N.; Tsugane, S.; Japan Public Health Center-based Prospective Study Group. Vitamin D intake and all-cause and cause-specific mortality in Japanese men and women: The Japan Public Health Center-based prospective study. Eur. J. Epidemiol. 2023, 38, 291–300. [Google Scholar]
- Urena-Torres, P.; Souberbielle, J.C. Pharmacologic role of vitamin D natural products. Curr. Vasc. Pharmacol. 2014, 12, 278–285. [Google Scholar] [PubMed]
- Gallagher, J.C.; Rosen, C.J. Vitamin D: 100 years of discoveries, yet controversy continues. Lancet Diabetes Endocrinol. 2023, 11, 362–374. [Google Scholar] [PubMed]
- Holick, M.F. The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev. Endocr. Metab. Disord. 2017, 18, 153–165. [Google Scholar] [PubMed]
- Iddir, M.; Brito, A.; Dingeo, G.; Fernandez Del Campo, S.S.; Samouda, H.; La Frano, M.R.; Bohn, T. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients 2020, 12, 1562. [Google Scholar]
- Miyamoto, H.; Kawakami, D.; Hanafusa, N.; Nakanishi, T.; Miyasaka, M.; Furutani, Y.; Ikeda, Y.; Ito, K.; Kato, T.; Yokoyama, K.; et al. Determination of a Serum 25-Hydroxyvitamin D Reference Ranges in Japanese Adults Using Fully Automated Liquid Chromatography-Tandem Mass Spectrometry. J. Nutr. 2023, 153, 1253–1264. [Google Scholar]
- Chang, S.N.; Lee, J.J.; Kim, H.J.; Kang, S.C. Quercetin enhances vitamin D2 stability and mitigate the degradation influenced by elevated temperature and pH value. Turk. J. Chem. 2021, 45, 1155–1161. [Google Scholar]
- Mrityunjaya, M.; Pavithra, V.; Neelam, R.; Janhavi, P.; Halami, P.M.; Ravindra, P.V. Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front. Immunol. 2020, 11, 570122. [Google Scholar]
- Uranga, J.A.; López-Miranda, V.; Lombó, F.; Abalo, R. Food, nutrients and nutraceuticals affecting the course of inflammatory bowel disease. Pharmacol. Rep. 2016, 68, 816–826. [Google Scholar]
- Ferguson, L.R. Nutritional Modulation of Gene Expression: Might This be of Benefit to Individuals with Crohn’s Disease? Front. Immunol. 2015, 6, 467. [Google Scholar]
- Quarta, S.; Massaro, M.; Carluccio, M.A.; Calabriso, N.; Bravo, L.; Sarria, B.; García-Conesa, M.T. An Exploratory Critical Review on TNF-α as a Potential Inflammatory Biomarker Responsive to Dietary Intervention with Bioactive Foods and Derived Products. Foods 2022, 11, 2524. [Google Scholar]
- Wu, X.; Le, T.K.; Maeda-Minami, A.; Yoshino, T.; Horiba, Y.; Mimura, M.; Watanabe, K. Relationship Between Conventional Medicine Chapters in ICD-10 and Kampo Pattern Diagnosis: A Cross-Sectional Study. Front. Pharmacol. 2021, 12, 751403. [Google Scholar] [PubMed]
- Maeda-Minami, A.; Ihara, K.; Yoshino, T.; Horiba, Y.; Mimura, M.; Watanabe, K. A prediction model of qi stagnation: A prospective observational study referring to two existing models. Comput. Biol. Med. 2022, 146, 105619. [Google Scholar] [PubMed]
- Maeda-Minami, A.; Yoshino, T.; Horiba, Y.; Nakamura, T.; Watanabe, K. Inter-Rater Reliability of Kampo Diagnosis for Chronic Diseases. J. Altern. Complement. Med. 2021, 27, 613–616. [Google Scholar] [PubMed]
- Liu, R.; Li, M.; Liu, Z.P.; Wu, J.; Chen, L.; Aihara, K. Identifying critical transitions and their leading biomolecular networks in complex diseases. Sci. Rep. 2012, 2, 813. [Google Scholar] [PubMed] [Green Version]
- Koizumi, K.; Oku, M.; Hayashi, S.; Inujima, A.; Shibahara, N.; Chen, L.; Igarashi, Y.; Tobe, K.; Saito, S.; Kadowaki, M.; et al. Identifying pre-disease signals before metabolic syndrome in mice by dynamical network biomarkers. Sci. Rep. 2019, 9, 8767. [Google Scholar]
- Koizumi, K.; Oku, M.; Hayashi, S.; Inujima, A.; Shibahara, N.; Chen, L.; Igarashi, Y.; Tobe, K.; Saito, S.; Kadowaki, M.; et al. Bofutsushosan improves gut barrier function with a bloom of Akkermansia muciniphila and improves glucose metabolism in mice with diet-induced obesity. Sci. Rep. 2020, 10, 5544. [Google Scholar]
- Girardeau, G.; Lopes-Dos-Santos, V. Brain neural patterns and the memory function of sleep. Science 2021, 374, 560–564. [Google Scholar]
- Wu, Q.J.; Zhang, T.N.; Chen, H.H.; Yu, X.F.; Lv, J.L.; Liu, Y.Y.; Liu, Y.S.; Zheng, G.; Zhao, J.Q.; Wei, Y.F.; et al. The sirtuin family in health and disease. Signal Transduct. Target Ther. 2022, 7, 402. [Google Scholar]
- Samodien, E.; Johnson, R.; Pheiffer, C.; Mabasa, L.; Erasmus, M.; Louw, J.; Chellan, N. Diet-induced hypothalamic dysfunction and metabolic disease, and the therapeutic potential of polyphenols. Mol. Metab. 2019, 27, 1–10. [Google Scholar]
- Mazza, E.; Ferro, Y.; Pujia, R.; Mare, R.; Maurotti, S.; Montalcini, T.; Pujia, A. Mediterranean Diet In Healthy Aging. J. Nutr. Health Aging 2021, 25, 1076–1083. [Google Scholar]
- Dominguez, L.J.; Di Bella, G.; Veronese, N.; Barbagallo, M. Impact of Mediterranean Diet on Chronic Non-Communicable Diseases and Longevity. Nutrients 2021, 13, 2028. [Google Scholar]
- Dent, E.; Martin, F.C.; Bergman, H.; Woo, J.; Romero-Ortuno, R.; Walston, J.D. Management of frailty: Opportunities, challenges, and future directions. Lancet 2019, 394, 1376–1386. [Google Scholar] [PubMed]
- Proietti, M.; Cesari, M. Frailty: What Is It? Adv. Exp. Med. Biol. 2020, 1216, 1–7. [Google Scholar]
- Walston, J.; Buta, B.; Xue, Q.L. Frailty Screening and Interventions: Considerations for Clinical Practice. Clin. Geriatr. Med. 2018, 34, 25–38. [Google Scholar] [PubMed]
- Kobayashi, T.; Morimoto, T.; Shimanoe, C.; Ono, R.; Otani, K.; Mawatari, M. Clinical characteristics of locomotive syndrome categorised by the 25-question Geriatric Locomotive Function Scale: A systematic review. BMJ Open 2023, 13, e068645. [Google Scholar] [PubMed]
- Nishimura, A.; Ohtsuki, M.; Kato, T.; Nagao, R.; Ito, N.; Kato, K.; Ogura, T.; Sudo, A. Locomotive syndrome testing in young and middle adulthood. Mod. Rheumatol. 2020, 30, 178–183. [Google Scholar]
- Green, D.R.; Galluzzi, L.; Kroemer, G. Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 2011, 333, 1109–1112. [Google Scholar]
- Klomjit, N.; Alexander, M.P.; Fervenza, F.C.; Zoghby, Z.; Garg, A.; Hogan, M.C.; Nasr, S.H.; Minshar, M.A.; Zand, L. COVID-19 Vaccination and Glomerulonephritis. Kidney Int. Rep. 2021, 6, 2969–2978. [Google Scholar]
- Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab. Res. Rev. 2022, 38, e3502. [Google Scholar]
- Shinohara, T.; Saida, K.; Tanaka, S.; Murayama, A. Association between frailty and changes in lifestyle and physical or psychological conditions among older adults affected by the coronavirus disease 2019 countermeasures in Japan. Geriatr. Gerontol. Int. 2021, 21, 39–42. [Google Scholar]
- Inoue, K.; Tsugawa, Y.; Mayeda, E.R.; Ritz, B. Association of Daily Step Patterns With Mortality in US Adults. JAMA Netw. Open 2023, 6, e235174. [Google Scholar] [PubMed]
- Nakamura, T. The integration of school nutrition program into health promotion and prevention of lifestyle-related diseases in Japan. Asia Pac. J. Clin. Nutr. 2008, 17, 349–351. [Google Scholar] [PubMed]
- Zhang, Y.B.; Pan, X.F.; Chen, J.; Cao, A.; Xia, L.; Zhang, Y.; Wang, J.; Li, H.; Liu, G.; Pan, A. Combined lifestyle factors, all-cause mortality and cardiovascular disease: A systematic review and meta-analysis of prospective cohort studies. J. Epidemiol. Community Health 2021, 75, 92–99. [Google Scholar]
- Del Rosso, S.; Baraquet, M.L.; Barale, A.; Defagó, M.D.; Tortosa, F.; Perovic, N.R.; Aoki, M.P. Long-term effects of different exercise training modes on cytokines and adipokines in individuals with overweight/obesity and cardiometabolic diseases: A systematic review, meta-analysis, and meta-regression of randomized controlled trials. Obes. Rev. 2023, 24, e13564. [Google Scholar] [PubMed]
- Papagianni, G.; Panayiotou, C.; Vardas, M.; Balaskas, N.; Antonopoulos, C.; Tachmatzidis, D.; Didangelos, T.; Lambadiari, V.; Kadoglou, N.P.E. The anti-inflammatory effects of aerobic exercise training in patients with type 2 diabetes: A systematic review and meta-analysis. Cytokine 2023, 164, 156157. [Google Scholar] [PubMed]
- Yaskolka Meir, A.; Rinott, E.; Tsaban, G.; Zelicha, H.; Kaplan, A.; Rosen, P.; Shelef, I.; Youngster, I.; Shalev, A.; Blüher, M.; et al. Effect of green-Mediterranean diet on intrahepatic fat: The DIRECT PLUS randomised controlled trial. Gut 2021, 70, 2085–2095. [Google Scholar]
- Alasalvar, C.; Chang, S.K.; Kris-Etherton, P.M.; Sullivan, V.K.; Petersen, K.S.; Guasch-Ferré, M.; Jenkins, D.J.A. Dried Fruits: Bioactives, Effects on Gut Microbiota, and Possible Health Benefits-An Update. Nutrients 2023, 15, 1611. [Google Scholar] [PubMed]
- Kumazawa, Y.; Kawaguchi, K.; Takimoto, H. Immunomodulating effects of flavonoids on acute and chronic inflammatory responses caused by tumor necrosis factor alpha. Curr. Pharm. Des. 2006, 12, 4271–4279. [Google Scholar]
- Wijayabahu, A.T.; Waugh, S.G.; Ukhanova, M.; Mai, V. Dietary raisin intake has limited effect on gut microbiota composition in adult volunteers. Nutr. J. 2019, 18, 14. [Google Scholar]
- Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar]
- Huang, F.; Ju, Y.H.; Wang, H.B.; Li, Y.N. Maternal vitamin D deficiency impairs Treg and Breg responses in offspring mice and deteriorates allergic airway inflammation. Allergy Asthma Clin. Immunol. 2020, 16, 89. [Google Scholar]
- Keutmann, M.; Hermes, G.; Meinberger, D.; Roth, A.; Stemler, J.; Cornely, O.A.; Klatt, A.R.; Streichert, T. The ratio of serum LL-37 levels to blood leucocyte count correlates with COVID-19 severity. Sci. Rep. 2022, 12, 9447. [Google Scholar]
- Schafer, M.J.; White, T.A.; Iijima, K.; Haak, A.J.; Ligresti, G.; Atkinson, E.J.; Oberg, A.L.; Birch, J.; Salmonowicz, H.; Zhu, Y.; et al. Cellular senescence mediates fibrotic pulmonary disease. Nat. Commun. 2017, 8, 14532. [Google Scholar] [PubMed] [Green Version]
- Kawaguchi, K.; Kikuchi, S.; Hasunuma, R.; Maruyama, H.; Yoshikawa, T.; Kumazawa, Y. A citrus flavonoid hesperidin suppresses infection-induced endotoxin shock in mice. Biol. Pharm. Bull. 2004, 27, 679–683. [Google Scholar] [PubMed] [Green Version]
- Mahomoodally, M.F.; Aumeeruddy, M.Z.; Legoabe, L.J.; Dall’Acqua, S.; Zengin, G. Plants’ bioactive secondary metabolites in the management of sepsis: Recent findings on their mechanism of action. Front. Pharmacol. 2022, 13, 1046523. [Google Scholar]
- Quraishi, S.A.; De Pascale, G.; Needleman, J.S.; Nakazawa, H.; Kaneki, M.; Bajwa, E.K.; Camargo, C.A., Jr.; Bhan, I. Effect of Cholecalciferol Supplementation on Vitamin D Status and Cathelicidin Levels in Sepsis: A Randomized, Placebo-Controlled Trial. Crit. Care. Med. 2015, 43, 1928–1937. [Google Scholar]
- Nakase, H.; Uchino, M.; Shinzaki, S.; Matsuura, M.; Matsuoka, K.; Kobayashi, T.; Saruta, M.; Hirai, F.; Hata, K.; Hiraoka, S.; et al. Evidence-based clinical practice guidelines for inflammatory bowel disease 2020. J. Gastroenterol. 2021, 56, 489–526. [Google Scholar]
- Windsor, J.W.; Kaplan, G.G. Evolving Epidemiology of IBD. Curr. Gastroenterol. Rep. 2019, 21, 40. [Google Scholar]
- Clarke, S.F.; Murphy, E.F.; O’Sullivan, O.; Lucey, A.J.; Humphreys, M.; Hogan, A.; Hayes, P.; O’Reilly, M.; Jeffery, I.B.; Wood-Martin, R.; et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut 2014, 63, 1913–1920. [Google Scholar] [PubMed] [Green Version]
- Stojanov, S.; Berlec, A.; Štrukelj, B. The Influence of Probiotics on the Firmicutes/Bacteroidetes Ratio in the Treatment of Obesity and Inflammatory Bowel disease. Microorganisms 2020, 8, 1715. [Google Scholar]
- Tomioka, S.; Seki, N.; Sugiura, Y.; Akiyama, M.; Uchiyama, J.; amaguchi, G.; Yakabe, K.; Ejima, R.; Hattori, K.; Kimizuka, T.; et al. Cooperative action of gut-microbiota-accessible carbohydrates improves host metabolic function. Cell Rep. 2022, 40, 111087. [Google Scholar] [PubMed]
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [Google Scholar] [PubMed]
- Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013, 504, 446–450. [Google Scholar]
- Cevik, M.; Kuppalli, K.; Kindrachuk, J.; Peiris, M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ 2020, 371, m3862. [Google Scholar] [CrossRef] [PubMed]
- Ponti, G.; Maccaferri, M.; Ruini, C.; Tomasi, A.; Ozben, T. Biomarkers associated with COVID-19 disease progression. Crit. Rev. Clin. Lab. Sci. 2020, 57, 389–399. [Google Scholar]
- Gupta, A.; Madhavan, M.V.; Sehgal, K.; Nair, N.; Mahajan, S.; Sehrawat, T.S.; Bikdeli, B.; Ahluwalia, N.; Ausiello, J.C.; Wan, E.Y.; et al. Extrapulmonary manifestations of COVID-19. Nat Med. 2020, 26, 1017–1032. [Google Scholar] [CrossRef]
- Lanks, C.W.; Musani, A.I.; Hsia, D.W. Community-acquired Pneumonia and Hospital-acquired Pneumonia. Med. Clin. N. Am. 2019, 103, 487–501. [Google Scholar]
- Nakamura, K.; Nakayama, H.; Sasaki, S.; Takahashi, K.; Iwabuchi, K. Mycobacterium avium-intracellulare complex promote release of pro-inflammatory enzymes matrix metalloproteinases by inducing neutrophil extracellular trap formation. Sci. Rep. 2022, 12, 5181. [Google Scholar]
- Gans, M.D.; Gavrilova, T. Understanding the immunology of asthma: Pathophysiology, biomarkers, and treatments for asthma endotypes. Paediatr. Respir. Rev. 2020, 36, 118–127. [Google Scholar]
- Yi, F.; Jiang, Z.; Li, H.; Guo, C.; Lu, H.; Luo, W.; Chen, Q.; Lai, K. Small Airway Dysfunction in Cough Variant Asthma: Prevalence, Clinical, and Pathophysiological Features. Front. Physiol. 2022, 12, 761622. [Google Scholar] [CrossRef]
- Meurling, I.J.; Shea, D.O.; Garvey, J.F. Obesity and sleep: A growing concern. Curr. Opin. Pulm. Med. 2019, 25, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Myall, K.J.; Mukherjee, B.; Castanheira, A.M.; Lam, J.L.; Benedetti, G.; Mak, S.M.; Preston, R.; Thillai, M.; Dewar, A.; Molyneaux, P.L.; et al. Persistent Post-COVID-19 Interstitial Lung Disease. An Observational Study of Corticosteroid Treatment. Ann. Am. Thorac. Soc. 2021, 18, 799–806. [Google Scholar] [CrossRef]
- Malhotra, J.; Malvezzi, M.; Negri, E.; La Vecchia, C.; Boffetta, P. Risk factors for lung cancer worldwide. Eur. Respir. J. 2016, 48, 889–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agustí, A.; Vogelmeier, C.; Faner, R. COPD 2020: Changes and challenges. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 319, L879–L883. [Google Scholar] [PubMed]
- Koçak Tufan, Z.; Kayaaslan, B.; Mer, M. COVID-19 and Sepsis. Turk. J. Med. Sci. 2021, 51, 3301–3311. [Google Scholar] [CrossRef]
- Cecconi, M.; Evans, L.; Levy, M.; Rhodes, A. Sepsis and septic shock. Lancet 2018, 392, 75–87. [Google Scholar] [CrossRef]
- Appiah, M.G.; Park, E.J.; Darkwah, S.; Kawamoto, E.; Akama, Y.; Gaowa, A.; Kalsan, M.; Ahmad, S.; Shimaoka, M. Intestinal Epithelium-Derived Luminally Released Extracellular Vesicles in Sepsis Exhibit the Ability to Suppress TNF-a and IL-17A Expression in Mucosal Inflammation. Int. J. Mol. Sci. 2020, 21, 8445. [Google Scholar]
- Wautier, J.L.; Wautier, M.P. Pro- and Anti-Inflammatory Prostaglandins and Cytokines in Humans: A Mini Review. Int. J. Mol. Sci. 2023, 24, 9647. [Google Scholar] [CrossRef]
- Angus, D.C. The search for effective therapy for sepsis: Back to the drawing board? JAMA 2011, 306, 2614–2615. [Google Scholar] [CrossRef]
- O’Brien, J.M., Jr.; Ali, N.A.; Aberegg, S.K.; Abraham, E. Sepsis. Am. J. Med. 2007, 120, 1012–1022. [Google Scholar] [CrossRef]
- Seymour, C.W.; Gesten, F.; Prescott, H.C.; Friedrich, M.E.; Iwashyna, T.J.; Phillips, G.S.; Lemeshow, S.; Osborn, T.; Terry, K.M.; Levy, M.M. Time to Treatment and Mortality during Mandated Emergency Care for Sepsis. N. Engl. J. Med. 2017, 376, 2235–2244. [Google Scholar] [CrossRef]
- Kumagai, Y.; Murakami, T.; Kuwahara-Arai; Iba, T.; Reich, J.; Nagaoka, I. Antimicrobial peptide LL-37 ameliorates a murine sepsis model via the induction of microvesicle release from neutrophils. Innate Immun. 2020, 26, 565–579. [Google Scholar] [CrossRef]
- Murakami, T.; Suzuki, K.; Niyonsaba, F.; Tada, H.; Reich, J.; Tamura, H.; Nagaoka, I. MrgX2-mediated internalization of LL-37 and degranulation of human LAD2 mast cells. Mol. Med. Rep. 2018, 18, 4951–4959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Murakami, T.; Suzuki, K.; Tamura, H.; Kuwahara-Arai, K.; Iba, T.; Nagaoka, I. Antimicrobial cathelicidin peptide LL-37 inhibits the LPS/ATP-induced pyroptosis of macrophages by dual mechanism. PLoS ONE 2014, 9, e85765. [Google Scholar]
- Suzuki, K.; Ohkuma, M.; Nagaoka, I. Bacterial lipopolysaccharide and antimicrobial LL-37 enhance ICAM-1 expression and NF-κB p65 phosphorylation in senescent endothelial cells. Int. J. Mol. Med. 2019, 44, 1187–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartley, J. Vitamin D: Emerging roles in infection and immunity. Expert Rev. Anti. Infect. Ther. 2010, 8, 1359–1369. [Google Scholar] [PubMed]
- Cabalín, C.; Pérez-Mateluna, G.; Iturriaga, C.; Camargo, C.A., Jr.; Borzutzky, A. Oral vitamin D modulates the epidermal expression of the vitamin D receptor and cathelicidin in children with atopic dermatitis. Arch. Dermatol. Res. 2023, 315, 761–770. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- McCreery, R.J.; Florescu, D.F.; Kalil, A.C. Sepsis in Immunocompromised Patients Without Human Immunodeficiency Virus. J. Infect. Dis. 2020, 222, S156–S165. [Google Scholar] [CrossRef]
- Hemilä, H. Vitamin C and Infections. Nutrients 2017, 9, 339. [Google Scholar] [CrossRef] [Green Version]
- Sinopoli, A.; Caminada, S.; Isonne, C.; Santoro, M.M.; Baccolini, V. What Are the Effects of Vitamin A Oral Supplementation in the Prevention and Management of Viral Infections? A Systematic Review of Randomized Clinical Trials. Nutrients 2022, 14, 4081. [Google Scholar] [CrossRef] [PubMed]
- Sinopoli, A.; Isonne, C.; Santoro, M.M.; Baccolini, V. The effects of orally administered lactoferrin in the prevention and management of viral infections: A systematic review. Rev. Med. Virol. 2022, 32, e2261. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wei, S.; Niu, S.; Ma, X.; Li, H.; Jing, M.; Zhao, Y. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput. Biol. Med. 2022, 144, 105389. [Google Scholar] [CrossRef] [PubMed]
Fruits/ Vegetables | Phytochemicals | Effects | Main Findings and Markers | Dose | Subjects | First Author, Year [Ref.] |
---|---|---|---|---|---|---|
Onion | Quercetin | Obesity prevention, liver function improvement | Visceral fat area (VFA) in low HLD subjects ↓ | 9 g/day: 12 w | Human (CRT) | Nishimura, M., 2019 [19] |
Rutin (Quercetin- glycoside) | Increasing cell viability | Cell viability ↑, G2, M phase cells ↑, IEGs ↑, iPSCs ↑ | 0.05–100 μM | In vitro | Miyake, T., 2021 [20] | |
Citrus fruits | Hesperidin | Neuroprotective effects | Cognitive function ↑, Executing function ↑, Episodic memory ↑ | 32 or 275 mg/day: 8 w | Human | Hajialyani, M., 2019 [21] |
Lowering cholesterol and blood pressure, maintaining bone density, blood vessel protection in sepsis | Blood glucose ↓, Liver weight ↓, NAFLD ↓, NO ↓, IL-6 ↓, TNF-α ↓ | 50 mg-10 g/kg: 70 min-4 w | Mouse/rat | Xiong, H., 2019 [22] | ||
PPAR-γ ↓, C/EBPβ ↓, SREBP1 ↓, ROS ↓, ACDC ↑, IL-6 ↓, TNF-α ↓, NO ↓ | 0.1–50 μM 1 min-8 d | In vitro | ||||
Naringin | Reduction of inflammation markers in diabetic patients | Serum IL-6↓ | Mediterranean Diet Intervention: 12 w | Human (CRT) | Al-Aubaidy HA, 2021 [23] | |
Nobiletin | Anti-oxidative, skin metabolism, blood sugar modulation by adiponectin production, anti-dementia | Serum amylase ↓, Pancreatic myeloperoxidase activity ↓, Inflammatory factors ↓, p-p38 ↓, AKT ↓ | 50 mg/kg | Mouse | Chagas, MDSS, 2022 [24] | |
AD pathology ↑, Motor function ↑, Cognitive function ↑, Aβ ↓, Tau hyperphosphorylation ↓ | 10–50 mg/kg, i.p. or p.o. | Mouse/rat | Nakajima, A., 2019 [25] | |||
Rutin (Quercetin- glycoside) | Blood vessel protection/anti-diabetes | Carbohydrate absorption in small intestine ↓, Glucose generation in the tissue ↓, Tissue glucose incorporation ↑, insulin secretion ↑ | 50 or 100 mg/kg | Rat | Ghorbani, A. 2017 [26] | |
Sudachitin | Prevention of liver fat through modulation of circadian clock | Bmal1 ↑, Liver triglyceride ↓, TGF-β ↓, TNF-α ↓ | 100 mg/kg: 22 w | Mouse | Mawatari, K., 2023 [27] | |
Tea | Catechins | Anti-obesity effects with orange polyphenol | Body weight ↓, BMI ↓, Blood LDL/HDL ratio ↓ | EGCG 146 mg + hesperidin 178 mg/day: 12 w | Human (CRT) | Yoshitomi, R., 2021 [28] |
Inactivation of SARS-CoV-2 virus | Viral infectious ability (TCID50) ↓, Viral RNA reproduction ↓, Second viral generation ↓ | 1 mM, 40 μM, 60 μM | In vitro | Ohgitani, E., 2021 [29] | ||
Viral infectious ability (TCID50) ↓, Second viral generation ↓ | Tea catechins in saliva | In vitro | Ohgitani, E., 2021 [30] | |||
Lipolysis effect | Glycerol ↓ | 2.3, 11.5 μM | In vitro | Chen, S., 2015 [31] | ||
Visceral fat accumulation prevention | Liver β oxidation activity ↓ | 0.1–0.5% (w/w) | Mouse | Murase, T., 2002 [32] | ||
Prevention of dementia | Cognitive impairment ↓ | Green tea intake 1–6 cups/week (systematic review) | Human | Kakutani, S., 2019 [33] | ||
Theaflavin | Antivirus, anti-inflammatory, anti-oxidative, anti-obesity | 3CL-protease (constricting functional viral protein) ↓ | 8.44 μg/mL | In vitro | Shan, Z., 2021 [34] | |
Soybeans | Genistein Daidzein | Oestrogenic effects | Blood sugar ↓, Bone density in menopause women ↑, Breast cancer risk ↓ | Genistein/Daidzein 200 mg/kg | Mouse | Nakai, S., 2019 [35] |
Equol | Oestrogenic gut microbial metabolite | Frequency of hot flushes during menopause ↓ | 10–30 mg/day: 8–12 w | Human | Mayo, B., 2019 [36] | |
Metabolic syndrome prevention | Body weight ↓, BMI ↓, TC ↓, LDL-C ↓, non-HDL-C ↓, apoB ↓ | Soy protein 30 g/day: 12 w (epidemiological research) | Human | Yamagata, K., 2021 [37] | ||
Blood sugar ↓, Glucose tolerance ↑, Blood insulin ↑ | Genistein 20–250 mg/day: 8–12 w, Daidzein 50 mg/day: 24 w | Mouse | ||||
Lipid accumulation ↓, Lipid droplet accumulation ↓, C/EBPα ↓, PPAR-γ ↓, 2/FABP4 ↓ | Culture with genistein 50–200 μM: 14 d | In vitro | ||||
Turmeric | Curcumin | Liver protective effects | Lung fibrosis ↓, NF-κΒ ↓ | 1500 mg/day: 12 w | Human (RCT) | Saadati S., 2019 [38] |
Cacao | Cacao polyphenols (Epicatechin, catechin, procyanidins) | Improvement in metabolic-syndrome-related disorders | Insulin↑, Moderate low blood sugar level | Chocolate bar 20–100 g/day containing 15–500 mg polyphenol | Human | Strat, K.M., 2016 [39] |
Prebiotics effects for gut microbiota ↑, Gut barrier function ↑, Endotoxin absorption ↓ | Addition of cocoa powder 0.5–10% (v/v) in diet (mouse/rat) | Mouse/rat | ||||
Enhancement in GLP-1 and insulin production | Insulin ↑, Serum GLP-1 ↑ | 635 mg/day | Human (CRT) | Kawakami, Y., 2021 [40] | ||
Grape | Resveratrol | Cardiovascular disease | LDL ↓, Triglyceride ↓ | 250–1000 mg/kg/day | Human | Bonnefont-Rousselot, D., 2016 [41] |
miRNA expression ↑ | 5 mg/kg/day: 21 d | Rat | ||||
Quercetin | Chronic inflammation, atherosclerosis | Serum quercetin-3-glucuronide (Q3GA) ↑, Cardiovascular disease risk ↓ | 350–500 g of cooked onion paste roasted with salad oil. | Human | Kawai, Y., 2008 [42] | |
Q3GA accumulation in macrophages ↑, form cell formation ↓ | 1 μΜ | In vitro | ||||
Anthocyanins | Anti-inflammatory, lowering cardiovascular diseases, diabetes, and fatality by anti-oxidative effects | Myocardial infarction risk ↓, Diabetes risk ↓, Mortality of cardiovascular diseases ↓ | Daily intake of blueberry or anthocyanins 25–500 mg/day | Human | Kalt, W., 2020 [43] | |
Retinal inflammation ↓ | Bilberry extract 500 mg/kg/day: 4 d | Mouse | ||||
Procyanidins | Anti-ageing | Physical dysfunction ↓, Pathophysiology ↓, Survival of aged mice↑ | PCC1 20 mg/kg i.p. | Mouse | Xu, Q., 2021 [44] | |
Cell viability ↑, Apoptosis in senescent cells ↑, BCL-2 ↓, Caspase 3, 9 ↑ | PCC1 100 μM | In vitro | ||||
Procyanidins | Gut-brain axis | Endothelial function measured by flow-mediated dilation (FMD) ↑ | Cocoa flavanols 710 mg/kg | Human | Osakabe, N., 2022 [45] | |
Blood pressure ↓, eNOS ↓ | 10 mg/kg (body weight): repetitive | Rat | ||||
Oleanolic acid | Activating intestinal peristalsis | Large intestine contraction ↑ | 1–100 μM (measurement in mouse tissue) | Mouse | Alemi, F., 2013 [46] | |
GSE | Suppression of high blood pressure | Blood pressure ↓ | 300 mg/day: 16 w | Human (CRT) | Schön, C., 2021 [47] | |
GSPE | Maintaining normal blood pressure | Systolic blood pressures (SBP) ↓, Diastolic BP (DBP) ↓, stiffness parameter β ↑, incremental elastic modulus (Einc) ↑, Pulse wave velocity (PWV)↑ | 200, 400 mg/day: 12 w | Human (CRT) | Odai, T., 2019 [48] | |
K-FGF | Suppression of inflammatory cytokine TNF-α | Serum IgE ↓, Neutrophil numbers ↓, PCA reaction↓ | 100 mg/kg/day: 17 d | Mouse | Tominaga, T., 2010 [49] | |
Th1/Th2 balance ↑, Antigen specific IgE production↓ | 450 or 675 mg/day | Human | Kumazawa, Y., 2014 [50] |
First Author, Year [Ref.] | Research | Polyphenols | Treatment | Dose | Type of Subjects | Main Findings | Results |
---|---|---|---|---|---|---|---|
Nho, H., 2022 [65] | Endothelial function and endurance performance | Grape Seed Extract (GSE) | GSE supplementation during cycling exercise | 300 mg/day: 14 d | Athletes (n = 12) | VO2 peak ↓ Time to exhaustion ↑ | Chronic supplementation of GSE improved endurance performance. |
Buerkli, S., 2022 [66] | Iron absorption in adults with hereditary hemochromatosis (HH) | 12 natural polyphenol supplementations, including grapes. | Fractional iron absorption (FIA) after polyphenol supplementation (PPS) | FeSO4 10 g + PPS 2 g/day: 45 d | HH patients (n = 14) | FIA ↓ | Reduced iron accumulation and frequency of phlebotomy in HH patients. |
Van Doren, W.W., 2022 [67] | Serum polyphenol concentration and cognitive performance | Grape juice | Concord grape juice consumption | 85 g: 0–2 w; 170 g: 3–4 w; 255 g: 4–24 w | Gulf War illness veterans (n = 26) | Serum polyphenol ↑ Cognitive performance ↑ | Increased bioavailability of polyphenols and improved cognitive performance. |
Taladrid, D., 2022 [68] | Interplay between hypertension, blood sugar and gut microbiota | Grape pomace (GP) | Consumption of GP-derived seasoning | 2 g/day: 6 w | High-cardiovascular risk subjects (n = 17) and healthy subjects (n = 12) | Blood pressure ↓ Fasting blood glucose ↓ | Modification of cardiometabolic risk factors and gut microbiota. |
Shishehbor, F., 2022 [69] | Cardiovascular risk factors and total antioxidant capacity | Raisin | Consumption of black seed raisin | 90 g/day: 5 w | Hyperepidemic patients (n = 38) | Diastolic blood pressure (DBP) ↓ Serum total antioxidant capacity (TAC) ↑ | Effects in cardiovascular risk factors and serum antioxidant capacity. |
Bell, L., 2022 [70] | Cognitive function | Grape seed polyphenol extract (GSPE) | Cognitive tests after GSPE consumption | 400 mg/day: 12 w | Healthy young adults, GSEP (n = 30) or placebo (n = 30) | No effective cognitive benefits revealed. | In contrast to older and cognitive compromised populations, no improvement of cognitive functions in healthy young adults. |
Coelho, O.G.L., 2021 [71] | Effects of grape flavour and polyphenol in glycaemia, appetite, and cognitive function | Grape juice | Concord grape (Vitis lambrusca) juice (CGJ): polyphenol-free grape flavoured drink (LP), or LP with reduced flavour (LPF) compared | 355 mL/day: 8 w | Adults with excess body weight (n = 34) | Hunger ↓, Appetite ↓ in CGJ and LP groups | Eight weeks’ intake of grape juice reduced fasting blood gulches. |
Yang, J., 2021 [72] | Effects in gut microbiome | Grape powder | Grape powder consumption (equivalent of 2 servings of table grapes) | 46 g/day: 4 w | Healthy subjects | Gut microbiota α-diversity index ↑ Verrucomicrobia ↑ Akkermansia ↑ | Significant changes in gut microbiota and cholesterol/bile acid metabolism. |
Tutino, V., 2021 [73] | Impact in gastrointestinal cancer-related pathways, related circulating microRNA | Fresh table grape | Consumption of fresh grapes (Autumn Royal table grape) | 5 g/day: 3 w | Healthy subjects (n = 40) | 18 miRNAs ↓ 2 miRNAs ↑ | Effects in miRNAs levels in counteracting cancer development, including gastrointestinal cancers. |
García-Díez, E., 2021 [74] | Influence in postprandial metabolism | Grape powder | Single application of grape powder | 46 g/day: Once | Obese subjects (30 ≤ BMI < 40) (n = 25) | Blood glucose, Insulin, Triglycerides, Uris acid, Blood count, Haemoglobin, Viscosity, Antioxidant capacity, and Satiety perception after 5 h. | Single supplementation showed no significant changes; insufficient amounts. |
Das, M., 2021 [75] | Clinical efficacy in periodontal pockets | GSE | GSE injection to periodontal pockets | 4% GSE in PBS: 12 w | Patients with periodontal pockets (n = 64) | Probing depth (PD) ↓ Relative attachment level (RAL) ↓ | Beneficial in management of periodontal pockets. |
Schön, C., 2021 [47] | Positively modulating blood pressure and perceived stress | GSE | Administration of GSE tablets (Envovita (GSEe)) | 300 mg/day: 16 w | Healthy subjects | Blood pressure ↓ | Improvement of endothelial functionality in vitro, blood pressure, and positive effects in stress perception. |
Dani, C., 2021 [76] | Oxidative stress, inflammation, and epigenetic modulation | Grape juice | Red grape (Vitis labrusca) juice group (GJG), GJG with exercise (GJEG), and placebo with exercise (PLEG) compared | 400 mL/day: 4 w | Healthy elderly women aged 59 years and over (n = 29) | IL-6 ↓ in GJEG and PLEG | Physical training affects anti-oxidative and anti-inflammatory effects in elderly women, grape juice increased non enzymatic antioxidant defence. |
Vors, C., 2021 [77] | Differences in cardiovascular diseases by sex | Combined polyphenol and L-citrulline | Administration of polyphenol plus L-citrulline | Polyphenol 548 mg + L-citrulline 2 g/day: 6 w | Men and women with prehypertension (n = 73) | DBP ↓, AGEs ↓ in women | Decrease of ambulatory systolic BP (SBP) in women. Sex-dependent BP response to polyphenol supplementation. |
Ramos-Romero, S., 2021 [78] | Insulin’s response | GP | Supplementation of dried GP | 8 g/day: 6 w | Subjects with at least 2 factors of metabolic syndrome (n = 49) | Prevotella ↓, Firmicutes ↓ miR-222 ↑ in responder subjects. | Faecal microbiota and miRNA expression are related, with variability in clinical trials with polyphenols. |
Magrone, T., 2021 [79] | Improvement in nickel-mediated allergic contact dermatitis | Grape polyphenol | Administration of red grape (Nero di Troia cultivar) polyphenol | 300 mg/day: 12 w | Allergic contact dermatitis (ADC) patients to Ni (n = 25) | IFN-γ ↓, IL-4 ↓, IL-17 ↓, pentraxin 3 ↓, NO ↓, IL-10 ↑ | Anti-oxidative, anti-inflammatory, and anti-allergic properties of polyphenols were shown. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santa, K.; Watanabe, K.; Kumazawa, Y.; Nagaoka, I. Phytochemicals and Vitamin D for a Healthy Life and Prevention of Diseases. Int. J. Mol. Sci. 2023, 24, 12167. https://doi.org/10.3390/ijms241512167
Santa K, Watanabe K, Kumazawa Y, Nagaoka I. Phytochemicals and Vitamin D for a Healthy Life and Prevention of Diseases. International Journal of Molecular Sciences. 2023; 24(15):12167. https://doi.org/10.3390/ijms241512167
Chicago/Turabian StyleSanta, Kazuki, Kenji Watanabe, Yoshio Kumazawa, and Isao Nagaoka. 2023. "Phytochemicals and Vitamin D for a Healthy Life and Prevention of Diseases" International Journal of Molecular Sciences 24, no. 15: 12167. https://doi.org/10.3390/ijms241512167
APA StyleSanta, K., Watanabe, K., Kumazawa, Y., & Nagaoka, I. (2023). Phytochemicals and Vitamin D for a Healthy Life and Prevention of Diseases. International Journal of Molecular Sciences, 24(15), 12167. https://doi.org/10.3390/ijms241512167