Ga···C Triel Bonds—Why They Are Not Strong Enough to Change Trigonal Configuration into Tetrahedral One: DFT Calculations on Dimers That Occur in Crystal Structures
Abstract
:1. Introduction
2. Results and Discussion
2.1. Ga···C Triel Bonds in Crystal Structures
2.2. Interaction Energies—EDA Analysis
2.3. QTAIM Parameters
2.4. NBO Analysis
3. Materials and Methods
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pimentel, G.C.; McClellan, A.L. The Hydrogen Bond; Freeman: San Francisco, CA, USA, 1960. [Google Scholar]
- Desiraju, G.R.; Steiner, T. The Weak Hydrogen Bond; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Jeffrey, G.A. An Introduction to Hydrogen Bonding; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Scheiner, S. Hydrogen Bonding: A Theoretical Perspective; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Gilli, G.; Gilli, P. The Nature of the Hydrogen Bond; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Scheiner, S. New ideas from an Old Concept: The Hydrogen Bond. Biochemist 2019, 4, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Scheiner, S. The Hydrogen Bond: A Hundred Years and Counting. J. Indian Inst. Sci. 2020, 100, 61–76. [Google Scholar] [CrossRef]
- Grabowski, S.J. Understanding Hydrogen Bonds: Theoretical and Experimental Views; Royal Society of Chemistry: Croydon, UK, 2021. [Google Scholar]
- Scheiner, S. (Ed.) Noncovalent Forces; Springer: Cham, Switzerland; Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Shaik, S.; Novoa, J.J.; Gavezzotti, A.; Popelier, P.L.A.; Pendás, A.M.; Sainz, J.L.C.; Francisco, E.; Boto, R.A.; Contreras-García, J.; Gnanasekar, S.P.; et al. Intermolecular Interactions in Crystals: Fundamentals of Crystal Engineering; Novoa, J.J., Ed.; The Royal Society of Chemistry: London, UK, 2018. [Google Scholar]
- Kaplan, I.G. Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials; John Wiley & Sons, Ltd.: Chichester, UK, 2006. [Google Scholar]
- Politzer, P.; Riley, K.E.; Bulat, F.A.; Murray, J.S. Perspectives on halogen bonding and other σ-hole interactions: Lex parsimoniae (Occam’s Razor). Comput. Theor. Chem. 2012, 998, 2–8. [Google Scholar] [CrossRef]
- Scheiner, S. Detailed Comparison of the Pnicogen Bond with Chalcogen, Halogen, and Hydrogen Bonds. Int. J. Quantum Chem. 2013, 113, 1609–1620. [Google Scholar] [CrossRef] [Green Version]
- Scheiner, S. The Pnicogen Bond: Its Relation to Hydrogen, Halogen, and Other Noncovalent Bonds. Acc. Chem. Res. 2013, 46, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen bonding: An electrostatically-driven highly directional noncovalent interaction. Phys. Chem. Chem. Phys. 2010, 12, 7748–7758. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen bonding and other σ-hole interactions: A perspective. Phys. Chem. Chem. Phys. 2013, 15, 11178–11189. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S. Halogen Bonding: An Interim Discussion. ChemPhysChem 2013, 14, 278–294. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S.; Clark, T. The π-hole revisited. Phys. Chem. Chem. Phys. 2021, 23, 16458–16468. [Google Scholar] [CrossRef]
- Clark, T.; Hennemann, M.; Murray, J.S.; Politzer, P. Halogen bonding: The σ-hole. J. Mol. Model. 2007, 13, 291–296. [Google Scholar] [CrossRef]
- Politzer, P.; Lane, P.; Concha, M.C.; Ma, Y.; Murray, J.S. An overview of halogen bonding. J. Mol. Model. 2007, 13, 305–311. [Google Scholar] [CrossRef]
- Murray, J.S.; Lane, P.; Politzer, P. Expansion of the σ-hole concept. J. Mol. Model. 2009, 15, 723–729. [Google Scholar] [CrossRef]
- Bundhun, A.; Ramasami, P.; Murray, J.S.; Politzer, P. Trends in σ-hole Strengths and Interactions of F3MX Molecules (M = C, Si, Ge and X = F, Cl, Br, I). J. Mol. Model. 2013, 19, 2739–2746. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, S.J. Boron and other triel Lewis acid centers: From hypovalency to hypervalency. ChemPhysChem 2014, 15, 2985–2993. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, S.J. Triel bond and coordination of triel centres—Comparison with hydrogen bond interaction. Coord. Chem. Rev. 2020, 407, 213171. [Google Scholar] [CrossRef]
- Brinck, T.; Murray, J.S.; Politzer, P. A computational analysis of the bonding in boron trifluoride and boron trichloride and their complexes with ammonia. Inorg. Chem. 1993, 32, 2622–2625. [Google Scholar] [CrossRef]
- Weinhold, F.; Landis, C. Valency and Bonding, A Natural Bond Orbital Donor—Acceptor Perspective; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Grabowski, S.J. Classification of So-Called Non-Covalent Interactions Based on VSEPR Model. Molecules 2021, 26, 4939. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, R.J.; Hargittai, I. The VSEPR Model of Molecular Geometry; Allyn & Bacon, Boston, MA, USA, 1991; reprinted in The VSEPR Model of Molecular Geometry; Dover Publications, Inc.: New York, NY, USA, 2012. [Google Scholar]
- Davidson, M.G.; Hughes, A.K.; Marder, T.B.; Wade, K. (Eds.) Contemporary Boron Chemistry; The Royal Society of Chemistry: Cambridge, UK, 2000. [Google Scholar]
- Hamilton, C.W.; Baker, R.T.; Staubitz, A.; Manners, I. B-N compounds for chemical hydrogen storage. Chem. Soc. Rev. 2009, 38, 279–293. [Google Scholar] [CrossRef]
- Keaton, R.J.; Blacquiere, J.M.; Baker, R.T. Base Metal Catalyzed Dehydrogenation of Ammonia−Borane for Chemical Hydrogen Storage. J. Am. Chem. Soc. 2007, 129, 1844–1845. [Google Scholar] [CrossRef]
- Staubitz, A.; Besora, M.; Harvey, J.N.; Manners, I. Computational Analysis of Amine− Borane Adducts as Potential Hydrogen Storage Materials with Reversible Hydrogen Uptake. Inorg. Chem. 2008, 47, 5910–5918. [Google Scholar] [CrossRef]
- Das, A.; Rej, S.; Panda, T.K. Aluminium complexes: Next-generation catalysts for selective hydroboration. Dalton Trans. 2022, 51, 3027–3040. [Google Scholar] [CrossRef] [PubMed]
- Wadas, T.J.; Wong, E.H.; Weisman, G.R.; Anderson, C.J. Coordinating Radiometals of Copper, Gallium, Indium, Yttrium, and Zirconium for PET and SPECT Imaging of Disease. Chem. Rev. 2010, 110, 2858–2902. [Google Scholar]
- Smoot, C.R.; Brown, H.C. Kinetics and Mechanism of the Gallium Bromide Catalyzed Alkylation of Aromatics with Ethyl Bromide. J. Am. Chem. Soc. 1956, 78, 6245–6249. [Google Scholar] [CrossRef]
- Liu, L.; Lo, S.-K.; Smith, C.; Goicoechea, J.M. Pincer-Supported Gallium Complexes for the Catalytic Hydroboration of Aldehydes, Ketones and Carbon Dioxide. Chem. Eur. J. 2021, 27, 17379–17385. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Schneider, U. Catalytic Use of Elemental Gallium for Carbon–Carbon Bond Formation. J. Am. Chem. Soc. 2016, 138, 13119–13122. [Google Scholar] [CrossRef] [Green Version]
- Halevas, E.; Mavroidi, B.; Antonoglou, O.; Hatzidimitriou, A.; Sagnou, M.; Pantazaki, A.A.; Litsardakis, G.; Pelecanou, M. Structurally characterized gallium-chrysin complexes with anticancer potential. Dalton Trans. 2020, 49, 2734–2746. [Google Scholar] [CrossRef] [PubMed]
- Sinha, V.; Rezai, F.; Sahin, N.E.; Catalano, J.; Bøjesen, E.D.; Sotoodeh, F.; Dražević, E. Electrochemical nitrogen reduction reaction over gallium—A computational and experimental study. Faraday Discuss. 2023, 243, 307–320. [Google Scholar] [CrossRef]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge structural database. Acta Cryst. 2016, B72, 171–179. [Google Scholar] [CrossRef]
- Wong, R.; Allen, F.H.; Willett, P. The scientific impact of the Cambridge Structural Database: A citation-based study. J. Appl. Crystallogr. 2010, 43, 811–824. [Google Scholar] [CrossRef] [Green Version]
- Bondi, J. Van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451. [Google Scholar] [CrossRef]
- Grabowski, S.J. Triel Bonds, π-Hole-π-Electrons Interactions in Complexes of Boron and Aluminium Trihalides and Trihydrides with Acetylene and Ethylene. Molecules 2015, 20, 11297–11316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhl, W.; Haddadpour, S.; Matar, M. New Aspects of Hydrogallation Reactions with Alkynes: Simple Addition versus Formation of Cyclophanes. Organometallics 2006, 25, 159–163. [Google Scholar] [CrossRef]
- Merz, K.; Zettler, F.; Hausen, H.D.; Weidlein, J. Die Kristallstruktur von (CH3)2GaC5H5. J. Organomet. Chem. 1976, 122, 159–170. [Google Scholar] [CrossRef]
- Jutzi, P.; Izundu, J.; Neumann, B.; Mix, A.; Stammler, H.-G. Aryl(dimethyl)gallium Compounds and Methyl(diphenyl)gallium: Synthesis, Structure, and Redistribution Reactions. Organometallics 2008, 27, 4565–4571. [Google Scholar] [CrossRef]
- Jutzi, P.; Izundu, J.; Sielemann, H.; Neumann, B.; Stammler, H.-G. Bis- and Tris(dimethylgallyl)benzenes: Synthesis, Solid-State Structures, and Redistribution Reactions. Organometallics 2009, 28, 2619–2624. [Google Scholar] [CrossRef]
- Todtmann, J.; Schwarz, W.; Weidlein, J.; Haaland, A. Dimethylmetallderivate substituierter Pyrrole (Metall = Al, Ga und In). Z. Für Naturforschung B 1993, 48, 1437–1447. [Google Scholar] [CrossRef]
- Jutzi, P.; Sielemann, H.; Neumann, B.; Stammler, H.-G. Methyl or ethyl makes the difference: Synthesis and solid-state structure of 9,10-dialkyl-9,10-dihydro-9,10-digallaanthracenes. Inorg. Chim. Acta 2005, 358, 4208–4216. [Google Scholar] [CrossRef]
- DiPasquale, A.G.; Mayer, J.M. Hydrogen Peroxide: A Poor Ligand to Gallium Tetraphenylporphyrin. J. Am. Chem. Soc. 2008, 130, 1812–1813. [Google Scholar] [CrossRef]
- Mitzel, N.W.; Lustig, C.; Berger, R.J.F.; Runeberg, N. Luminescence Phenomena and Solid-State Structures of Trimethyl- and Triethylgallium. Angew. Chem. Int. Ed. 2002, 41, 2519–2522. [Google Scholar] [CrossRef]
- Bendix, J.; Dmochowski, I.J.; Gray, H.B.; Mahammed, A.; Simkhovich, L.; Gross, Z. Structural, Electrochemical, and Photophysical Properties of Gallium(III) 5,10,15-Tris(pentafluorophenyl)corrole. Angew. Chem. Int. Ed. 2000, 39, 4048–4051. [Google Scholar] [CrossRef]
- Althoff, A.; Jutzi, P.; Lenze, N.; Neumann, B.; Stammler, A.; Stammler, H.-G. A Digalla[1.1]ferrocenophane and Its Coordination Chemistry: Synthesis and Structure of [{Fe(η5-C5H4)2}2{GaMe}2] and of the Adducts [{Fe(η5-C5H4)2}2{GaMe(D)}2] (D = Monodentate Donor) and [{Fe(η5-C5H4)2}2{GaMe}2D] (D = Bidentate Donor). Organometallics 2003, 22, 2766–2774. [Google Scholar] [CrossRef]
- Allinger, N.L. Molecular Structure, Understanding Steric and Electronic Effects from Molecular Mechanics; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Fiacco, D.L.; Leopold, K.R. Partially bound systems as sensitive probes of microsolvation: A microwave and ab initio study of HCN···HCN-BF3. J. Phys. Chem. A 2003, 107, 2808–2814. [Google Scholar] [CrossRef]
- Zhang, J.R.; Li, W.Z.; Cheng, J.B.; Liu, Z.B.; Li, Q.Z. Cooperative effects between pi-hole triel and pi-hole chalcogen bonds. Rsc. Adv. 2018, 8, 26580–26588. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.J.; Li, Q.Z. Abnormal synergistic effects between Lewis acid-base interaction and halogen bond in F3B···NCX···NCM. Mol. Phys. 2015, 113, 3809–3814. [Google Scholar] [CrossRef]
- Yourdkhani, S.; Korona, T.; Hadipour, N.L. Interplay between tetrel and triel bonds in RC6H4CN···MF3CN···BX3 complexes: A combined Symmetry-Adapted Perturbation Theory, Møller-Plesset, and Quantum Theory of Atoms-in-Molecules study. J. Comput. Chem. 2015, 36, 2412–2428. [Google Scholar] [CrossRef]
- Zhang, J.R.; Wang, Z.X.; Liu, S.F.; Cheng, J.B.; Li, W.Z.; Li, Q.Z. Synergistic and diminutive effects between triel bond and regium bond: Attractive interactions between pi-hole and sigma-hole. Appl. Organomet. Chem. 2019, 33, 4806. [Google Scholar] [CrossRef]
- Liu, M.X.; Zhuo, H.Y.; Li, Q.Z.; Li, W.Z.; Cheng, J.B. Theoretical study of the cooperative effects between the triel bond and the pnicogen bond in BF3···NCXH2···Y (X = P, As, Sb; Y = H2O, NH3) complexes. J. Mol. Model. 2016, 22, 10. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Mousavian, P. The triel bond: A potential force for tuning anion-pi interactions. Mol. Phys. 2018, 116, 388–398. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Mousavian, P. Mutual influence between triel bond and cation-pi interactions: An ab initio study. Mol. Phys. 2017, 115, 2999–3010. [Google Scholar] [CrossRef]
- Wang, R.; Xiao, B.; Li, W.; Li, Q. Cooperative effects between triel and halogen bonds in complexes of pyridine derivatives: Anopposite effect of the nitrogen oxidation on triel and halogen bonds. Int. J. Quantum Chem. 2021, 121, e26429. [Google Scholar] [CrossRef]
- Wang, X.; Li, Y.; Wang, H.; Ni, Y.; Wang, H. Which triel bond is stronger? TrHX⋯H2Y versus TrH2X⋯H2Y (Tr = Ga, In; X = F, Cl, Br, I; Y = O, S). Theor. Chem. Acc. 2021, 140, 80. [Google Scholar] [CrossRef]
- Martinez, C.R.; Iverson, B.L. Rethinking the term “pi-stacking”. Chem. Sci. 2012, 3, 2191–2201. [Google Scholar] [CrossRef] [Green Version]
- Lamm, J.-H.; Horstmann, J.; Stammler, H.-G.; Mitzel, N.W.; Zhabanov, Y.A.; Tverdova, N.V.; Otlyotov, A.A.; Giricheva, N.I.; Girichev, G.V. 1,8-Bis(phenylethynyl)anthracene—Gas and solid phase structures. Org. Biomol. Chem. 2015, 13, 8893–8905. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, S.J. Hydrogen bonds, and σ-hole and π-hole bonds—Mechanisms protecting doublet and octet electron structures. Phys. Chem. Chem. Phys. 2017, 19, 29742–29759. [Google Scholar] [CrossRef]
- Fradera, X.; Austen, M.A.; Bader, R.F.W. The Lewis Model and Beyond. J. Phys. Chem. A 1999, 103, 304–314. [Google Scholar] [CrossRef]
- Fradera, X.; Poater, J.; Simon, S.; Duran, M.; Solà, M. The calculation of electron localization and delocalization indices at the Hartree–Fock, density functional and post-Hartree–Fock levels of theory. Theor. Chem. Acc. 2002, 107, 362–371. [Google Scholar]
- Todd, A.; Keith, T.K. AIMAll; Version 11.08.23; Gristmill Software: Overland Park, KS, USA, 2011; Available online: https://aim.tkgristmill.com (accessed on 1 July 2023).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; Revision A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Espinosa, E.; Molins, E. Retrieving interaction potentials from the topology of the electron density distribution: The case of hydrogen bonds. J. Chem. Phys. 2000, 113, 5686–5694. [Google Scholar] [CrossRef]
- Parthasarathi, R.; Subramanian, V.; Sathyamurthy, N. Hydrogen bonding without borders: An atoms-in-molecules perspective. J. Phys. Chem. A 2006, 110, 3349–3351. [Google Scholar] [CrossRef] [PubMed]
- Cremer, D.; Kraka, E. A Description of the Chemical Bond in Terms of Local Properties of Electron Density and Energy. Croat. Chem. Acta 1984, 57, 1259–1281. [Google Scholar]
- Jenkins, S.; Morrison, I. The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities. Chem. Phys. Lett. 2000, 317, 97–102. [Google Scholar] [CrossRef]
- Arnold, W.D.; Oldfield, E. The Chemical Nature of Hydrogen Bonding in Proteins via NMR: J-Couplings, Chemical Shifts, and AIM Theory. J. Am. Chem. Soc. 2000, 122, 12835–12841. [Google Scholar] [CrossRef]
- Rozas, I.; Alkorta, I.; Elguero, J. Behavior of ylides containing N, O, and C atoms as hydrogen bond acceptors. J. Am. Chem. Soc. 2000, 122, 11154–11161. [Google Scholar] [CrossRef]
- Wiberg, K. Application of the Pople-Santry-Segal CNDO Method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. Tetrahedron 1968, 24, 1083–1096. [Google Scholar] [CrossRef]
- Mayer, I. Bond Order and Valence Indices: A Personal Account. J. Comput. Chem. 2007, 28, 204–221. [Google Scholar] [CrossRef]
- Velde, G.T.E.; Bickelhaupt, F.M.; Baerends, E.J.; Guerra, C.F.; van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. [Google Scholar] [CrossRef]
- Baerends, E.J.; Ziegler, T.; Atkins, A.J.; Autschbach, O.; Baseggio, O.; Bashford, D.; Bérces, A.; Bickelhaupt, F.M.; Bo, C.; Boerrigter, P.M.; et al. ADF2019, SCM, Theoretical Chemistry. Vrije Universiteit, Amsterdam. Available online: http://www.scm.com (accessed on 1 July 2023).
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef]
- Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 33, 8822–8824. [Google Scholar] [CrossRef]
- Caldeweyher, E.; Mewes, J.-M.; Ehlert, S.; Grimme, S. Extension and evaluation of the D4 London-dispersion model for periodic systems. Phys. Chem. Chem. Phys. 2020, 22, 8499–8512. [Google Scholar] [CrossRef]
- Van Lenthe, E.; Baerends, E.J. Optimized Slater-type Basis Sets for the Elements 1-118. J. Comput. Chem. 2003, 24, 1142–1156. [Google Scholar] [CrossRef]
- Reed, E.; Curtiss, L.A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Glendening, E.D.; Badenhoop, J.K.; Reed, A.E.; Carpenter, J.E.; Bohmann, J.A.; Morales, C.M.; Landis, C.R.; Weinhold, F. NBO 6.0., Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, USA. 2013. Available online: http://nbo6.chem.wisc.edu/ (accessed on 1 July 2023).
- Ziegler, T.; Rauk, A. CO, CS, N2, PF3, and CNCH3 as σ Donors and π Acceptors. A Theoretical Study by the Hartree-Fock-Slater Transition-State Method. Inorg. Chem. 1979, 18, 1755–1759. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Matta, C.; Boyd, R.J. Quantum Theory of Atoms in Molecules: Recent Progress in Theory and Application; Matta, C., Boyd, R.J., Eds.; Wiley-VCH: Weinheim, Germany, 2007. [Google Scholar]
- Rodriguez, J.I. An efficient method for computing the QTAIM topology of a scalar field: The electron density case. J. Comput. Chem. 2013, 34, 681–686. [Google Scholar] [CrossRef]
- Rodríguez, J.I.; Köster, A.M.; Ayers, P.W.; Santos-Valle, A.; Vela, A.; Merino, G. An efficient grid-based scheme to compute QTAIM atomic properties without explicit calculation of zero-flux surfaces. J. Comput. Chem. 2009, 30, 1082–1092. [Google Scholar] [CrossRef]
- Rodriguez, J.I.; Bader, R.F.W.; Ayers, P.W.; Michel, C.; Gotz, A.W.; Bo, C. A high performance grid-based algorithm for computing QTAIM properties. Chem. Phys. Lett. 2009, 472, 149–152. [Google Scholar] [CrossRef]
- Grabowski, S.J. Triel bonds—Complexes of boron and aluminium trihalides and trihydrides with benzene. Struct. Chem. 2017, 28, 1163–1171. [Google Scholar] [CrossRef]
- Parthasarathi, R.; Subramanian, V. Stacking Interactions in Benzene and Cytosine Dimers: From Molecular Electron Density Perspective. Struct. Chem. 2005, 16, 243–255. [Google Scholar] [CrossRef]
Refcode | Name | Cryst | Calc | Ref |
---|---|---|---|---|
DEDTUC | (μ2-1,4-Phenylenebis(3,3-dimethylbut-1-enyl))-tetraethyl-di-gallium | 2.560 | - | [44] |
DMGACP | Dimethyl(cyclopentadienyl)gallium | 2.314 | 2.788 | [45] |
HOJBUE | Dimethyl-phenyl-gallium | 3.112 | 2.658 | [46] |
HOJCAL | Dimethyl-(p-tolyl)-gallium | 3.117 | 2.787 | [46] |
HOJCEP | Dimethyl-(4-t-butylphenyl)-gallium | 3.110 | 2.732 | [46] |
HOJCIT | Methyl-diphenyl-gallium | 2.990 | 2.716 | [46] |
HUGVIP | (μ2-Benzene-1,4-diido)-tetramethyl-di-gallium | 3.042 | 2.771 | [47] |
LEBNAH | Dimethyl-(N-methylpyrrol-2-yl)-gallium | 2.481 | 2.623 | [48] |
NAZFIE | 9,10-Dimethyl-9,10-dihydro-9,10-digalla-anthracene | 2.696 | 2.648 | [49] |
NIZZUS | (5,10,15,20-Tetraphenylporphyrinato)-(trifluoromethanesulfonato)-gallium(iii) toluene solvate | 3.439 | - | [50] |
OFUSAJ | Triethyl-gallium | 3.087 | 2.923 | [51] |
QATMUT | (5,10,15-tris(Pentafluorophenyl)corrolato)-pyridine-gallium(iii) p-xylene solvate | 3.430 | - | [52] |
UJIXEQ | 1,12-Dimethyl-1,12-digalla(1.1)ferrocenophane | 2.784 | - | [53] |
Refcode | ΔEint | ΔEPauli | ΔEelstat | ΔEorb | ΔEdisp | %ΔEelstat |
---|---|---|---|---|---|---|
DMGACP | −11.90 | 24.12 | −14.81 | −10.94 | −10.27 | 41.1 |
HOJBUE | −27.23 | 60.01 | −37.02 | −29.49 | −20.73 | 42.4 |
HOJCAL | −24.05 | 43.40 | −25.26 | −20.98 | −21.20 | 37.5 |
HOJCEP | −26.74 | 51.04 | −29.07 | −24.68 | −24.04 | 37.4 |
HOJCIT | −25.73 | 51.20 | −29.18 | −24.54 | −23.21 | 37.9 |
HUGVIP | −27.90 | 50.65 | −28.76 | −24.75 | −25.04 | 36.6 |
LEBNAH | −37.10 | 85.91 | −57.17 | −45.29 | −20.55 | 46.5 |
NAZFIE | −58.25 | 145.83 | −89.93 | −70.29 | −43.86 | 44.1 |
OFUSAJ | −11.77 | 24.00 | −10.98 | −12.53 | −12.26 | 30.7 |
Refcode | ρBCP | ∇2ρBCP | HBCP | qGa | qC | δ(Ga,C) |
---|---|---|---|---|---|---|
DMGACP | 0.020 | 0.036 | −0.001 | 1.165 | −0.095 | 0.116 |
DMGACP | 0.082 | 0.096 | −0.037 | 1.165 | −0.261 | 0.492 |
HOJBUE | 0.025 | 0.046 | −0.002 | 1.186 | −0.409 | 0.149 |
HOJCAL | 0.018 | 0.038 | −0.001 | 1.194 | −0.067 | 0.103 |
HOJCEP | 0.020 | 0.041 | −0.001 | 1.197 | −0.088 | 0.114 |
HOJCIT | 0.021 | 0.042 | −0.001 | 1.193 | −0.082 | 0.117 |
HUGVIP | 0.020 | 0.039 | −0.001 | 1.190 | −0.068 | 0.105 |
LEBNAH | 0.030 | 0.050 | −0.004 | 1.202 | −0.107 | 0.161 |
NAZFIE | 0.026 | 0.050 | −0.002 | 1.202 | −0.419 | 0.141 |
OFUSAJ | 1.166 |
Refcode | qGa | qC | WBI | ENBO |
---|---|---|---|---|
DMGACP | 1.285 | −0.345 | 0.092 | 23.4 |
DMGACP | 1.285 | −0.545 | 0.438 | 77.55 * |
HOJBUE | 1.289 | −0.488 | 0.125 | 27.69 |
HOJCAL | 1.307 | −0.258 | 0.078 | 16.42 |
HOJCEP | 1.298 | −0.266 | 0.088 | 14.45 |
HOJCIT | 1.317 | −0.278 | 0.092 | 17.79 |
HUGVIP | 1.299 | −0.268 | 0.082 | 19.54 |
LEBNAH | 1.227 | −0.337 | 0.144 | 29.30 |
NAZFIE | 1.351 | −0.497 | 0.111 | 16.48 |
OFUSAJ | 1.289 | −0.875 | 0.061 | 11.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabowski, S.J. Ga···C Triel Bonds—Why They Are Not Strong Enough to Change Trigonal Configuration into Tetrahedral One: DFT Calculations on Dimers That Occur in Crystal Structures. Int. J. Mol. Sci. 2023, 24, 12212. https://doi.org/10.3390/ijms241512212
Grabowski SJ. Ga···C Triel Bonds—Why They Are Not Strong Enough to Change Trigonal Configuration into Tetrahedral One: DFT Calculations on Dimers That Occur in Crystal Structures. International Journal of Molecular Sciences. 2023; 24(15):12212. https://doi.org/10.3390/ijms241512212
Chicago/Turabian StyleGrabowski, Sławomir J. 2023. "Ga···C Triel Bonds—Why They Are Not Strong Enough to Change Trigonal Configuration into Tetrahedral One: DFT Calculations on Dimers That Occur in Crystal Structures" International Journal of Molecular Sciences 24, no. 15: 12212. https://doi.org/10.3390/ijms241512212
APA StyleGrabowski, S. J. (2023). Ga···C Triel Bonds—Why They Are Not Strong Enough to Change Trigonal Configuration into Tetrahedral One: DFT Calculations on Dimers That Occur in Crystal Structures. International Journal of Molecular Sciences, 24(15), 12212. https://doi.org/10.3390/ijms241512212