Physicochemical and Functional Properties and Storage Stability of Chitosan–Starch Films Containing Micellar Nano/Microstructures with Turmeric and Hibiscus Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Scanning Electron Microscopy (SEM)
2.2. UV-VIS Spectroscopy
2.3. ATR-FTIR Spectroscopy
2.4. Transparency and Colour
2.5. Mechanical Properties
2.6. Solubility and Water Absorption
2.7. Water Vapour Barrier Properties
2.8. Water Contact Angle
2.9. Differential Scanning Calorimetry (DSC)
2.10. Microbial Storage Stability
2.11. Fluorescence Spectroscopy
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Method of Obtaining Turmeric and Hibiscus Extract
3.2.2. Preparation of Turmeric and Hibiscus Nanoemulsions
3.2.3. Preparation of Chitosan–Starch Matrix
3.2.4. Preparation of the Control Film (Control)
3.2.5. Preparation of a Film Containing Hibiscus Extract (Hibiscus)
3.2.6. Preparation of a Film Containing Turmeric Extract (Turmeric)
3.2.7. SEM Microscopy
3.2.8. ATR-FTIR Spectroscopy
3.2.9. UV-VIS Spectroscopy
3.2.10. Photoluminescence Spectroscopy
3.2.11. Film Opacity
3.2.12. Surface Colour Analysis
3.2.13. Determination of Water Content, Solubility, and Degree of Swelling
3.2.14. Mechanical Tests: Measurement of Film Thickness, Tensile Strength, and Percent Elongation at the Break
Thickness Measurement of Composites
Mechanical Properties of Composites
3.2.15. Determination of the Wetting Angles
3.2.16. Water Vapour Permeability
3.2.17. Thermal Properties (DSC)
3.2.18. Microbial Storage Stability
3.2.19. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Díaz-Montes, E. Polysaccharide-Based Biodegradable Films: An Alternative in Food Packaging. Polysaccharides 2022, 3, 761–775. [Google Scholar] [CrossRef]
- Wani, M.Y.; Ganie, N.A.; Dar, K.A.; Dar, S.Q.; Khan, A.H.; Khan, N.A.; Zahmatkesh, S.; Manzar, M.S.; Banerjee, R. Nanotechnology future in food using carbohydrate macromolecules: A state-of-the-art review. Int. J. Biol. Macromol. 2023, 239, 124350. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F. Polysaccharide based films and coatings for food packaging: Effect of added polyphenols. Food Chem. 2021, 359, 129871. [Google Scholar] [CrossRef] [PubMed]
- Martins, B.A.; de Albuquerque, P.B.S.; de Souza, M.P. Bio-based Films and Coatings: Sustainable Polysaccharide Packaging Alternatives for the Food Industry. J. Polym. Environ. 2022, 30, 4023–4039. [Google Scholar] [CrossRef]
- Khodaei, S.M.; Gholami-Ahangaran, M.; Karimi Sani, I.; Esfandiari, Z.; Eghbaljoo, H. Application of intelligent packaging for meat products: A systematic review. Vet. Med. Sci. 2023, 9, 481–493. [Google Scholar] [CrossRef]
- Stanisławska, N.; Khachatryan, G.; Khachatryan, K.; Krystyjan, M.; Makarewicz, M.; Krzan, M. Formation and Investigation of Physicochemical and Microbiological Properties of Biocomposite Films Containing Turmeric Extract Nano/Microcapsules. Polymers 2023, 15, 919. [Google Scholar] [CrossRef] [PubMed]
- Han, J.W.; Ruiz-Garcia, L.; Qian, J.P.; Yang, X.T. Food Packaging: A Comprehensive Review and Future Trends. Compr. Rev. Food Sci. Food Saf. 2018, 17, 860–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesan, R.; Alagumalai, K.; Raorane, C.J.; Raj, V.; Shastri, D.; Kim, S.C. Morphological, Mechanical, and Antimicrobial Properties of PBAT/Poly(methyl methacrylate-co-maleic anhydride)–SiO2 Composite Films for Food Packaging Applications. Polymers 2022, 15, 101. [Google Scholar] [CrossRef]
- Casalini, S.; Giacinti Baschetti, M. The use of essential oils in chitosan or cellulose-based materials for the production of active food packaging solutions: A review. J. Sci. Food Agric. 2023, 103, 1021–1041. [Google Scholar] [CrossRef]
- Zou, Y.; Sun, Y.; Shi, W.; Wan, B.; Zhang, H. Dual-functional shikonin-loaded quaternized chitosan/polycaprolactone nanofibrous film with pH-sensing for active and intelligent food packaging. Food Chem. 2023, 399, 133962. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Nooshkam, M.; Zargar, M.; Garavand, F.; Ghosh, S.; Hadidi, M.; Forough, M. Green synthesis of nanomaterials for smart biopolymer packaging: Challenges and outlooks. J. Nanostruct. Chem. 2023, 1–24. [Google Scholar] [CrossRef]
- Nakamoto, M.M.; Assis, M.; de Oliveira Filho, J.G.; Braga, A.R.C. Spirulina application in food packaging: Gaps of knowledge and future trends. Trends Food Sci. Technol. 2023, 133, 138–147. [Google Scholar] [CrossRef]
- de Oliveira Filho, J.G.; Bertolo, M.R.V.; Rodrigues, M.Á.V.; da Cruz Silva, G.; de Mendonça, G.M.N.; Junior, S.B.; Egea, M.B. Recent advances in the development of smart, active, and bioactive biodegradable biopolymer-based films containing betalains. Food Chem. 2022, 390, 133149. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.; Muhammad, K.; Waheed, Y. Nanotechnology: A Revolution in Modern Industry. Molecules 2023, 28, 661. [Google Scholar] [CrossRef] [PubMed]
- Francis, S.P.; Rene Christena, L.; Francis, M.P.; Abdul, M.H.B. Nanotechnology: A Potential Approach for Nutraceuticals. Curr. Nutr. Food Sci. 2022, 19, 673–681. [Google Scholar] [CrossRef]
- Lima, A.L.; Gratieri, T.; Cunha-Filho, M.; Gelfuso, G.M. Polymeric nanocapsules: A review on design and production methods for pharmaceutical purpose. Methods 2022, 199, 54–66. [Google Scholar] [CrossRef]
- Deng, S.; Gigliobianco, M.R.; Censi, R.; Di Martino, P. Polymeric Nanocapsules as Nanotechnological Alternative for Drug Delivery System: Current Status, Challenges and Opportunities. Nanomaterials 2020, 10, 847. [Google Scholar] [CrossRef]
- Assadpour, E.; Jafari, S.M. Advances in Spray-Drying Encapsulation of Food Bioactive Ingredients: From Microcapsules to Nanocapsules. Annu. Rev. Food Sci. Technol. 2019, 10, 103–131. [Google Scholar] [CrossRef]
- Large, D.E.; Abdelmessih, R.G.; Fink, E.A.; Auguste, D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021, 176, 113851. [Google Scholar] [CrossRef]
- Maja, L.; Željko, K.; Mateja, P. Sustainable technologies for liposome preparation. J. Supercrit. Fluids 2020, 165, 104984. [Google Scholar] [CrossRef]
- Ajeeshkumar, K.K.; Aneesh, P.A.; Raju, N.; Suseela, M.; Ravishankar, C.N.; Benjakul, S. Advancements in liposome technology: Preparation techniques and applications in food, functional foods, and bioactive delivery: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1280–1306. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Song, X.; Yang, Z.; Tan, Y.; Yin, C.; Yin, J.; Lu, Y.; Yang, Y.; Liu, C.; Yi, L.; et al. Self-assembling glycyrrhizic acid micellar hydrogels as encapsulant carriers for delivery of curcumin. Colloids Surfaces A Physicochem. Eng. Asp. 2023, 658, 130680. [Google Scholar] [CrossRef]
- Xiang, J.; Shen, Y.; Zhang, Y.; Liu, X.; Zhou, Q.; Zhou, Z.; Tang, J.; Shao, S.; Shen, Y. Multipotent Poly(Tertiary Amine-Oxide) Micelles for Efficient Cancer Drug Delivery. Adv. Sci. 2022, 9, 2200173. [Google Scholar] [CrossRef]
- Ryu, V.; Chuesiang, P.; Corradini, M.G.; McLandsborough, L.; Jin, T.; Ngo, H.; Fan, X. Synergistic photoinactivation of Escherichia coli and Listeria innocua by curcumin and lauric arginate ethyl ester micelles. LWT 2023, 173, 114317. [Google Scholar] [CrossRef]
- Sun, Y.; Zhong, M.; Kang, M.; Liao, Y.; Wang, Z.; Li, Y.; Qi, B. Novel core-shell nanoparticles: Encapsulation and delivery of curcumin using guanidine hydrochloride-induced oleosome protein self-assembly. LWT 2023, 173, 114352. [Google Scholar] [CrossRef]
- Chen, J.; Ye, H.; Wang, J.; Zhang, L. Relationship between Anthocyanin Composition and Floral Color of Hibiscus syriacus. Horticulturae 2023, 9, 48. [Google Scholar] [CrossRef]
- Ellis, L.R.; Zulfiqar, S.; Holmes, M.; Marshall, L.; Dye, L.; Boesch, C. A systematic review and meta-analysis of the effects of Hibiscus sabdariffa on blood pressure and cardiometabolic markers. Nutr. Rev. 2022, 80, 1723–1737. [Google Scholar] [CrossRef]
- Al-Mamun, M.; Rafii, M.Y.; Misran, A.B.; Berahim, Z.; Ahmad, Z.; Khan, M.M.H.; Oladosu, Y.; Arolu, F. Kenaf (Hibiscus Cannabinus L.): A Promising Fiber Crop with Potential for Genetic Improvement Utilizing Both Conventional and Molecular Approaches. J. Nat. Fibers 2022, 20, 2145410. [Google Scholar] [CrossRef]
- Marques Mandaji, C.; da Silva Pena, R.; Campos Chisté, R. Encapsulation of bioactive compounds extracted from plants of genus Hibiscus: A review of selected techniques and applications. Food Res. Int. 2022, 151, 110820. [Google Scholar] [CrossRef]
- Abotbina, W.; Sapuan, S.M.; Sultan, M.T.H.; Alkbir, M.F.M.; Ilyas, R.A. Development and characterization of cornstarch-based bioplastics packaging film using a combination of different plasticizers. Polymers 2021, 13, 3487. [Google Scholar] [CrossRef]
- Van Nong, H.; Hung, L.X.; Thang, P.N.; Chinh, V.D.; Vu, L.V.; Dung, P.T.; Van Trung, T.; Nga, P.T. Fabrication and vibration characterization of curcumin extracted from turmeric (Curcuma longa) rhizomes of the northern Vietnam. Springerplus 2016, 5, 1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macuvele, D.L.P.; Sithole, G.Z.S.; Cesca, K.; Macuvele, S.L.P.; Matsinhe, J.V. Aqueous extracts of Mozambican plants as alternative and environmentally safe acid-base indicators. Environ. Sci. Pollut. Res. 2016, 23, 11639–11644. [Google Scholar] [CrossRef] [PubMed]
- Omrani, Z.; Dadkhah Tehrani, A. New cyclodextrin-based supramolecular nanocapsule for codelivery of curcumin and gallic acid. Polym. Bull. 2020, 77, 2003–2019. [Google Scholar] [CrossRef]
- Rohman, A.; Man, Y.B.C. Fourier transform infrared (FTIR) spectroscopy for analysis of extra virgin olive oil adulterated with palm oil. Food Res. Int. 2010, 43, 886–892. [Google Scholar] [CrossRef]
- Andrade, J.; Pereira, C.G.; de Almeida Junior, J.C.; Viana, C.C.R.; de Oliveira Neves, L.N.; da Silva, P.H.F.; Bell, M.J.V.; dos Anjos, V.D.C. FTIR-ATR determination of protein content to evaluate whey protein concentrate adulteration. LWT 2019, 99, 166–172. [Google Scholar] [CrossRef]
- Janik, M.; Khachatryan, K.; Khachatryan, G.; Krystyjan, M.; Oszczęda, Z. Comparison of Physicochemical Properties of Silver and Gold Nanocomposites Based on Potato Starch in Distilled and Cold Plasma-Treated Water. Int. J. Mol. Sci. 2023, 24, 2200. [Google Scholar] [CrossRef]
- Krystyjan, M.; Khachatryan, G.; Grabacka, M.; Krzan, M.; Witczak, M.; Grzyb, J.; Woszczak, L. Physicochemical, Bacteriostatic, and Biological Properties of Starch/Chitosan Polymer Composites Modified by Graphene Oxide, Designed as New Bionanomaterials. Polymers 2021, 13, 2327. [Google Scholar] [CrossRef]
- Khachatryan, G.; Khachatryan, K.; Szczepankowska, J.; Krzan, M.; Krystyjan, M. Design of Carbon Nanocomposites Based on Sodium Alginate/Chitosan Reinforced with Graphene Oxide and Carbon Nanotubes. Polymers 2023, 15, 925. [Google Scholar] [CrossRef]
- Bicho, N.C.; Leitão, A.E.; Ramalho, J.C.; Lidon, F.C. Use of colour parameters for roasted coffee assessment. Food Sci. Technol. 2012, 32, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Chudy, S.; Bilska, A.; Kowalski, R.; Teichert, J. Colour of milk and milk products in CIE Lab space. Med. Weter. 2020, 76, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.S.; Pushpadass, H.A.; Franklin, M.E.E.; Battula, S.N.; Vellingiri, P. Microencapsulation of curcumin by spray drying: Characterization and fortification of milk. J. Food Sci. Technol. 2022, 59, 1326–1340. [Google Scholar] [CrossRef] [PubMed]
- Prasad, S.; Tyagi, A.K.; Aggarwal, B.B. Recent Developments in Delivery, Bioavailability, Absorption and Metabolism of Curcumin: The Golden Pigment from Golden Spice. Cancer Res. Treat. 2014, 46, 2–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rani, S.; Bagchi, D.; Pal, U.; Kumari, M.; Sharma, M.; Bera, A.; Shabir, J.; Pal, S.K.; Saha-Dasgupta, T.; Mozumdar, S. The Role of Imidazolium-Based Surface-Active Ionic Liquid to Restrain the Excited-State Intramolecular H-Atom Transfer Dynamics of Medicinal Pigment Curcumin: A Theoretical and Experimental Approach. ACS Omega 2020, 5, 25582–25592. [Google Scholar] [CrossRef] [PubMed]
- Palaskar, S.S.; Kale, R.D.; Deshmukh, R.R. Application of natural yellow (curcumin) dye on silk to impart multifunctional finishing and validation of dyeing process using BBD model. Color Res. Appl. 2021, 46, 1301–1312. [Google Scholar] [CrossRef]
- Luo, X.; Lim, L.T. Curcumin-loaded electrospun nonwoven as a colorimetric indicator for volatile amines. LWT 2020, 128, 109493. [Google Scholar] [CrossRef]
- de Oliveira Filho, J.G.; Bertolo, M.R.V.; Rodrigues, M.Á.V.; Marangon, C.A.; da Cruz Silva, G.; Odoni, F.C.A.; Egea, M.B. Curcumin: A multifunctional molecule for the development of smart and active biodegradable polymer-based films. Trends Food Sci. Technol. 2021, 118, 840–849. [Google Scholar] [CrossRef]
- Rodrigues, C.; Souza, V.G.L.; Coelhoso, I.; Fernando, A.L. Bio-Based Sensors for Smart Food Packaging—Current Applications and Future Trends. Sensors 2021, 21, 2148. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, X.; Zou, X.; Shi, J.; Zhai, X.; Liu, L.; Li, Z.; Holmes, M.; Gong, Y.; Povey, M.; et al. A visual indicator based on curcumin with high stability for monitoring the freshness of freshwater shrimp, Macrobrachium rosenbergii. J. Food Eng. 2021, 292, 110290. [Google Scholar] [CrossRef]
- Cvek, M.; Paul, U.C.; Zia, J.; Mancini, G.; Sedlarik, V.; Athanassiou, A. Biodegradable Films of PLA/PPC and Curcumin as Packaging Materials and Smart Indicators of Food Spoilage. ACS Appl. Mater. Interfaces 2022, 14, 14654–14667. [Google Scholar] [CrossRef]
- Stanić, Z. Curcumin, a Compound from Natural Sources, a True Scientific Challenge—A Review. Plant Foods Hum. Nutr. 2017, 72, 1–12. [Google Scholar] [CrossRef]
- Peralta, J.; Bitencourt-Cervi, C.M.; Maciel, V.B.V.; Yoshida, C.M.P.; Carvalho, R.A. Aqueous hibiscus extract as a potential natural pH indicator incorporated in natural polymeric films. Food Packag. Shelf Life 2019, 19, 47–55. [Google Scholar] [CrossRef]
- Bridle, P.; Timberlake, C.F. Anthocyanins as natural food colours—Selected aspects. Food Chem. 1997, 58, 103–109. [Google Scholar] [CrossRef]
- Pereira, V.A.; de Arruda, I.N.Q.; Stefani, R. Active chitosan/PVA films with anthocyanins from Brassica oleraceae (Red Cabbage) as Time–Temperature Indicators for application in intelligent food packaging. Food Hydrocoll. 2015, 43, 180–188. [Google Scholar] [CrossRef]
- Moradi, M.; Tajik, H.; Almasi, H.; Forough, M.; Ezati, P. A novel pH-sensing indicator based on bacterial cellulose nanofibers and black carrot anthocyanins for monitoring fish freshness. Carbohydr. Polym. 2019, 222, 115030. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Hou, X.; Zeng, X.; Zhang, C.; Wu, H.; Shen, G.; Li, S.; Luo, Q.; Li, M.; Liu, X.; et al. Preparation and characterization of indicator films from carboxymethyl-cellulose/starch and purple sweet potato (Ipomoea batatas (L.) lam) anthocyanins for monitoring fish freshness. Int. J. Biol. Macromol. 2020, 143, 359–372. [Google Scholar] [CrossRef]
- Shiku, Y.; Hamaguchi, P.Y.; Benjakul, S.; Visessanguan, W.; Tanaka, M. Effect of surimi quality on properties of edible films based on Alaska pollack. Food Chem. 2004, 86, 493–499. [Google Scholar] [CrossRef]
- Kumar, S.; Mitra, A.; Halder, D. Centella asiatica leaf mediated synthesis of silver nanocolloid and its application as filler in gelatin based antimicrobial nanocomposite film. LWT 2017, 75, 293–300. [Google Scholar] [CrossRef]
- Sebti, I.; Chollet, E.; Degraeve, P.; Noel, C.; Peyrol, E. Water Sensitivity, Antimicrobial, and Physicochemical Analyses of Edible Films Based on HPMC and/or Chitosan. J. Agric. Food Chem. 2007, 55, 693–699. [Google Scholar] [CrossRef]
- Wiles, J.L.; Vergano, P.J.; Barron, F.H.; Bunn, J.M.; Testin, R.F. Water Vapor Transmission Rates and Sorption Behavior of Chitosan Films. J. Food Sci. 2000, 65, 1175–1179. [Google Scholar] [CrossRef]
- Shahbazi, M.; Rajabzadeh, G.; Ettelaie, R.; Rafe, A. Kinetic study of κ-carrageenan degradation and its impact on mechanical and structural properties of chitosan/κ-carrageenan film. Carbohydr. Polym. 2016, 142, 167–176. [Google Scholar] [CrossRef]
- Kruk, J.; Tkaczewska, J.; Szuwarzyński, M.; Mazur, T.; Jamróz, E. Influence of storage conditions on functional properties of multilayer biopolymer films based on chitosan and furcellaran enriched with carp protein hydrolysate. Food Hydrocoll. 2023, 135, 108214. [Google Scholar] [CrossRef]
- Hromiš, N.; Lazić, V.; Popović, S.; Markov, S.; Vaštag, Ž.; Šuput, D.; Bulut, S.; Tomović, V. Investigation of a product-specific active packaging material based on chitosan biofilm with spice oleoresins. J. Food Nutr. Res. 2016, 55, 78–88. [Google Scholar]
- Ismail, M.F.; Islam, M.A.; Khorshidi, B.; Tehrani-Bagha, A.; Sadrzadeh, M. Surface characterization of thin-film composite membranes using contact angle technique: Review of quantification strategies and applications. Adv. Colloid Interface Sci. 2022, 299, 102524. [Google Scholar] [CrossRef]
- Lößlein, S.M.; Merz, R.; Müller, D.W.; Kopnarski, M.; Mücklich, F. An in-depth evaluation of sample and measurement induced influences on static contact angle measurements. Sci. Reports 2022, 12, 19389. [Google Scholar] [CrossRef]
- Dong, Y.; Ruan, Y.; Wang, H.; Zhao, Y.; Bi, D. Studies on glass transition temperature of chitosan with four techniques. J. Appl. Polym. Sci. 2004, 93, 1553–1558. [Google Scholar] [CrossRef]
- Jiang, S.; Qiao, C.; Wang, X.; Li, Z.; Yang, G. Structure and properties of chitosan/sodium dodecyl sulfate composite films. RSC Adv. 2022, 12, 3969–3978. [Google Scholar] [CrossRef] [PubMed]
- Dome, K.; Podgorbunskikh, E.; Bychkov, A.; Lomovsky, O. Changes in the Crystallinity Degree of Starch Having Different Types of Crystal Structure after Mechanical Pretreatment. Polymers 2020, 12, 641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter, S.; Lyczko, N.; Gopakumar, D.; Maria, H.J.; Nzihou, A.; Thomas, S. Chitin and Chitosan Based Composites for Energy and Environmental Applications: A Review. Waste Biomass Valorization 2020, 12, 4777–4804. [Google Scholar] [CrossRef]
- Lopez, O.; Garcia, M.A.; Villar, M.A.; Gentili, A.; Rodriguez, M.S.; Albertengo, L. Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT Food Sci. Technol. 2014, 57, 106–115. [Google Scholar] [CrossRef]
- Tongdeesoontorn, W.; Mauer, L.J.; Wongruong, S.; Sriburi, P.; Rachtanapun, P. Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chem. Cent. J. 2011, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Mathew, S.; Brahmakumar, M.; Abraham, T.E. Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch–chitosan blend films. Biopolymers 2006, 82, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Zorofchian Moghadamtousi, S.; Abdul Kadir, H.; Hassandarvish, P.; Tajik, H.; Abubakar, S.; Zandi, K. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res. Int. 2014, 2014, 186864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, D.; Huang, C.; Huang, H.; Zhao, Y.; Khan, M.R.U.; Zhao, H.; Huang, L. Antibacterial Mechanism of Curcumin: A Review. Chem. Biodivers. 2020, 17, e2000171. [Google Scholar] [CrossRef] [PubMed]
- Hettiarachchi, S.S.; Perera, Y.; Dunuweera, S.P.; Dunuweera, A.N.; Rajapakse, S.; Rajapakse, R.M.G. Comparison of Antibacterial Activity of Nanocurcumin with Bulk Curcumin. ACS Omega 2022, 7, 46494–46500. [Google Scholar] [CrossRef]
- Kai, K.; Bi, W.; Ye, Y.; Zhang, D.; Bo, Y. Curcumin-A Review of Its Antibacterial Effect. Biomed. J. Sci. Tech. Res. 2020, 26, 19585–19587. [Google Scholar] [CrossRef]
- da Silva, A.C.; de Freitas Santos, P.D.; do Prado Silva, J.T.; Leimann, F.V.; Bracht, L.; Gonçalves, O.H. Impact of curcumin nanoformulation on its antimicrobial activity. Trends Food Sci. Technol. 2018, 72, 74–82. [Google Scholar] [CrossRef]
- Adamczak, A.; Ożarowski, M.; Karpiński, T.M. Curcumin, a Natural Antimicrobial Agent with Strain-Specific Activity. Pharmaceuticals 2020, 13, 153. [Google Scholar] [CrossRef]
- Lachowicz, M.; Stańczak, A.; Kołodziejczyk, M. Kurkumina-naturalny polifenol o wielu właściwościach-rozwiązania technologiczne wspomagające farmakoterapię. Farm. Pol. 2020, 76, 603–610. [Google Scholar] [CrossRef]
- Hussain, Y.; Alam, W.; Ullah, H.; Dacrema, M.; Daglia, M.; Khan, H.; Arciola, C.R. Antimicrobial Potential of Curcumin: Therapeutic Potential and Challenges to Clinical Applications. Antibiotics 2022, 11, 322. [Google Scholar] [CrossRef]
- Souza, V.G.L.; Fernando, A.L.; Pires, J.R.A.; Rodrigues, P.F.; Lopes, A.A.S.; Fernandes, F.M.B. Physical properties of chitosan films incorporated with natural antioxidants. Ind. Crops Prod. 2017, 107, 565–572. [Google Scholar] [CrossRef]
- ISO 527-1:2019; Plastics—Determination of Tensile Properties—Part 1: General Principles. Available online: https://www.iso.org/standard/75824.html (accessed on 23 June 2023).
- ISO 2528:2017; Sheet Materials—Determination of Water Vapour Transmission Rate (WVTR)—Gravimetric (Dish) Method. Available online: https://www.iso.org/standard/72382.html (accessed on 29 June 2023).
Sample | O (−) | L* | a* | b* |
---|---|---|---|---|
Control | 4.0 ± 0.5 a | 98.72 ± 0.06 a | −0.08 ± 0.01 b | 2.98 ± 0.04 c |
Hibiscus | 4.4 ± 0.1 a | 89.49 ± 0.16 c | 0.52 ± 0.04 a | 20.58 ± 0.26 b |
Turmeric | 4.6 ± 0.2 a | 92.38 ± 0.49 b | −2.69 ± 0.13 c | 31.29 ± 2.62 a |
Sample | Thickness (mm) | TS (MPa) | EAB (%) |
---|---|---|---|
Control | 0.094 ± 0.014 c | 14.68 ± 2.48 a | 47.05 ± 7.63 b |
Hibiscus | 0.198 ± 0.010 a | 2.34 ± 0.26 b | 108.77 ± 7.79 a |
Turmeric | 0.155 ± 0.010 b | 3.00 ± 0.54 b | 93.74 ± 8.84 a |
Sample | Water Content (%) | Solubility (%) | Swelling Degree (%) |
---|---|---|---|
Control | 16.57 ± 0.64 b | 19.30 ± 1.88 a | 215 ± 7.41 a |
Hibiscus | 24.64 ± 2.69 a | 14.93 ± 1.00 b | 121.77 ± 9.84 b |
Turmeric | 27.67 ± 0.42 a | 14.31 ± 1.53 b | 109.81 ± 8.10 b |
Test Conditions | Sample | WVTR (g m−2 h−1) | WVP × 1010 (g m−1 s−1 Pa−1) |
---|---|---|---|
RH 55% | Control | 4.59 ± 0.32 a | 0.85 ± 0.06 a |
Hibiscus | 9.89 ± 0.96 b | 3.88 ±0.38 b | |
Turmeric | 12.17 ± 1.12 c | 3.74 ± 0.34 b | |
RH 84% | Control | 30.38 ± 0.50 d | 3.57 ± 0.06 b |
Hibiscus | 30.02 ± 0.41d | 7.43 ± 0.10 d | |
Turmeric | 31.46 ± 1.37 d | 6.09 ± 0.27 c | |
RH 100% | Control | 37.44 ± 0.54 e | 3.69 ± 0.05 b |
Hibiscus | 37.10 ± 0.91 e | 7.71 ± 0.19 d | |
Turmeric | 38.06 ± 1.34 e | 6.19 ± 0.22 c | |
One-way ANOVA-p | |||
<0.001 | <0.001 | ||
Two-way ANOVA-p | |||
Factor A (RH) | <0.001 | <0.001 | |
Factor B (film) | <0.001 | <0.001 | |
Factor A × Factor B | <0.001 | <0.001 |
Sample | Matte Surface | Glossy Surface | ||
---|---|---|---|---|
Control | 105.20 e ± 0.24 | 92.12 d ± 0.09 | ||
Hibiscus | 87.05 c ± 1.55 | 81.93 b ± 0.06 | ||
Turmeric | 87.55 c ± 1.92 | 76.30 a ± 3.66 |
Sample | Tonm (°C) | Tpm (°C) | Tendm (°C) | −ΔHm (J·g−1) | Tpe (°C) |
---|---|---|---|---|---|
Control | 254.9 ± 13.4 b | 259.3 ± 13.3 b | 264.8 ± 13.1 b | 92.3 ± 15.8 b | 332.6 ± 4.1 b |
Hibiscus | 244.6 ± 15.8 b | 248.8 ± 15.0 b | 254.9 ± 15.0 b | 86.0 ± 19.9 b | 321.5 ± 1.9 a |
Turmeric | 231.8 ± 8.6 a | 236.5 ± 8.6 a | 243.0 ± 8.6 a | 72.1 ± 7.5 a | 322.4 ± 2.0 a |
One-way ANOVA-p | <0.001 | <0.001 | <0.001 | 0.007 | <0.001 |
Sample | Tong (°C) | Tmidg (°C) | Tinfg (°C) | Tendg (°C) | ΔCp (°C) |
---|---|---|---|---|---|
Control | 131.8 ± 10.8 | 143.1 ± 10.4 | 142.6 ± 11.3 | 152.3 ± 9.9 | 1.6 ±0.5 |
Hibiscus | 129.4 ± 6.0 | 139.9 ± 6.3 | 138.2 ± 6.5 | 149.7 ± 8.1 | 1.6 ± 0.2 |
Turmeric | 125.5 ± 2.8 | 141.6 ± 11.1 | 136.6 ± 6.4 | 149.1 ± 11.7 | 1.2 ± 0.1 |
One-way ANOVA-p | 0.415 | 0.865 | 0.530 | 0.866 | 0.075 |
Sample | Cottage Cheese [cfu/g] | Salmon [cfu/g] | ||
---|---|---|---|---|
Total Bacteria Count | E. coli | Total Bacteria Count | E. coli | |
Fresh product | 2.5 × 106 ± 0.61a | absence | 1.8 × 103 ± 1.15 c | 3.3 × 102 ± 1.53 b |
Without foil | 2.5 × 106±0.91 a | absence | 1.7 × 105 ± 0.58 a | 3.5 × 103 ± 0.75 a |
Control | 2.1 × 106 ± 0.55 a | absence | 1.3 × 105 ± 1.53 a | 3.3 × 103 ± 0.64 a |
Hibiscus | 1.1 × 106 ± 0.30 a | absence | 1.3 × 105 ± 0.58 a | 2.8 × 103 ± 0.55 a |
Turmeric | 1.7 × 106 ±0.53 a | absence | 3.0 × 104 ± 2.65 b | 7.7 × 102 ± 0.31 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woszczak, L.; Khachatryan, K.; Krystyjan, M.; Witczak, T.; Witczak, M.; Gałkowska, D.; Makarewicz, M.; Khachatryan, G. Physicochemical and Functional Properties and Storage Stability of Chitosan–Starch Films Containing Micellar Nano/Microstructures with Turmeric and Hibiscus Extracts. Int. J. Mol. Sci. 2023, 24, 12218. https://doi.org/10.3390/ijms241512218
Woszczak L, Khachatryan K, Krystyjan M, Witczak T, Witczak M, Gałkowska D, Makarewicz M, Khachatryan G. Physicochemical and Functional Properties and Storage Stability of Chitosan–Starch Films Containing Micellar Nano/Microstructures with Turmeric and Hibiscus Extracts. International Journal of Molecular Sciences. 2023; 24(15):12218. https://doi.org/10.3390/ijms241512218
Chicago/Turabian StyleWoszczak, Liliana, Karen Khachatryan, Magdalena Krystyjan, Teresa Witczak, Mariusz Witczak, Dorota Gałkowska, Małgorzata Makarewicz, and Gohar Khachatryan. 2023. "Physicochemical and Functional Properties and Storage Stability of Chitosan–Starch Films Containing Micellar Nano/Microstructures with Turmeric and Hibiscus Extracts" International Journal of Molecular Sciences 24, no. 15: 12218. https://doi.org/10.3390/ijms241512218
APA StyleWoszczak, L., Khachatryan, K., Krystyjan, M., Witczak, T., Witczak, M., Gałkowska, D., Makarewicz, M., & Khachatryan, G. (2023). Physicochemical and Functional Properties and Storage Stability of Chitosan–Starch Films Containing Micellar Nano/Microstructures with Turmeric and Hibiscus Extracts. International Journal of Molecular Sciences, 24(15), 12218. https://doi.org/10.3390/ijms241512218