Application of Quantitative Structure-Activity Relationships in the Prediction of New Compounds with Anti-Leukemic Activity
Abstract
:1. Introduction
2. Results
2.1. Linear Discriminant Analysis
2.2. Multilinear Regression Analysis
3. Discussion
4. Materials and Methods
4.1. Analyzed Compounds and Tests Carried Out
4.2. Molecular Descriptors
4.3. QSAR Algorithms
Linear Discriminant Analysis
4.4. Multilinear Regression Analysis
Leave-One-Out Cross-Validation
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute Myeloid Leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. [Google Scholar] [CrossRef] [Green Version]
- Ozeki, K.; Kiyoi, H.; Hirose, Y.; Iwai, M.; Ninomiya, M.; Kodera, Y.; Miyawaki, S.; Kuriyama, K.; Shimazaki, C.; Akiyama, H.; et al. Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood 2004, 103, 1901–1908. [Google Scholar] [CrossRef] [Green Version]
- Kindler, T.; Lipka, D.B.; Fischer, T. FLT3 as a therapeutic target in AML: Still challenging after all these years. Blood 2010, 116, 5089–5102. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.C.; Wang, Q.; Chin, C.S.; Salerno, S.; Damon, L.E.; Levis, M.J.; Perl, A.E.; Travers, K.J.; Wang, S.; Hunt, J.P.; et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 2012, 485, 260–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedford, M.T.; Clarke, S.G. Protein Arginine Methylation in Mammals: Who, What, and Why. Mol. Cell 2009, 33, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Blanc, R.S.; Richard, S. Arginine Methylation: The Coming of Age. Mol. Cell 2017, 65, 8–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, J.; Kao, P.N.; Herschman, H.R. Protein-arginine methyltransferase I, the predominant protein-arginine methyltransferase in cells, interacts with and is regulated by interleukin enhancer-binding factor 3. J. Biol. Chem. 2000, 275, 19866–19876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liao, H.W.; Hsu, J.M.; Xia, W.; Wang, H.L.; Wang, Y.N.; Chang, W.C.; Arold, S.T.; Chou, C.K.; Tsou, P.H.; Yamaguchi, H.; et al. PRMT1-Mediated Methylation of the EGF Receptor Regulates Signaling and Cetuximab Response. J. Clin. Investig. 2015, 125, 4529–4543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shia, W.J.; Okumura, A.J.; Yan, M.; Sarkeshik, A.; Lo, M.C.; Matsuura, S.; Komeno, Y.; Zhao, X.; Nimer, S.D.; Yates, J.R.; et al. PRMT1 interacts with AML1-ETO to promote its transcriptional activation and progenitor cell proliferative potential. Blood 2012, 119, 4953–4962. [Google Scholar] [CrossRef] [Green Version]
- Cheung, N.; Fung, T.K.; Zeisig, B.B.; Holmes, K.; Rane, J.K.; Mowen, K.A.; Finn, M.G.; Lenhard, B.; Chan, L.C.; So, C.W. Targeting aberrant epigenetic networks mediated by PRMT1 and KDM4C in acute myeloid leukemia. Cancer Cell 2016, 29, 32–48. [Google Scholar] [CrossRef] [Green Version]
- Sauter, C.; Simonet, J.; Guidez, F.; Dumétier, B.; Pernon, B.; Callanan, M.; Bastie, J.N.; Aucagne, R.; Delva, L. Protein Arginine Methyltransferases as Therapeutic Targets in Hematological Malignancies. Cancers 2022, 14, 5443. [Google Scholar] [CrossRef]
- Sandoval, C.; Calle, Y.; Godoy, K.; Farías, J. An Updated Overview of the Role of CYP450 during Xenobiotic Metabolization in Regulating the Acute Myeloid Leukemia Microenvironment. Int. J. Mol. Sci. 2023, 24, 6031. [Google Scholar] [CrossRef]
- Nojszewska, N.; Idilli, O.; Sarkar, D.; Ahouiyek, Z.; Arroyo-Berdugo, Y.; Sandoval, C.; Amin-Anjum, M.S.; Bowers, S.; Greaves, D.; Saeed, L.; et al. Bone marrow mesenchymal/fibroblastic stromal cells induce a distinctive EMT-like phenotype in AML cells. Eur. J. Cell Biol. 2023, 102, 151334. [Google Scholar] [CrossRef] [PubMed]
- Yoshimatsu, M.; Toyokawa, G.; Hayami, S.; Unoki, M.; Tsunoda, T.; Field, H.I.; Kelly, J.D.; Neal, D.E.; Maehara, Y.; Ponder, B.A.; et al. Dysregulation of PRMT1 and PRMT6, Type I Arginine Methyltransferases, Is Involved in Various Types of Human Cancers. Int. J. Cancer 2011, 128, 562–573. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Mundade, R.; Lange, K.C.; Lu, T. Protein Arginine Methylation of Non-Histone Proteins and Its Role in Diseases. Cell Cycle 2014, 13, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Baldwin, R.M.; Morettin, A.; Paris, G.; Goulet, I.; Cote, J. Alternatively Spliced Protein Arginine Methyltransferase 1 Isoform PRMT1v2 Promotes the Survival and Invasiveness of Breast Cancer Cells. Cell Cycle 2012, 11, 4597–4612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathioudaki, K.; Papadokostopoulou, A.; Scorilas, A.; Xynopoulos, D.; Agnanti, N.; Talieri, M. The PRMT1 Gene Expression Pattern in Colon Cancer. Br. J. Cancer 2008, 99, 2094–2099. [Google Scholar] [CrossRef] [Green Version]
- Papadokostopoulou, A.; Mathioudaki, K.; Scorilas, A.; Xynopoulos, D.; Ardavanis, A.; Kouroumalis, E.; Talieri, M. Colon Cancer and Protein Arginine Methyltransferase 1 Gene Expression. Anticancer Res. 2009, 29, 1361–1366. [Google Scholar]
- Xu, W.S.; Parmigiani, R.B.; Marks, P.A. Histone Deacetylase Inhibitors: Molecular Mechanisms of Action. Oncogene 2007, 26, 5541–5552. [Google Scholar] [CrossRef] [Green Version]
- Kier, L.B.; Murray, W.J.; Randic, M.; Hall, L.H. Molecular connectivity. V. Connectivity series concept applied to density. J. Pharm. Sci. 1976, 65, 1226–1230. [Google Scholar] [CrossRef]
- Ivanciuc, O. Artificial Neural Networks Applications. Part 4. Quantitative structure-activity relationships for the estimation of relative toxicity of phenols for Tetrahymena. Rev. Roum. Chim. 1998, 43, 255–260. [Google Scholar]
- Hosoya, H.; Gotoh, M.; Murakami, M.; Ikeda, S. Topological index and thermodynamic properties. 5. How can we explain the topological dependency of thermodynamic properties of alkanes with the topology of graphs? J. Chem. Inf. Comput. Sci. 1999, 39, 192–196. [Google Scholar] [CrossRef]
- De Gregorio, C.; Kier, L.B.; Hall, L.H. QSAR modeling with the electrotopological state indices: Corticosteroids. J. Comput. Aided Mol. Des. 1998, 12, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Duart, M.J.; Anton-Fos, G.M.; De Julian-Ortiz, J.V.; Gonzalbes, R.; Gàlvez, J.; García-Domenech, R. Use of molecular topology for the prediction of physico-chemical, pharmacokinetic and toxicological properties of a group of antihistaminic drugs. Int. J. Pharm. 2002, 246, 111–119. [Google Scholar] [CrossRef]
- García-Domenech, R.; Espinoza, N.; Galarza, R.F.; Moreno-Padilla, M.J.; Rojas-Ruiz, B.; Roldán-Arroyo, L.L.; Sanchez-Lavado, M.I.; Gálvez, J. Application of molecular topology to the prediction of inhibition of Trypanosoma cruzi Hexokinase by bisphosphonates. Ars. Pharm. 2008, 9, 199–209. [Google Scholar]
- Gálvez, J.; García-Domenech, R.; de Julian-Ortiz, J.V.; Soler, R. Topological approach to drug design. J. Chem. Inf. Comput. Sci. 1995, 35, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, N.; de Julian-Ortiz, J.V.; Ciceron, L.; Gálvez, J.; Mazier, D.; Danis, M.; Derouin, F.; García-Domenech, R. Identification of new antimalarial drugs by linear discriminant analysis and topological virtual screening. J. Antimicrob. Chemother. 2006, 57, 489–497. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, N.; García-Domenech, R.; Gálvez, J.; Farhati, K.; Franetich, J.F.; Sauerwein, R.; Hannoun, L.; Derouin, F.; Danis, M.; Mazier, D. New active drugs against liver stages of Plasmodium predicted by molecular topology. Antimicrob. Agents Chemother. 2008, 52, 1215–1220. [Google Scholar] [CrossRef] [Green Version]
- de Julian-Ortiz, J.V.; Gálvez, J.; Munoz-Collado, C.; García-Domenech, R.; Gimeno-Cardona, C. Virtual combinatorial syntheses and computational screening of new potential anti-herpes compounds. J. Med. Chem. 1999, 42, 3308–3314. [Google Scholar] [CrossRef]
- Duart, M.J.; Anton-Fos, G.M.; Aleman, P.A.; Gay-Roig, J.B.; Gonzalez-Rosende, M.E.; Gálvez, J.; García-Domenech, R. New potential antihistaminic compounds. Virtual combinatorial chemistry, computational screening, real synthesis, and pharmacological evaluation. J. Med. Chem. 2005, 48, 1260–1264. [Google Scholar] [CrossRef]
- Calabuig, C.; Anton-Fos, G.M.; Gálvez, J.; García-Domenech, R. New hypo-glycemic agents selected by molecular topology. Int. J. Pharm. 2004, 278, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, J.; Garcia-Domenech, R.; De Julian-Ortiz, V.; Soler, R. Topological approach to analgesia. J. Chem. Inf. Comput. Sci. 1994, 34, 1198–1203. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, J.; Garcia, R.; Salabert, M.T.; Soler, R. Charge indexes. New topological descriptors. J. Chem. Inf. Comput. Sci. 1994, 34, 520–525. [Google Scholar] [CrossRef]
- García-García, A.; Gálvez, J.; Vicente de Julian-Ortiz, J.; Garcia-Domenech, R.; Munoz, C.; Guna, R.; Borrás, R. Search of chemical scaffolds for novel antituberculosis agents. J. Biomol. Screen. 2005, 10, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Shanmukha, M.C.; Basavarajappa, N.S.; Shilpa, K.C.; Usha, A. Degree-based topological indices on anticancer drugs with QSPR analysis. Heliyon 2020, 6, e04235. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Sheridan, R.P.; Liaw, A.; Dahl, G.E.; Svetnik, V. Deep neural nets as a method for quantitative structure–activity relationships. J. Chem. Inf. Model. 2015, 55, 263–274. [Google Scholar] [CrossRef]
- Golbraikh, A.; Wang, X.S.; Zhu, H.; Tropsha, A. Predictive qsar modeling: Methods and applications in drug discovery and chemical risk assessment. In Handbook of Computational Chemistry; Leszczynski, J., Ed.; Springer International Publishing: New York, NY, USA, 2012. [Google Scholar]
- Roy, J.; Kumar Ojha, P.; Carnesecchi, E.; Lombardo, A.; Roy, K.; Benfenati, E. First report on a classification-based QSAR model for chemical toxicity to earthworm. J. Hazard. Mater. 2020, 386, 121660. [Google Scholar] [CrossRef]
- Shi, Y. Support vector regression-based QSAR models for prediction of antioxidant activity of phenolic compounds. Sci. Rep. 2021, 11, 8806. [Google Scholar] [CrossRef]
- Hui, Z.H.; Aslam, A.; Kanwal, S.; Saeed, S.; Sarwar, K. Implementing QSPR modeling via multiple linear regression analysis to operations research: A study toward nanotubes. Eur. Phys. J. Plus 2023, 138, 200. [Google Scholar] [CrossRef]
- Wang, C.; Jiang, H.; Jin, J.; Xie, Y.; Chen, Z.; Zhang, H.; Lian, F.; Liu, Y.C.; Zhang, C.; Ding, H.; et al. Development of Potent Type I Protein Arginine Methyltransferase (PRMT) Inhibitors of Leukemia Cell Proliferation. J. Med. Chem. 2017, 60, 8888–8905. [Google Scholar] [CrossRef]
- Valente, S.; Liu, Y.; Schnekenburger, M.; Zwergel, C.; Cosconati, S.; Gros, C.; Tardugno, M.; Labella, D.; Florean, C.; Minden, S.; et al. Selective non-nucleoside inhibitors of human DNA methyltransferases active in cancer including in cancer stem cells. J. Med. Chem. 2014, 57, 701–713. [Google Scholar] [CrossRef]
- Xie, Y.; Zhou, R.; Lian, F.; Liu, Y.; Chen, L.; Shi, Z.; Zhang, N.; Zheng, M.; Shen, B.; Jiang, H.; et al. Virtual Screening and Biological Evaluation of Novel Small Molecular Inhibitors against Protein Arginine Methyltransferase 1 (PRMT1). Org. Biomol. Chem. 2014, 12, 9665–9673. [Google Scholar] [CrossRef] [PubMed]
- Levis, M. Midostaurin approved for FLT3-mutated AML. Blood 2017, 129, 3403–3406. [Google Scholar] [CrossRef]
- Tecik, M.; Adan, A. Therapeutic Targeting of FLT3 in Acute Myeloid Leukemia: Current Status and Novel Approaches. OncoTargets Ther. 2022, 15, 1449–1478. [Google Scholar] [CrossRef]
- Le Romancer, M.; Treilleux, I.; Bouchekioua-Bouzaghou, K.; Sentis, S.; Corbo, L. Methylation, a key step for nongenomic estrogen signaling in breast tumors. Steroids 2010, 75, 560–564. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hsu, J.M.; Kang, Y.; Wei, Y.; Lee, P.C.; Chang, S.J.; Hsu, Y.H.; Hsu, J.L.; Wang, H.L.; Chang, W.C.; et al. Oncogenic functions of Gli1 in pancreatic adenocarcinoma are supported by its PRMT1-mediated methylation. Cancer Res. 2016, 76, 7049–7058. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Zhang, H.; Du, C.; Liu, X.; Zhu, S.; Zhang, W.; Li, Z.; Gao, C.; Zhao, X.; Mei, M.; et al. Correlation of SRSF1 and PRMT1 expression with clinical status of pediatric acute lymphoblastic leukemia. J. Hematol. Oncol. 2012, 5, 42. [Google Scholar] [CrossRef] [Green Version]
- Puissant, A.; Fenouille, N.; Alexe, G.; Pikman, Y.; Bassil, C.F.; Mehta, S.; Du, J.; Kazi, J.U.; Luciano, F.; Rönnstrand, L.; et al. SYK is a critical regulator of FLT3 in acute myeloid leukemia. Cancer Cell 2014, 25, 226–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiter, K.; Polzer, H.; Krupka, C.; Maiser, A.; Vick, B.; Rothenberg-Thurley, M.; Metzeler, K.H.; Dörfel, D.; Salih, H.R.; Jung, G.; et al. Tyrosine kinase inhibition increases the cell surface localization of FLT3-ITD and enhances FLT3-directed immunotherapy of acute myeloid leukemia. Leukemia 2018, 32, 313–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhary, C.; Schwäble, J.; Brandts, C.; Tickenbrock, L.; Sargin, B.; Kindler, T.; Fischer, T.; Berdel, W.E.; Müller-Tidow, C.; Serve, H. AML-associated Flt3 kinase domain mutations show signal transduction differences compared with Flt3 ITD mutations. Blood 2005, 106, 265–273. [Google Scholar] [CrossRef]
- Herrmann, F.; Lee, J.; Bedford, M.T.; Fackelmayer, F.O. Dynamics of human protein arginine methyltransferase 1(PRMT1) in vivo. J. Biol. Chem. 2005, 280, 38005–38010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemonnier, F.; Inoue, S.; Mak, T.W. Genomic classification in acute myeloid leukemia. N. Engl. J. Med. 2016, 375, 900. [Google Scholar] [PubMed]
- Cancer Genome Atlas Research Network; Ley, T.J.; Miller, C.; Ding, L.; Raphael, B.J.; Mungall, A.J.; Robertson, A.; Hoadley, K.; Triche, T.J., Jr.; Laird, P.W.; et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 2013, 368, 2059–2074. [Google Scholar]
- Wu, M.; Li, C.; Zhu, X. FLT3 inhibitors in acute myeloid leukemia. J. Hematol. Oncol. 2018, 11, 133. [Google Scholar] [CrossRef]
- Smith, C.C.; Paguirigan, A.; Jeschke, G.R.; Lin, K.C.; Massi, E.; Tarver, T.; Chin, C.S.; Asthana, S.; Olshen, A.; Travers, K.J.; et al. Heterogeneous resistance to quizartinib in acute myeloid leukemia revealed by single-cell analysis. Blood 2017, 130, 48–58. [Google Scholar] [CrossRef]
- Mitteroecker, P.; Bookstein, F. Linear Discrimination, Ordination, and the Visualization of Selection Gradients in Modern Morphometrics. Evol. Biol. 2011, 38, 100–114. [Google Scholar] [CrossRef]
- Wong, K.Y.; Mercader, A.G.; Saavedra, L.M.; Honarparvar, B.; Romanelli, G.P.; Duchowicz, P.R. QSAR analysis on tacrine-related acetylcholinesterase inhibitors. J. Biomed. Sci. 2014, 21, 84. [Google Scholar] [CrossRef] [Green Version]
- Larif, M.; Chtita, S.; Adad, A.; Hmamouchi, R.; Bouachrine, M.; Lakhlifi, T. Predicting biological activity of Anticancer Molecules 3-ary l-4-hydroxyquinolin-2-(1H)-one by DFT-QSAR models. Int. J. Clin. Exp. Med. 2013, 3, 32–42. [Google Scholar]
- Lill, M.A.; Danielson, M.L. Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des. 2011, 25, 13–19. [Google Scholar] [CrossRef]
- Hawkins, P.C.D.; Skillman, A.G.; Nicholls, A. Comparison of shape-matching and docking as virtual screening tools. J. Med. Chem. 2007, 50, 74–82. [Google Scholar] [CrossRef]
- Kier, L.B.; Hall, L.H. Molecular connectivity. VII. Specific treatment of heteroatoms. J. Pharm. Sci. 1976, 65, 1806–1809. [Google Scholar]
- Kier, L.B.; Hall, L.H. General definition of valence delta-values for molecular connectivity. J. Pharm. Sci. 1983, 72, 1170–1173. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.J.; Mukwembi, S.; Swart, H.C. On the eccentric connectivity index of a graph. Discret. Math. 2011, 311, 1229–1234. [Google Scholar] [CrossRef] [Green Version]
- Das, K.C.; Jeon, H.; Trinajstic, N. Comparison between the Wiener index and the Zagreb indices and the eccentric connectivity index for trees. Discret. Appl. Math. 2014, 171, 35–41. [Google Scholar] [CrossRef]
- Mauri, A.; Bertola, M. Alvascience: A New Software Suite for the QSAR Workflow Applied to the Blood–Brain Barrier Permeability. Int. J. Mol. Sci. 2022, 23, 12882. [Google Scholar] [CrossRef]
- Gálvez, J.; Gálvez-Llompart, M.; García-Domenech, R. Introduction to molecular topology: Basic concepts and application to drug design. Curr. Comput. Aided Drug Des. 2012, 8, 196–223. [Google Scholar] [CrossRef] [PubMed]
- Gramatica, P.; Sangion, A. A historical excursus on the statistical validation parameters for QSAR models: A clarification concerning metrics and terminology. J. Chem. Inf. Model. 2016, 56, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, J.; García-Doménech, R.; de Gregorio Alapont, C.; de Julián-Ortiz, J.V.; Popa, L. Pharmacological distribution diagrams: A tool for de novo drug design. J. Mol. Graph. 1996, 14, 272–276. [Google Scholar] [CrossRef]
- Besalu, E. Fast computation of cross-validated properties in full linear leave- many-out procedures. J. Math. Chem. 2001, 29, 191–204. [Google Scholar] [CrossRef]
Comp. | SMILES | IC50 Exp. a (M/105) | pIC50 Exp. | Class (Exp.) | Prob. Activ. b | DF c | Class (Pred.) | pIC50 Pred. d |
---|---|---|---|---|---|---|---|---|
5 | NC1=NC(NC2=CC=CC(NC(C3=CC=CC(NC4=CC=NC5=CC=CC=C54)=C3)=O)=C2)=CC(C)=N1 | 1 | 5.000 | A | 1.000 | 3.743 | A | 5.033 |
12 | C1(OCC2=CC=CC=C2)=CC=CC(CNCC3CCNCC3)=C1 | 14.7 | 3.833 | I | <0.001 | −2.443 | I | 3.258 |
13a | CN(CCN(C)C)CC1=C(C=CCC1)SC2=C3C(C=CC=C3)=CC=C2 | 0.3 | 5.523 | A | 0.971 | 1.586 | A | 5.620 |
15a | O=S(N)(C1=CC=C(CCNCC(C=C2)=CC=C2OCC=C)C=C1)=O | 8.5 | 4.071 | I | <0.001 | −0.922 | I | 5.147 |
16a | OC1=CC(O)=C(C(CC2=NNC(C3=CC=C(C)C=C3)=C2)=O)C(O)=C1 | 4.9 | 4.310 | I | <0.001 | −2.225 | I | 4.180 |
17a | O=C(OCC)C1=C(C2=CC=CC=C2C3=CC=CC=C43)C4=CC5=[N+]1CCC6=C5C=CC=C6 | 5.3 | 4.276 | I | 0.038 | 0.024 | NC | 4.536 |
23a | O=C(N([H])CCN(C)C)C1=C(C=CC=C1)SC2=CC=CC3=C2C=CC=C3 | >20 | <3.699 | I | <0.001 | −3.163 | I | 3.142 |
23b | O=C(N([H])CCN(C)C)C1=C(C=CC=C1)SC2=CC=CC=C2 | >5 | <4.301 | I | <0.001 | −2.123 | I | 4.199 |
23d | O=C(N([H])CCN(C)C)C1=C(C=CC=C1)SC2=CC=C(C)C(Cl)=C2 | >5 | <4.301 | I | <0.001 | −1.255 | I | 3.843 |
24a | [H]C(N([H])CCN(C)C)C1=C(C=CC=C1)SC2=CC=CC3=C2C=CC=C3 | 3.4 | 4.469 | I | <0.001 | −2.431 | I | 4.932 |
24b | [H]C(N([H])CCN(C)C)C1=C(C=CC=C1)SC2=CC=CC=C2 | >5 | <4.301 | I | <0.001 | −1.527 | I | 4.673 |
24c | [H]C(N([H])CCN(C)C)C1=C(C=CC=C1)SC2=CC=C(C)C(F)=C2 | 4.5 | 4.347 | I | 0.008 | −0.338 | I | 4.314 |
24d | [H]C(N([H])CCN(C)C)C1=C(C=CC=C1)SC2=CC=C(C)C(Cl)=C2 | 5.4 | 4.268 | I | 0.008 | −0.338 | I | 5.244 |
25c | [H]C(N(C)CCN(C)C)C1=C(C=CC=C1)SC2=CC=C(C)C(F)=C2 | 0.071 | 6.149 | A | 0.999 | 2.299 | A | 6.795 |
25d | [H]C(N(C)CCN(C)C)C1=C(C=CC=C1)SC2=CC=C(C)C(Cl)=C2 | 0.039 | 8.959 | A | 0.999 | 2.299 | A | 7.688 |
28d | [H]C(N(C)CCN([H])[H])C1=C(C=CC=C1)SC2=CC=C(C)C(Cl)=C2 | 0.00011 | 8.959 | A | 0.999 | 2.886 | A | 8.352 |
31d | CNCCN(CC1=CC=CC=C1SC2=CC=CC=C2Cl)C | 0.0006 | 8.222 | A | 1.000 | 3.931 | A | 8.612 |
Symbol | Name | Definition | |
---|---|---|---|
kχt, k = 0–4 and t = p, c, pc | Randic-like indices of order k and type path (p), cluster (c), and path-cluster (pc) | is the jth sub-structure of order k and type t | |
, k = 0–4 and t = p, c, pc | Kier–Hall indices of order k and type path (p), cluster (c), and path-cluster (pc) | is the jth sub-structure of order k and type t | |
Gk, k = 1–5 | Topological charge indices of order k | where M = AQ is the product of the adjacency and inverse square distance matrices for the hydrogen-depleted molecular graph. D is the distance matrix. δ is the Kronecker delta | |
, k = 1–5 | Valence topological charge indices of order k | where MV = AVQ is the product of the electronegativity-modified adjacency and inverse square distance matrices for the hydrogen-depleted molecular graph. D is the distance matrix. δ is the Kronecker delta | |
, k = 1–5 | Normalized topological charge indices of order k | ||
Jv, k = 1–5 | Normalized valence topological charge indices of order k | ||
kDt, k = 0–4 and t = p, c, pc | Connectivity differences of order k and type path (p), cluster (c), and path-cluster (pc) | ||
kCt, k = 0–4 and t = p, c, pc | Connectivity quotients of order k and type path (p), cluster (c), and path-cluster (pc) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandoval, C.; Torrens, F.; Godoy, K.; Reyes, C.; Farías, J. Application of Quantitative Structure-Activity Relationships in the Prediction of New Compounds with Anti-Leukemic Activity. Int. J. Mol. Sci. 2023, 24, 12258. https://doi.org/10.3390/ijms241512258
Sandoval C, Torrens F, Godoy K, Reyes C, Farías J. Application of Quantitative Structure-Activity Relationships in the Prediction of New Compounds with Anti-Leukemic Activity. International Journal of Molecular Sciences. 2023; 24(15):12258. https://doi.org/10.3390/ijms241512258
Chicago/Turabian StyleSandoval, Cristian, Francisco Torrens, Karina Godoy, Camila Reyes, and Jorge Farías. 2023. "Application of Quantitative Structure-Activity Relationships in the Prediction of New Compounds with Anti-Leukemic Activity" International Journal of Molecular Sciences 24, no. 15: 12258. https://doi.org/10.3390/ijms241512258
APA StyleSandoval, C., Torrens, F., Godoy, K., Reyes, C., & Farías, J. (2023). Application of Quantitative Structure-Activity Relationships in the Prediction of New Compounds with Anti-Leukemic Activity. International Journal of Molecular Sciences, 24(15), 12258. https://doi.org/10.3390/ijms241512258