Development of Therapeutic Agent for Osteoarthritis via Inhibition of KIAA1199 Activity: Effect of Ipriflavone In Vivo
Abstract
:1. Introduction
2. Results
2.1. Ipriflavone Inhibited Cartilage Degeneration and GAG Losses in OA Model Mice
2.2. Ipriflavone Decreased KIAA1199 Expression and Increased the Positive Area of HA-Binding Protein (HABP) Staining in the Cartilage
2.3. Ipriflavone Could Increase the Molecular Weight of HA in the OA Cartilage
2.4. Ipriflavone Reduced the Loss of GAGs under IL-1β Stimulation
2.5. Ipriflavone Maintained the Deposition and Molecular Weight of HA in IL-1β-Stimulated Cartilage Explants
2.6. Immunohistochemical Staining for KIAA1199 in Bovine Cartilage Explants
2.7. mRNA Expression of KIAA1199 and Related Genes
3. Discussion
4. Materials and Methods
4.1. Development of OA Mice Model with Destabilization of Medial Meniscus
4.2. Histological Evaluation of Mouse Knee Joints
4.3. Immunohistochemistry
4.4. Preparation of Cartilage Glycosaminoglycans
4.5. Chromatography Analysis of HA Molecular Weight
4.6. Serum HA in DMM Model Mice
4.7. Cartilage Explant Cultures
4.8. Real-Time PCR
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Jordan, J.M. Epidemiology of Osteoarthritis. Clin. Geriatr. Med. 2010, 26, 355–369. [Google Scholar] [CrossRef] [Green Version]
- Heidari, B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. Casp. J. Intern. Med. 2011, 2, 205–212. [Google Scholar]
- Chen, D.; Shen, J.; Zhao, W.; Wang, T.; Han, L.; Hamilton, J.L.; Im, H.J. Osteoarthritis: Toward a comprehensive understanding of pathological mechanism. Bone Res. 2017, 5, 16044. [Google Scholar] [CrossRef] [PubMed]
- Bastow, E.R.; Byers, S.; Golub, S.B.; Clarkin, C.E.; Pitsillides, A.A.; Fosang, A.J. Hyaluronan synthesis and degradation in cartilage and bone. Cell. Mol. Life Sci. 2008, 65, 395–413. [Google Scholar] [CrossRef] [PubMed]
- Band, P.A.; Heeter, J.; Wisniewski, H.G.; Liublinska, V.; Pattanayak, C.W.; Karia, R.J.; Stabler, T.; Balazs, E.A.; Kraus, V.B. Hyaluronan molecular weight distribution is associated with the risk of knee osteoarthritis progression. Osteoarthr. Cartil. 2015, 23, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Kikuchi, T.; Yamada, H.; Shimmei, M. Effect of high molecular weight hyaluronan on cartilage degeneration in a rabbit model of osteoarthritis. Osteoarthr. Cartil. 1996, 4, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Ohtsuki, T.; Asano, K.; Inagaki, J.; Shinaoka, A.; Kumagishi-Shinaoka, K.; Cilek, M.Z.; Hatipoglu, O.F.; Oohashi, T.; Nishida, K.; Komatsubara, I.; et al. High molecular weight hyaluronan protects cartilage from degradation by inhibiting aggrecanase expression. J. Orthop. Res. 2018, 36, 3247–3255. [Google Scholar] [CrossRef] [Green Version]
- Tavianatou, A.G.; Caon, I.; Franchi, M.; Piperigkou, Z.; Galesso, D.; Karamanos, N.K. Hyaluronan: Molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J. 2019, 286, 2883–2908. [Google Scholar] [CrossRef] [Green Version]
- Mascarenhas, M.M.; Day, R.M.; Ochoa, C.D.; Choi, W.I.; Yu, L.; Ouyang, B.; Garg, H.G.; Hales, C.A.; Quinn, D.A. Low Molecular Weight Hyaluronan from Stretched Lung Enhances Interleukin-8 Expression. Am. J. Respir. Cell Mol. Biol. 2004, 30, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Rowley, J.E.; Amargant, F.; Zhou, L.T.; Galligos, A.; Simon, L.E.; Pritchard, M.T.; Duncan, F.E. Low Molecular Weight Hyaluronan Induces an Inflammatory Response in Ovarian Stromal Cells and Impairs Gamete Development In Vitro. Int. J. Mol. Sci. 2020, 21, 1036. [Google Scholar] [CrossRef] [Green Version]
- Nishida, Y.; Knudson, C.B.; Nietfeld, J.J.; Margulis, A.; Knudson, W. Antisense Inhibition of Hyaluronan Synthase-2 in Human Articular Chondrocytes Inhibits Proteoglycan Retention and Matrix Assembly. Int. J. Biol. Chem. 1999, 274, 21893–21899. [Google Scholar] [CrossRef] [Green Version]
- Hiscock, D.R.R.; Caterson, B.; Flannery, C.R. Expression of hyaluronan synthases in articular cartilage. Osteoarthr. Cartil. 2000, 8, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Ishizuka, S.; Tsuchiya, S.; Ohashi, Y.; Terabe, K.; Askew, E.B.; Ishizuka, N.; Knudson, C.B.; Knudson, W. Hyaluronan synthase 2 (HAS2) overexpression diminishes the procatabolic activity of chondrocytes by a mechanism independent of extracellular hyaluronan. J. Biol. Chem. 2019, 294, 13562–13579. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Guo, H.; Lei, C.; Liu, L.; Xu, L.; Feng, Y.; Ke, J.; Fang, W.; Song, H.; Xu, C.; et al. Nanotherapy in Joints: Increasing Endogenous Hyaluronan Production by Delivering Hyaluronan Synthase 2. Adv. Mater. 2019, 31, e1904535. [Google Scholar] [CrossRef] [PubMed]
- Harada, H.; Takahashi, M. CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. J. Biol. Chem. 2007, 282, 5597–5607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimizu, H.; Shimoda, M.; Mochizuki, S.; Miyamae, Y.; Abe, H.; Chijiiwa, M.; Yoshida, H.; Shiozawa, J.; Ishijima, M.; Kaneko, K.; et al. Hyaluronan-Binding Protein Involved in Hyaluronan Depolymerization Is Up-Regulated and Involved in Hyaluronan Degradation in Human Osteoarthritic Cartilage. Am. J. Pathol. 2018, 188, 2109–2119. [Google Scholar] [CrossRef]
- Yoshida, H.; Nagaoka, A.; Kusaka-Kikushima, A.; Tobiishi, M.; Kawabata, K.; Sayo, T.; Sakai, S.; Sugiyama, Y.; Enomoto, H.; Okada, Y.; et al. KIAA1199, a deafness gene of unknown function, is a new hyaluronan binding protein involved in hyaluronan depolymerization. Proc. Natl. Acad. Sci. USA 2013, 110, 5612–5617. [Google Scholar] [CrossRef]
- Momoeda, M.; de Vega, S.; Kaneko, H.; Yoshinaga, C.; Shimoda, M.; Nakamura, T.; Endo, Y.; Yoshida, H.; Kaneko, K.; Ishijima, M.; et al. Deletion of Hyaluronan-Binding Protein Involved in Hyaluronan Depolymerization (HYBID) Results in Attenuation of Osteoarthritis in Mice. Am. J. Pathol. 2021, 191, 1986–1998. [Google Scholar] [CrossRef]
- Koike, H.; Nishida, Y.; Shinomura, T.; Ohkawara, B.; Ohno, K.; Zhuo, L.; Kimata, K.; Ushida, T.; Imagama, S. Possible Repositioning of an Oral Anti-Osteoporotic Drug, Ipriflavone, for Treatment of Inflammatory Arthritis via Inhibitory Activity of KIAA1199, a Novel Potent Hyaluronidase. Int. J. Mol. Sci. 2022, 23, 4089. [Google Scholar] [CrossRef]
- Shrivastava, A. Plastics Design Library; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Itano, N.; Sawai, T.; Yoshida, M.; Lenas, P.; Yamada, Y.; Imagawa, M.; Shinomura, T.; Hamaguchi, M.; Yoshida, Y.; Ohnuki, Y.; et al. Three Isoforms of Mammalian Hyaluronan Synthases Have Distinct Enzymatic Properties. Int. J. Biol. Chem. 1999, 274, 25085–25092. [Google Scholar]
- Dahl, L.B.; Marie, I.; Dahl, S.; Engstrom-Laurent, A.; Granath, K. Concentration and molecular weight of sodium hyaluronate in synovial fluid from patients with rheumatoid arthritis and other arthropathies. Ann. Rheum. Dis. 1985, 44, 817–822. [Google Scholar] [PubMed]
- Balazs, E.A.; Watson, D.; Duff, I.F.; Roseman, S. Hyaluronic Acid in Synovial Fluid. I. Molecular Parameters of Hyaluronic Acid in Normal and Arthritic Human Fluids. Arthritis Rheumatol. 1967, 10, 357–376. [Google Scholar]
- Nishida, Y.; Knudson, C.B.; Knudson, W. Osteogenic Protein-1 inhibits matrix depletion in a hyaluronan hexasaccharide-induced model of osteoarthritis. Osteoarthr. Cartil. 2004, 12, 374–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishida, Y.; D’Souza, A.L.; Thonar, E.J.; Knudson, W. Stimulation of hyaluronan metabolism by interleukin-1alpha in human articular cartilage. Arthritis Rheumatol. 2000, 43, 1315–1326. [Google Scholar] [CrossRef]
- Ding, Q.H.; Qi, Y.Y.; Li, X.M.; Chen, W.P.; Wang, X.H.; Ji, X.W. Knockdown of KIAA1199 suppresses IL-1beta-induced cartilage degradation and inflammatory responses in human chondrocytes through the Wnt/beta-catenin signalling pathway. Int. Immunopharmacol. 2019, 73, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Mizutani, Y.; Yoshino, Y.; Masuda, M.; Miyazaki, M.; Hara, H.; Inoue, S. Pro-inflammatory cytokines suppress HYBID (hyaluronan (HA)-binding protein involved in HA depolymerization/KIAA1199/CEMIP)-mediated HA metabolism in human skin fibroblasts. Biochem. Biophys. Res. Commun. 2021, 539, 77–82. [Google Scholar] [CrossRef]
- Ohtsuki, T.; Hatipoglu, O.F.; Asano, K.; Inagaki, J.; Nishida, K.; Hirohata, S. Induction of CEMIP in Chondrocytes by Inflammatory Cytokines: Underlying Mechanisms and Potential Involvement in Osteoarthritis. Int. J. Mol. Sci. 2020, 21, 3140. [Google Scholar] [CrossRef]
- Kohi, S.; Sato, N.; Koga, A.; Matayoshi, N.; Hirata, K. KIAA1199 is induced by inflammation and enhances malignant phenotype in pancreatic cancer. Oncotarget 2017, 8, 17156–17163. [Google Scholar] [CrossRef] [Green Version]
- Roughley, P.J.; Mort, J.S. The role of aggrecan in normal and osteoarthritic cartilage. J. Exp. Orthop. 2014, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Venkatesan, N.; Barre, L.; Bourhim, M.; Magdalou, J.; Mainard, D.; Netter, P.; Fournel-Gigleux, S.; Ouzzine, M. Xylosyltransferase-I regulates glycosaminoglycan synthesis during the pathogenic process of human osteoarthritis. PLoS ONE 2012, 7, e34020. [Google Scholar] [CrossRef]
- Mankin, H.J.; Dorfman, H.; Lippiello, L.; Zarins, A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J. Bone Jt. Surg. Am. 1971, 53, 523–537. [Google Scholar] [CrossRef]
- Pap, T.; Korb-Pap, A. Cartilage damage in osteoarthritis and rheumatoid arthritis—Two unequal siblings. Nat. Rev. Rheumatol. 2015, 11, 606–615. [Google Scholar] [CrossRef] [PubMed]
- Pothacharoen, P.; Teekachunhatean, S.; Louthrenoo, W.; Yingsung, W.; Ong-Chai, S.; Hardingham, T.; Kongtawelert, P. Raised chondroitin sulfate epitopes and hyaluronan in serum from rheumatoid arthritis and osteoarthritis patients. Osteoarthr. Cartil. 2006, 14, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, R.L.; Huff, J.P.; Lenz, M.E.; Glickman, P.; Katz, R.; Thonar, E.J. Elevated plasma levels of hyaluronate in patients with osteoarthritis and rheumatoid arthritis. Arthritis Rheumatol. 1991, 34, 799–807. [Google Scholar] [CrossRef]
- Stoop, R.; Kotani, H.; McNeish, J.D.; Otterness, I.G.; Mikecz, K. Increased resistance to collagen-induced arthritis in CD44-deficient DBA/1 mice. Arthritis Rheumatol. 2001, 44, 2922–2931. [Google Scholar] [CrossRef]
- de Lange-Brokaar, B.J.; Ioan-Facsinay, A.; van Osch, G.J.; Zuurmond, A.M.; Schoones, J.; Toes, R.E.; Huizinga, T.W.; Kloppenburg, M. Synovial inflammation, immune cells and their cytokines in osteoarthritis: A review. Osteoarthr. Cartil. 2012, 20, 1484–1499. [Google Scholar] [CrossRef] [Green Version]
- Pearle, A.D.; Scanzello, C.R.; George, S.; Mandl, L.A.; DiCarlo, E.F.; Peterson, M.; Sculco, T.P.; Crow, M.K. Elevated high-sensitivity C-reactive protein levels are associated with local inflammatory findings in patients with osteoarthritis. Osteoarthr. Cartil. 2007, 15, 516–523. [Google Scholar] [CrossRef] [Green Version]
- Wells, A.F.; Klareskog, L.; Lindblad, S.; Laurent, T.C. Correlation between increased hyaluronan localized in arthritic synovium and the presence of proliferating cells. A role for macrophage-derived factors. Arthritis Rheumatol. 1992, 35, 391–396. [Google Scholar] [CrossRef]
- Rizkalla, G.; Reiner, A.; Bogoch, E.; Poole, A.R. Studies of the Articular Cartilage Proteoglycan Aggrecan in Health and Osteoarthritis Evidence for Molecular Heterogeneity and Extensive Molecular Changes in Disease. J. Clin. Investig. 1992, 90, 2268–2277. [Google Scholar] [CrossRef]
- Sweet, M.B.E.; Thonar, E.J.M.A.; Immelman, A.R.; Solomon, L. Biochemical changes in progressive osteoarthrosis. Ann. Rheum. Dis. 1977, 36, 387–398. [Google Scholar] [CrossRef]
- Cowman, M.K.; Shortt, C.; Arora, S.; Fu, Y.; Villavieja, J.; Rathore, J.; Huang, X.; Rakshit, T.; Jung, G.I.; Kirsch, T. Role of Hyaluronan in Inflammatory Effects on Human Articular Chondrocytes. Inflammation 2019, 42, 1808–1820. [Google Scholar] [CrossRef] [Green Version]
- Campo, G.M.; Avenoso, A.; D’Ascola, A.; Scuruchi, M.; Prestipino, V.; Calatroni, A.; Campo, S. Hyaluronan in part mediates IL-1beta-induced inflammation in mouse chondrocytes by up-regulating CD44 receptors. Gene 2012, 494, 24–35. [Google Scholar] [CrossRef]
- D’Souza, A.L.; Masuda, K.; Otten, L.M.; Nishida, Y.; Knudson, W.; Thonar, E.J. Differential effects of interleukin-1 on hyaluronan and proteoglycan metabolism in two compartments of the matrix formed by articular chondrocytes maintained in alginate. Arch. Biochem. Biophys. 2000, 374, 59–65. [Google Scholar] [CrossRef]
- Alexandersen, P.; Toussaint, A.; Christiansen, C.; Devogelaer, J.P.; Roux, C.; Fechtenbaum, J.; Gennari, C.; Reginster, J.Y. Ipriflavone in the treatment of postmenopausal osteoporosis: A randomized controlled trial. JAMA 2001, 285, 1482–1488. [Google Scholar] [CrossRef] [PubMed]
- Bassleer, C.T.; Franchimont, P.P.; Henrotin, Y.E.; Franchimont, N.M.; Geenen, V.G.; Reginster, J.Y. Effects of ipriflavone and its metabolites on human articular chondrocytes cultivated in clusters. Osteoarthr. Cartil. 1996, 4, 1–8. [Google Scholar] [CrossRef]
- Guo, L.; Wei, X.; Zhang, Z.; Wang, X.; Wang, C.; Li, P.; Wang, C.; Wei, L. Ipriflavone attenuates the degeneration of cartilage by blocking the Indian hedgehog pathway. Arthritis Res. Ther. 2019, 21, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glasson, S.S.; Blanchet, T.J.; Morris, E.A. The surgical destabilization of the medial meniscus (DMM) model of osteoarthritis in the 129/SvEv mouse. Osteoarthr. Cartil. 2007, 15, 1061–1069. [Google Scholar] [CrossRef] [Green Version]
- Kawai, S.; Takagi, Y.; Kaneko, S.; Kurosawa, T. Effect of three types of mixed anesthetic agents alternate to ketamine in mice. Exp. Anim. 2011, 60, 481–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furman, B.D.; Strand, J.; Hembree, W.C.; Ward, B.D.; Guilak, F.; Olson, S.A. Joint degeneration following closed intraarticular fracture in the mouse knee: A model of posttraumatic arthritis. J. Orthop. Res. 2007, 25, 578–592. [Google Scholar] [CrossRef]
- Armstrong, S.E.; Bell, D.R. Measurement of high-molecular-weight hyaluronan in solid tissue using agarose gel electrophoresis. Anal. Biochem. 2002, 308, 255–264. [Google Scholar] [CrossRef]
HAS1 | Forward | 5′-TCCTCTGGGTCTATACAGAAACAATC-3′ |
Reverse | 5′-CGGTTGGTGAGGTGCCTGT-3′ | |
HAS2 | Forward | 5′-GATTATGTACAGGTGTGTGAC-3′ |
Reverse | 5′-CCTCTAAGACCTTCACCATC-3′ | |
HAS3 | Forward | 5′-GATGTCCAAATCCTCAACAAG-3′ |
Reverse | 5′-CAAAGGCCCACTAATACATTG-3′ | |
HYAL1 | Forward | 5′CAAGTACCAAGGAATCATGCCAG-3′ |
Reverse | 5′-GCGGACACAGCGACCATG-3′ | |
HYAL2 | Forward | 5′-TGTGGCTCTCACCTGGACCTTATGA-3′ |
Reverse | 5′-AGATGGTATGGGTGCTCTGCTAAG-3′ | |
KIAA1199 | Forward | 5′-ATATACAGGCCACAACAATG-3′ |
Reverse | 5′-AAGCAAACCTGTAATCTTGG-3′ | |
GAPDH | Forward | 5′-ACCCAGAAGACTGTGGATGG-3′ |
Reverse | 5′-CACATTGGGGGTAGGAACAC-3′ |
HAS2 | Forward | 5′-CGAAGTGTGGATTATGTACAGGTTT-3′ |
Reverse | 5′-GACACCTCCAACCATGGGAT-3′ | |
KIAA1199 | Forward | 5′-CATGCTGGCATGGCCTCT-3′ |
Reverse | 5′-ACTCAGCTGACCCTGTGGAT-3′ | |
MMP3 | Forward | 5′-CACCATGGAGCTTGTTCAGCAATA-3′ |
Reverse | 5′-GTCACCTCCAACCCCAGAAA-3′ | |
MMP13 | Forward | 5′-CCAGTTTGCAGAGAGCTACC-3′ |
Reverse | 5′-CTGCCAGTCACCTCTAAGCC-3′ | |
AGCN | Forward | 5′-AAGAGAGCCAAACAGCCGAC-3′ |
Reverse | 5′-TCGCACAGCTTCTGGTCTGT-3′ | |
TGF-β 1 | Forward | 5′-ATACACAGTACAGCAAGGTCCTG-3′ |
Reverse | 5′-ACGTAGTACACGATGGGCAG-3′ | |
GAPDH | Forward | 5′-AAGGTCGGAGTGAACGGATTC-3′ |
Reverse | 5′-ATGGCGACGATGTCCACTTT-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Nishida, Y.; Koike, H.; Zhuo, L.; Ito, K.; Ikuta, K.; Sakai, T.; Imagama, S. Development of Therapeutic Agent for Osteoarthritis via Inhibition of KIAA1199 Activity: Effect of Ipriflavone In Vivo. Int. J. Mol. Sci. 2023, 24, 12422. https://doi.org/10.3390/ijms241512422
Zhang J, Nishida Y, Koike H, Zhuo L, Ito K, Ikuta K, Sakai T, Imagama S. Development of Therapeutic Agent for Osteoarthritis via Inhibition of KIAA1199 Activity: Effect of Ipriflavone In Vivo. International Journal of Molecular Sciences. 2023; 24(15):12422. https://doi.org/10.3390/ijms241512422
Chicago/Turabian StyleZhang, Jiarui, Yoshihiro Nishida, Hiroshi Koike, Lisheng Zhuo, Kan Ito, Kunihiro Ikuta, Tomohisa Sakai, and Shiro Imagama. 2023. "Development of Therapeutic Agent for Osteoarthritis via Inhibition of KIAA1199 Activity: Effect of Ipriflavone In Vivo" International Journal of Molecular Sciences 24, no. 15: 12422. https://doi.org/10.3390/ijms241512422
APA StyleZhang, J., Nishida, Y., Koike, H., Zhuo, L., Ito, K., Ikuta, K., Sakai, T., & Imagama, S. (2023). Development of Therapeutic Agent for Osteoarthritis via Inhibition of KIAA1199 Activity: Effect of Ipriflavone In Vivo. International Journal of Molecular Sciences, 24(15), 12422. https://doi.org/10.3390/ijms241512422