Antidepressant and Anxiolytic Effects of L-Methionine in the WAG/Rij Rat Model of Depression Comorbid with Absence Epilepsy
Abstract
:1. Introduction
- Does L-MET exhibit an antidepressant and/or anxiolytic activity in tests relevant to the assessment of anxiety and depression?
- Is the antidepressant effect of L-MET comparable with that of conventional antidepressant drugs, such as the tricyclic antidepressant imipramine and the selective serotonin reuptake inhibitor fluoxetine?
- What is the effect of L-MET on the associated absence epilepsy, and is it different from the effect of the reference antidepressant imipramine?
- Are the effects of L-MET on depression-like behavior and absence seizures related to alterations in the brain monoamine systems?
2. Results
2.1. The Effect of L-MET on the Anxiety Level in WAG/Rij Rats
2.2. The Effect of L-MET on Depression-like Behavior in WAG/Rij Rats in Comparison with the Effects of the Antidepressants Imipramine and Fluoxetine
2.3. The Effect of L-MET on Absence Seizures in WAG/Rij Rats in Comparison with the Effect of the Antidepressant Imipramine
2.4. The Effect of L-MET on Monoamines and Their Metabolite Content in Brain Structures
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. Drug Administration
4.3. Behavioral Testing, EEG Registration, and Brain Monoamine Level Measurements
4.3.1. EEG Registration and Analysis
4.3.2. Behavioral Testing, Anxiety Level, and Depression-Like Symptoms
Light–Dark Choice Test
Open-Field Test
Elevated Plus-Maze Test
Forced Swimming Test
4.3.3. Brain Monoamines and Their Metabolite Level Measurements
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DA | Dopamine |
DOPAC | 3,4-dihydroxyphenylacetic acid |
HVA | Homovanillic acid |
5-HT | 5-hydroxytryptamine or serotonin |
5-HIAA | 5-hydroxyindolacetic acid |
NA | Noradrenaline |
MHPG | 4-hydroxy-3-methoxyphenylglycol |
L-MET | L-methionine |
SAMe | S-adenosyl-methionine |
References
- Saavedra, K.; Molina-Márquez, A.; Saavedra, N.; Zambrano, T.; Salazar, L. Epigenetic modifications of major depressive disorder. Int. J. Mol. Sci. 2016, 17, 1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mula, M.; Kanner, A.M.; Jette, N.; Sander, J.W. Psychiatric comorbidities in people with epilepsy. Neurol. Clin. Pract. 2020, 11, e112–e120. [Google Scholar]
- Kanner, A.M. Management of psychiatric and neurological comorbidities in epilepsy. Nat. Rev. Neurol. 2016, 12, 106–116. [Google Scholar] [CrossRef]
- Scott, A.J.; Sharpe, L.; Hunt, C.; Gandy, M. Anxiety and depression disorders in people with epilepsy: A meta-analysis. Epilepsia 2017, 58, 973–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanner, A.M.; Schachter, S.C.; Barry, J.J.; Hesdorffer, D.C.; Mula, M.; Trimble, M.; Hermann, B.; Ettinger, A.E.; Dunn, D.; Caplan, R.; et al. Depression and epilepsy: Epidemiologic and neurobiologic perspectives that may explain their high comorbid occurrence. Epilepsy Behav. 2012, 24, 156–168. [Google Scholar] [CrossRef]
- Gruenbaum, B.F.; Sandhu, M.R.S.; Bertasi, R.A.O.; Bertasi, T.G.O.; Schonwald, A.; Kurup, A.; Gruenbaum, S.E.; Freedman, I.G.; Funaro, M.C.; Blumenfeld, H.; et al. Absence seizures and their relationship to depression and anxiety: Evidence for bidirectionality. Epilepsia 2021, 62, 1041–1056. [Google Scholar] [CrossRef]
- Gilliam, F.; Kanner, A.M. Treatment of depressive disorders in epilepsy patients. Epilepsy Behav. 2002, 3, S2–S9. [Google Scholar] [CrossRef]
- Cotterman-Hart, S. Depression in epilepsy: Why aren’t we treating? Epilepsy Behav. 2010, 19, 419–421. [Google Scholar] [CrossRef] [PubMed]
- Sarkisova, K.; Midzianovskaia, I.; Kulikov, M. Depressive-like behavioral alterations and c-fos expression in the dopaminergic brain regions in WAG/Rij rats with genetic absence epilepsy. Behav. Brain Res. 2003, 144, 211–226. [Google Scholar] [CrossRef]
- Sarkisova, K.Y.; Kuznetsova, G.D.; Kulikov, M.A.; van Luijtelaar, G. Spike-wave discharges are necessary for the expression of behavioral depression-like symptoms. Epilepsia 2010, 51, 146–160. [Google Scholar] [CrossRef]
- Russo, E.; Citraro, R.; Constanti, A.; Leo, A.; Lüttjohann, A.; van Luijtelaar, G.; De Sarro, G. Upholding WAG/Rij rats as a model of absence epileptogenesis: Hidden mechanisms and a new theory on seizure development. Neurosci. Biobehav. Rev. 2016, 71, 388–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkisova, K.; van Luijtelaar, G. The WAG/Rij strain: A genetic animal model of absence epilepsy with comorbidity of depression. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2011, 35, 854–876. [Google Scholar] [CrossRef] [PubMed]
- Sarkisova, K.Y.; van Luijtelaar, G. The impact of early-life environment on absence epilepsy and neuropsychiatric comorbidities. IBRO Neurosci. Rep. 2022, 13, 436–468. [Google Scholar] [CrossRef]
- Sarkisova, K.Y.; Kulikov, M.A.; Kudrin, V.S.; Narkevich, V.B.; Midzianovskaia, I.S.; Biriukova, L.M.; Folomkina, A.A.; Basian, A.S. Neurochemical mechanisms of depression-like behavior in WAG/Rij rats. Zhurnal Vyss. Nervn. Deiatelnosti Im. I P Pavlov. 2013, 63, 303–315. [Google Scholar] [CrossRef]
- Citraro, R.; Leo, A.; De Fazio, P.; De Sarro, G.; Russo, E. Antidepressants but not antipsychotics have antiepileptogenic effects with limited effects on comorbid depressive-like behaviour in the WAG/Rij rat model of absence epilepsy. Br. J. Pharmacol. 2015, 172, 3177–3188. [Google Scholar] [CrossRef]
- Gabova, A.; Sarkisova, K.; Fedosova, E.; Shatskova, A.; Morozov, A. Developmental changes in peak-wave discharges in WAG/Rij rats with genetic absence epilepsy. Neurosci. Behav. Physiol. 2020, 50, 1176–1189. [Google Scholar] [CrossRef]
- Jarre, G.; Altwegg-Boussac, T.; Williams, M.S.; Studer, F.; Chipaux, M.; David, O.; Charpier, S.; Depaulis, A.; Mahon, S.; Guillemain, I. Building up absence seizures in the somatosensory cortex: From network to cellular epileptogenic processes. Cereb. Cortex 2017, 27, 4607–4623. [Google Scholar] [CrossRef] [Green Version]
- Sarkisova, K.Y.; Kulikov, M.A.; Kudrin, V.S.; Midzyanovskaya, I.S.; Birioukova, L.M. Age-related changes in behavior, in monoamines and their metabolites content, and in density of Dl and D2 dopamine receptors in the brain structures of WAG/Rij rats with depression-like pathology. Zhurnal Vyss. Nervn. Deiatelnosti Im. I P Pavlov. 2014, 64, 668–685. [Google Scholar] [CrossRef]
- Cavarec, F.; Krauss, P.; Witkowski, T.; Broisat, A.; Ghezzi, C.; De Gois, S.; Giros, B.; Depaulis, A.; Deransart, C. Early reduced dopaminergic tone mediated by D3 receptor and dopamine transporter in absence epileptogenesis. Epilepsia 2019, 60, 2128–2140. [Google Scholar] [CrossRef]
- Sarkisova, K.; Fedosova, E.; Shatskova, A.; Rudenok, M.; Stanishevskaya, V.; Slominsky, P. Maternal methyl-enriched diet increases DNMT1, HCN1, and TH gene expression and suppresses absence seizures and comorbid depression in offspring of WAG/Rij rats. Diagnostics 2023, 13, 398. [Google Scholar] [CrossRef]
- Geschwind, D.H.; Flint, J. Genetics and genomics of psychiatric disease. Science 2017, 349, 1489–1494. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-S.; Kim, J.; Ahn, S.H.; Ryu, H.-Y. Epigenetic targeting of histone deacetylases in diagnostics and treatment of depression. Int. J. Mol. Sci. 2021, 22, 5398. [Google Scholar] [CrossRef] [PubMed]
- Vialou, V.; Feng, J.; Robinson, A.J.; Nestler, E.J. Epilenetic mechanisms of depression and antidepressant action. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 59–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, L.M.; Phillips, K.E.; Choi, M.; Marin Veldic, M.; Blacker, C.J. The relationship between DNA methylation and antidepressant medications: A systematic review. Int. J. Mol. Sci. 2020, 21, 826. [Google Scholar] [CrossRef] [Green Version]
- Gräff, J.; Kim, D.; Dobbin, M.M.; Li-Huei, T. Epigenetic regulation of gene expression in physiological and pathological brain processes. Physiol. Rev. 2011, 91, 603–649. [Google Scholar] [CrossRef]
- McCoy, C.R.; Jackson, N.L.; Day, J.; Clinton, S.M. Genetic predisposition to high anxiety and depression-like behavior coincides with diminished DNA methylation in the adult rat amygdala. Behav. Brain Res. 2017, 320, 165–187. [Google Scholar] [CrossRef] [Green Version]
- Menke, A.; Binder, E.B. Epigenetic alterations in depression and antidepressant treatment. Dialogues Clin. Neurosci. 2014, 16, 395–404. [Google Scholar] [CrossRef]
- Dalton, V.S.; Kolshus, E.; McLoughlin, D.M. Epigenetics and depression: Return of the repressed. J. Affect. Disord. 2014, 155, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Citraro, R.; Leo, A.; De Caro, C.; Nesci, V.; Gallo Cantafio, M.E.; Amodio, N.; Mattace Raso, G.; Lama, A.; Russo, R.; Calignano, A.; et al. Effects of histone deacetylase inhibitors on the development of epilepsy and psychiatric comorbidity in WAG/Rij rats. Mol. Neurobiol. 2020, 57, 408–421. [Google Scholar] [CrossRef]
- Kobow, K.; Blümcke, I. Epigenetics in epilepsy. Neurosci. Lett. 2018, 667, 40–46. [Google Scholar] [CrossRef]
- Younus, I.; Reddy, D.S. Epigenetic interventions for epileptogenesis: A new frontier for curing epilepsy. Pharmacol. Ther. 2017, 177, 108–122. [Google Scholar] [CrossRef] [PubMed]
- Stahl, S. Novel therapeutics for depression: L-methylfolate as a trimonoamines modulator and antidepressant augmenting agent. CNS Spectr. 2007, 12, 739–744. [Google Scholar] [CrossRef] [PubMed]
- LaPlant, Q.; Vialou, V.; Covington, H.E.; Dimitriu, D.; Feng, J.; Warren, B.L.; Maze, I.; Dietz, D.M.; Watts, E.L.; Iñiguez, S.D.; et al. Dnmt3 regulates emotional behavior and spine plasticity in the nucleus accumbens. Nat. Neurosci. 2010, 13, 1137–1143. [Google Scholar] [CrossRef] [Green Version]
- Papakostas, G.I.; Alpert, J.E.; Fava, M. S-adenosyl-methionine in depression: A comprehensive review of the literature. Curr. Psychiatry Rep. 2003, 5, 460–466. [Google Scholar] [CrossRef]
- Papakostas, G.I.; Mischoulon, D.; Shyu, I.; Alpert, J.E.; Fava, M. S-adenosyl-methionine (SAMe) augementation of serotonin reuptake inhibitors for antidepressant non-responders with major depressive disorder: A double-blind, randomized clinical trial. Am. J. Psychiatry 2010, 167, 942–948. [Google Scholar] [CrossRef]
- Young, S.N.; Shalchi, M. The effect of methionine and S-adenosylmethionine on S-adenosylmethionine levels in the brain. J. Psychiatry Neurosci. 2005, 30, 44–48. [Google Scholar]
- Baldessarini, R.J.; Kopin, I.J. S-adenosylmethionine in brain and other tissues. J. Neuroichem. 1966, 13, 769–777. [Google Scholar] [CrossRef]
- Czyrak, A.; Rogoz, Z.; Skuza, G.; Zajarzkowski, W.; Maj, J. Antidepressant activity of S-adenozyl-L-methionine in mice and rats. J. Basic Clin. Physiol. Pharmacol. 1992, 3, 1–17. [Google Scholar] [CrossRef]
- Onaolapo, A.Y.; Onaolapo, O.J.; Blessing, I.C.; Hameed, S.A.; Raimot, R. Low-dose L-methionine changes in behavioral indices in young rats. Int. J. Neurosci. Behav. Sci. 2016, 4, 11–19. [Google Scholar] [CrossRef]
- Parrish, R.R.; Buckingham, S.C.; Mascia, K.L.; Johnson, J.J.; Matyjasik, M.M.; Lockhart, R.M.; Lubin, F.D. Methionine increases BDNF DNA methylation and improves memory in epilepsy. Ann. Clin. Transl. Neurol. 2015, 3, 401–416. [Google Scholar] [CrossRef] [Green Version]
- Ago, J.; Ishikawa, T.; Matsumoto, N.; Rahman, M.A.; Kamei, C. Mechanism of imipramine-induced seizures in amygdala-kindled rats. Epilepsy Res. 2006, 72, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bloechliger, M.; Ceschi, A.; Rüegg, S.; Kupferschmidt, H.; Kraehenbuehl, S.; Jick, S.S.; Meier, C.R.; Bodmer, M. Risk of seizures associated with antidepressant use in patients with depressive disorder: Follow-up study with a nested case–control analysis using the clinical practice research datalink. Drug Saf. 2015, 39, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Cardamone, L.; Salzberg, M.R.; Koe, A.S.; Ozturk, E.; O’Brien, T.J.; Jones, N.C. Chronic antidepressant treatment accelerates kindling epileptogenesis in rats. Neurobiol. Dis. 2013, 63, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Pisani, F.; Oteri, G.; Costa, C.; Di Raimondo, G.; Di Perri, R. Effects of psychotropic drugs on seizure threshold. Drug Saf. 2002, 25, 91–110. [Google Scholar] [CrossRef]
- Rosenstein, D.L.; Nelson, J.C.; Jacobs, S.C. Seizures associated with antidepressants: A review. J. Clin. Psychiatry 1993, 54, 289–299. [Google Scholar]
- Mazarati, A.; Jones, N.C.; Galanopoulou, A.S.; Harte-Hargrove, L.C.; Kalynchuk, L.E.; Lenck-Santini, P.-P.; Medel-Matus, J.-S.; Nehlig, A.; de la Prida, L.M.; Sarkisova, K.; et al. A companion to the preclinical common data elements on neurobehavioral comorbidities of epilepsy: A report of the TASK3 behavior working group of the ILAE/AES Joint Translational Task Force. Epilepsia Open 2018, 3, 24–52. [Google Scholar] [CrossRef]
- Crusio, W.E. Genetic dissection of mouse exploratory behaviour. Behav. Brain Res. 2001, 125, 127–132. [Google Scholar] [CrossRef]
- Sturman, O.; Germain, P.-L.; Bohacek, J. Exploratory rearing: A context- and stress-sensitive behavior recorded in the open-field test. Stress 2018, 21, 443–452. [Google Scholar] [CrossRef]
- Arrant, A.E.; Schramm-Sapyta, N.L.; Kuhn, C.M. Use of the light/dark test for anxiety in adult and adolescent male rats. Behav. Brain Res. 2013, 256, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Griebel, G.; Rodgers, R.; Perrault, G.; Sanger, D.J. Risk assessment behavior: Evaluation of utility in the study of 5-HT-related drugs in the rat elevated plus-maze test. Pharmacol. Biochem. Behav. 1997, 4, 817–827. [Google Scholar] [CrossRef]
- Carobrez, A.P.; Bertoglio, L.J. Ethological and temporal analyses of anxiety-like behavior: The elevated plus-maze model 20 years on. Neurosci. Biobehav. Rev. 2005, 29, 1193–1205. [Google Scholar] [CrossRef]
- Sarkisova, K.Y.; Kulikov, M.A.; Midzianovskaia, I.S.; Folomkina, A.A. Dopamine-dependent nature of depression-like behavior in WAG/Rij rats with genetic absence epilepsy. Neurosci. Behav. Physiol. 2008, 38, 119–128. [Google Scholar] [CrossRef]
- Sarkisova, K.I.; Folomkina, A.A. Effect of selective serotonin reuptake inhibitor fluoxetine on symptoms of depression-like behavior in WAG/Rij rats. Zhurnal Vyss. Nervn. Deiatelnosti Im. I P Pavlov. 2010, 60, 98–108. (In Russian) [Google Scholar]
- Midzianovskaia, I.S.; Kuznetsova, G.D.; Coenen, A.M.; Spiridonov, A.M.; van Luijtelaar, E.L. Electrophysiological and pharmacological characteristics of two types of spike-wave discharges in WAG/Rij rats. Brain Res. 2001, 911, 62–70. [Google Scholar] [CrossRef]
- Deransart, C.; Riban, V.; Le, B.; Marescaux, C.; Depaulis, A. Dopamine in the striatum modulates seizures in a genetic model of absence epilepsy in the rat. Neuroscience 2000, 100, 335–344. [Google Scholar] [CrossRef]
- van Luijtelaar, G.; Zobeiri, M. Progress and outlooks in a genetic absence epilepsy model (WAG/Rij). Curr. Med. Chem. 2014, 21, 704–721. [Google Scholar] [CrossRef]
- Ciumas, C.; Wahlin, T.B.; Jucaite, A.; Lindstrom, P.; Halldin, C.; Savic, I. Reduced dopamine transporter binding in patients with juvenile myoclonic epilepsy. Neurology 2008, 71, 788–794. [Google Scholar] [CrossRef]
- Grzelka, K.; Kurowski, P.; Gawlak, M.; Szulczyk, P. Noradrenaline modulates the membrane potential and holding current of medial prefrontal cortex pyramidal neurons via β1-adrenergic receptors and HCN channels. Front. Cell. Neurosci. 2017, 11, 341. [Google Scholar] [CrossRef] [Green Version]
- Weinshenker, D.; Szot, P. The role of catecholamines in seizure susceptibility: New results using genetically-engineered mice. Pharmacol. Ther. 2002, 94, 213–233. [Google Scholar] [CrossRef]
- Sitnikova, E.; van Luijtelaar, G. Reduction of adrenergic neurotransmission with clonidine aggravates spike-wave seizures and alters activity in the cortex and the thalamus in WAG/Rij rats. Brain Res. Bull. 2005, 64, 533–540. [Google Scholar] [CrossRef]
- Brunello, N.; Mendlewicz, J.; Kasper, S.; Leonard, B.; Montgomery, S.; Nelson, J.; Paykel, E.; Versiani, M.; Racagni, G. The role of noradrenaline and selective noradrenaline reuptake inhibition in depression. Eur. Neuropsychopharmacol. 2002, 12, 461–475. [Google Scholar] [CrossRef] [PubMed]
- Bouras, N.N.; Mack, N.R.; Gao, W.-J. Prefrontal modulation of anxiety through a lens of noradrenergic signaling. Front. Syst. Neurosci. 2023, 17, 1173326. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.J.; Nestler, E.J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 2013, 14, 609–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mischoulon, D.; Fava, M. Role of S-adenosyl-L-methionine in the treatment of depression: A review of the evidence. Am. J. Clin. Nutr. 2002, 76, 1158S–1161S. [Google Scholar] [CrossRef]
- De Berardis, D.; Orsolini, L.; Serroni, N.; Girinelli, G.; Iasevoli, F.; Tomasetti, C.; de Bartolomeis, A.; Mazza, M.; Valchera, A.; Fornaro, M.; et al. A comprehensive review on the efficacy of S-adenosyl-L-methionine in major depressive disorder. CNS Neurol. Disord.-Drug Targets 2016, 15, 35–44. [Google Scholar] [CrossRef]
- Gao, J.; Cahill, C.M.; Huang, X.; Roffman, J.L.; Lamon-Fava, S.; Fava, M.; Mischoulon, D.; Rogers, J.T. S-adenosyl methionine and transmethylation pathways in neuropsychiatric diseases throughout life. Neurotherapeutics 2018, 15, 156–175. [Google Scholar] [CrossRef] [Green Version]
- Tsao, D.; Diatchenko, L.; Dokholyan, N.V. Structural mechanism of S-adenosyl-methionine binding to catechol-O-methyltransferase. PLoS ONE 2011, 6, e24287. [Google Scholar] [CrossRef] [Green Version]
- Bottiglieri, T.; Laundy, M.; Crellin, R.; Toone, B.K.; Carney, M.W.P.; Reynolds, E.H.; Hospital, P. Monoamine metabolism in depression. J. Neurol. Neurosurg. Psychiatry 2000, 69, 228–232. [Google Scholar] [CrossRef]
- Sales, A.J.; Maciel, I.S.; Crestani, C.C.; Guimarães, F.S.; Joca, S.R.L. S-adenosyl-l-methionine antidepressant-like effects involve activation of 5-HT1A receptors. Neurochem. Int. 2023, 162, 105442. [Google Scholar] [CrossRef]
- Dhediya, R.M.; Joshi, S.S.; Gajbhiye, S.V.; Jalgaonkar, S.V.; Biswas, M. Evaluation of antiepileptic effect of S-adenosyl methionine and its role in memory impairment in pentylenetetrazole-induced kindling model in rats. Epilepsy Behav. 2016, 61, 153–157. [Google Scholar] [CrossRef]
- Tallarico, M.; Pisano, M.; Leo, A.; Russo, E.; Citraro, R.; De Sarro, G. Antidepressant drugs for seizures and epilepsy: Where do we stand? Curr. Neuropharmacol. 2023, 21, 1691–1713. [Google Scholar] [CrossRef]
- Sarkisova, K.Y.; Fedosova, E.A.; Shatskova, A.B.; Narkevich, V.B.; Kudrin, V.S. Maternal methyl-enriched diet increases dopaminergic tone of the mesolimbic brain system in adult offspring of WAG/Rij rats. Dokl. Biol. Sci. 2022, 506, 145–149. [Google Scholar] [CrossRef]
- Becker, M.; Abaev, K.; Shmerkin, E.; Weinstein-Fudim, L.; Pinhasov, A.; Ornoy, A. prenatal SAMe treatment induces changes in brain monoamines and in the expression of genes related to monoamine metabolism in a mouse model of social hierarchy and depression, probably via an epigenetic mechanism. Int. J. Mol. Sci. 2022, 23, 11898. [Google Scholar] [CrossRef]
- Walf, A.A.; Frye, C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc. 2007, 2, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Cruz, A.P.M.; Frei, F.; Graeff, F.C. Ethopharmacological analysis of rat behavior on the plus-maze. Pharmacol. Biochem. Behav. 1994, 49, 171–176. [Google Scholar] [CrossRef]
- Porsolt, R.D.; Lenegre, A. Behavioral models of depression. In Experimental Approaches to Anxiety and Depression; Elliot, J.M., Fead, D.J., Marsden, C.A., Eds.; John Willey and Sons: New York, NY, USA, 1992; pp. 73–85. [Google Scholar]
- Chen, T.; Giri, M.; Xia, Z.; Subedi, Y.N.; Li, Y. Genetic and epigenetic mechanisms of epilepsy: A review. Neuropsychiatr. Dis. Treat. 2017, 13, 1841–1859. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Lu, J. DNA methyltransferases in depression: An update. Front. Psychiatry 2020, 11, 538683. [Google Scholar] [CrossRef]
- Kong, F.-C.; Ma, C.-L.; Zhong, M.-K. Epigenetic effects mediated by antiepileptic drugs and their potential application. Curr. Neuropharmacol. 2020, 18, 153–166. [Google Scholar] [CrossRef]
- Li, M.; D’Arcy, C.; Li, X.; Zhang, T.; Joober, R.; Meng, X. What do DNA methylation studies tell us about depression? A systematic review. Transl. Psychiatry 2019, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Nestler, E.J. Epigenetic mechanisms of depression. JAMA Psychiatry 2014, 71, 454–456. [Google Scholar] [CrossRef] [Green Version]
Behavioral Measures | WAG/Rij Vehicle (n = 10) | WAG/Rij L-MET (n = 6) |
---|---|---|
Open-field test | ||
Latency to leave the center, s | 4.7 ± 0.7 | 2.5 ± 0.3 * |
Number of squares crossed | 61.5 ± 4.9 | 86.3 ± 8.7 * |
Number of assisted rearings | 3.3 ± 0.7 | 5.2 ± 1.33 |
Number of unassisted rearings | 2.1 ± 0.4 | 5.3 ± 1.5 * |
Number of center entries | 0.9 ± 0.5 | 4.3 ± 0.8 ** |
Number of groomings | 3.3 ± 0.9 | 4.2 ± 1.2 |
Number of boli | 1.4 ± 0.4 | 0.3 ± 0.3 + |
Light–dark choice test | ||
Time in the light, s | 18.1 ± 4.4 | 43.3 ± 14.1 * |
Number of risk assessments | 5.3 ± 0.6 | 2.7 ± 1.0 * |
Number of transitions | 2.2 ± 0.4 | 4.0 ± 0.9 + |
Elevated plus-maze test | ||
Time in open arms, s | 28.6 ± 5.3 | 69.7 ± 21.9 * |
Number of transitions between arms | 4.7 ± 0.5 | 4.1 ± 0.8 |
Number of risk assessments | 3.6 ± 0.6 | 1.8 ± 0.6 |
Number of hangings from the open arms | 2.3 ± 0.7 | 7.5 ± 2.1 * |
Number of rearings in the closed arms | 3.6 ± 0.6 | 1.8 ± 0.7 + |
Number of boli | 2.2 ± 0.8 | 0.8 ± 0.5 * |
Behavioral measures | Treatment option | L-MET 50 mg/kg (n = 15) | Imipramine 15 mg/kg (n = 16) | Fluoxetine 15 mg/kg (n = 14) |
Immobility time, s | Vehicle Drug | 209.6 ± 5.4 176.2 ± 17.5 * (84.1%) | 210.5 ± 5.8 176.3 ± 6.9 *** (83.8%) | 213.0 ± 7.5 180.9 ± 7.4 ** (84.9%) |
The first episode of active swimming, s | Vehicle Drug | 34.3 ± 3.8 48.3 ± 3.6 * (140.8%) | 28.5 ± 2.6 50.1 ± 2.2 *** (175.8%) | 33.9 ± 2.7 36.3 ± 2.0 (107.1%) |
Swimming, s | Vehicle Drug | 56.1 ± 6.8 75.5 ± 14.9 (134.6%) | 61.0 ± 5.9 73.6 ± 6.4 (120.7%) | 53.1 ± 8.4 82.9 ± 6.7 * (156.1%) |
Number of dives | Vehicle Drug | 1.1 ± 0.4 4.0 ± 0.7 ** (363.6%) | 0.9 ± 0.4 3.3 ± 0.3 ** (363.7%) | 2.0 ± 0.5 2.3 ± 0.4 (115%) |
Drug | Amplitude, µV | Asymmetry Index, % |
---|---|---|
L-MET, 50 mg/kg | 666.1 ± 36.1 ***### | 61.4 ± 1.9 ***### |
Imipramine, 15 mg/kg | 814.1 ± 10.2 ## | 69.1 ± 0.3 |
Vehicle | 889.7 ± 13.8 | 69.4 ± 0.5 |
Biochemical Measures, nmol/g Tissue | Brain Structures | ||||
---|---|---|---|---|---|
Prefrontal Cortex | Nucleus Accumbens | Striatum | Hypothalamus | Hippocampus | |
NA | 1.31 ± 0.07 | 2.10 ± 0.42 | 0.71 ± 0.07 | 5.11 ± 0.17 | 1.44 ± 0.09 |
1.61 ± 0.07 * | 1.65 ± 0.29 | 0.73 ± 0.11 | 6.20 ± 0.21 ** | 1.43 ± 0.08 | |
MHPG | ND | 0.03 ± 0,01 | 0.05 ± 0.02 | 0.39 ± 0.02 | ND |
0.09 ± 0.03 + | 0.07 ± 0.02 | 0.58 ± 0.03 *** | |||
DA | 0.76 ± 0.36 | 10.63 ± 1.80 | 22.68 ± 0.80 | 0.80 ± 0.04 | 0.18 ± 0.05 |
0.53 ± 0.30 | 14.50 ± 1.98 + | 26.03 ± 1.45 + | 1.00 ± 0.08+ | 0.80 ± 0.36 + | |
DOPAC | 0.09 ± 0.03 | 1.34 ± 0.21 | 3.06 ± 0.07 | 0.13 ± 0.01 | 0.04 ± 0.01 |
0.07 ± 0.02 | 2.02 ± 0.23 * | 3.54 ± 0.20 + | 0.16 ± 0.02 | 0.12 ± 0.04 + | |
HVA | 0.13 ± 0.03 | 0.80 ± 0.09 | 1.21 ± 0.06 | 0.14 ± 0.03 | 0.03 ± 0.01 |
0.13 ± 0.03 | 1.00 ± 0.20 | 1.60 ± 0.05 *** | 0.12 ± 0.02 | 0.08 ± 0.02 | |
3-MT | 0.06 ± 0.02 | 0.33 ± 0.07 | 0.60 ± 0.03 | 0.02 ± 0.00 | 0.03 ± 0.01 |
0.08 ± 0.02 | 0.50 ±0.09 | 0.72 ± 0.08 | 0.03 ± 0.00 | 0.05 ± 0.01 + | |
DOPAC/DA | 0.18 ± 0.03 | 0.13 ± 0.00 | 0.14 ± 0.00 | 0.16 ± 0.00 | 0.21 ± 0.03 |
0.22 ± 0.03 | 0.15 ± 0.02 | 0.14 ± 0.00 | 0.16 ± 0.01 | 0.23 ± 0.03 | |
HVA/DA | 0.35 ± 0.14 | 0.08 ± 0.01 | 0.05 ± 0.00 | 0.17 ± 0.03 | 0.22 ± 0.04 |
0.64 ± 0.23 | 0.07 ± 0.01 | 0.06 ± 0.00 * | 0.11 ± 0.02 | 0.21 ± 0.06 | |
5-HT | 1.37 ± 0.10 | 2.53 ± 0.37 | 1.78 ± 0.06 | 3.16 ± 0.13 | 1.26 ± 0.05 |
1.34 ± 0.08 | 1.71 ± 0.34 | 1.81 ± 0.07 | 3.12 ± 0.14 | 1.23 ± 0.03 | |
5-HIAA | 1.02 ± 0.10 | 1.74 ± 0.26 | 1.88 ± 0.15 | 2.10 ± 0.12 | 1.34 ± 0.13 |
1.01 ± 0.08 | 1.63 ± 0.23 | 2.10 ± 0.14 | 2.25 ± 0.11 | 1.43 ± 0.07 | |
5-HIAA/5-HT | 0.77 ± 0.09 | 0.70 ± 0.04 | 1.07 ± 0.10 | 0.67 ± 0.03 | 1.06 ± 0.09 |
0.75 ± 0.04 | 1.30 ± 0.35 + | 1.16 ± 0.06 | 0.72 ± 0.02 + | 1.16 ± 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkisova, K.Y.; Gabova, A.V.; Fedosova, E.A.; Shatskova, A.B.; Narkevich, V.B.; Kudrin, V.S. Antidepressant and Anxiolytic Effects of L-Methionine in the WAG/Rij Rat Model of Depression Comorbid with Absence Epilepsy. Int. J. Mol. Sci. 2023, 24, 12425. https://doi.org/10.3390/ijms241512425
Sarkisova KY, Gabova AV, Fedosova EA, Shatskova AB, Narkevich VB, Kudrin VS. Antidepressant and Anxiolytic Effects of L-Methionine in the WAG/Rij Rat Model of Depression Comorbid with Absence Epilepsy. International Journal of Molecular Sciences. 2023; 24(15):12425. https://doi.org/10.3390/ijms241512425
Chicago/Turabian StyleSarkisova, Karine Yu., Alexandra V. Gabova, Ekaterina A. Fedosova, Alla B. Shatskova, Victor B. Narkevich, and Vladimir S. Kudrin. 2023. "Antidepressant and Anxiolytic Effects of L-Methionine in the WAG/Rij Rat Model of Depression Comorbid with Absence Epilepsy" International Journal of Molecular Sciences 24, no. 15: 12425. https://doi.org/10.3390/ijms241512425
APA StyleSarkisova, K. Y., Gabova, A. V., Fedosova, E. A., Shatskova, A. B., Narkevich, V. B., & Kudrin, V. S. (2023). Antidepressant and Anxiolytic Effects of L-Methionine in the WAG/Rij Rat Model of Depression Comorbid with Absence Epilepsy. International Journal of Molecular Sciences, 24(15), 12425. https://doi.org/10.3390/ijms241512425