Circulating miR-206 and miR-1246 as Markers in the Early Diagnosis of Lung Cancer in Patients with Chronic Obstructive Pulmonary Disease
Abstract
:1. Introduction
2. Results
2.1. miRNA Screening Study
2.2. Validation Study
2.3. Clinical Relations
2.4. Functional Annotation Analysis and Gene Target Prediction
3. Discussion
3.1. miR-1246 and Predictive Risk of Lung Cancer
3.2. miRNA-206 and Predictive Risk of Lung Cancer
3.3. miRNAs and Their Relation to Pulmonary Function
4. Materials and Methods
4.1. Study Individuals
4.2. Sample Collection
4.3. NGS miRNA Screening Assay
4.4. Validation Assay: Quantitative RT-PCR for miRNA Expression
4.5. In Silico Analysis
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Leading Causes of Death Globally. 2019. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 18 February 2023).
- Celli, B. Chronic obstructive pulmonary disease and lung cancer: Common pathogenesis, shared clinical challenges. Proc. Am. Thorac. Soc. 2012, 9, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Criner, G.J.; Agusti, A.; Borghaei, H.; Friedberg, J.; Martinez, F.J.; Miyamoto, C.; Vogelmeier, C.F.; Celli, B.R. Chronic Obstructive Pulmonary Disease and Lung Cancer: A Review for Clinicians. Chronic. Obstr. Pulm. Dis. 2022, 9, 454–476. [Google Scholar] [CrossRef]
- GOLD. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease—2022 Report. 2022. Available online: https://goldcopd.org/wp-content/uploads/2021/11/GOLD-REPORT-2022-v1.0-12Nov2021_WMV.pdf (accessed on 5 March 2023).
- Álvarez, F.V.; Trueba, I.M.; Sanchis, J.B.; López-Rodó, L.M.; Suárez, P.M.R.; Escuín, J.S.d.C.; Barreiro, E.; Pintado, M.H.B.; Vicente, C.D.; Aldeyturriaga, J.F.; et al. Executive summary of the SEPAR recommendations for the diagnosis and treatment of non-small cell lung cancer. Arch. Bronconeumol. 2016, 52, 378–388. [Google Scholar] [CrossRef]
- De Torres, J.P.; Marin, J.M.; Casanova, C.; Santiago, C.; Elizabeth, C.L.; Rebeca, B.D.; Javier, Z.; Armando, A.J.; Marina, S.; Manuel, C.; et al. Lung cancer in patients with chronic obstructive pulmonary disease—Incidence and predicting factors. Am. J. Respir. Crit. Care Med. 2011, 184, 913–919. [Google Scholar] [CrossRef]
- Parris, B.A.; O’Farrell, H.E.; Fong, K.M.; Yang, I.A. Chronic obstructive pulmonary disease (COPD) and lung cancer: Common pathways for pathogenesis. J. Thorac. Dis. 2019, 11 (Suppl. 17), S2155–S2172. [Google Scholar] [CrossRef]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Tewari, M. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Fan, J.; Belasco, J.G. MicroRNAs direct rapid deadenylation of mRNA. Proc. Natl. Acad. Sci. USA 2006, 103, 4034–4039. [Google Scholar] [CrossRef] [PubMed]
- Meister, G. miRNAs get an early start on translational silencing. Cell 2007, 131, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Cortez, M.A.; Bueso-Ramos, C.; Ferdin, J.; Lopez-Berestein, G.; Sood, A.K.; Calin, G.A. MicroRNAs in body fluids—The mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 2011, 8, 467–477. [Google Scholar] [CrossRef] [Green Version]
- Croce, C.M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 2009, 10, 704–714. [Google Scholar] [CrossRef]
- Dai, R.; Ahmed, S.A. MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Transl. Res. 2011, 157, 163–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rupani, H.; Sanchez-Elsner, T.; Howarth, P. MicroRNAs and respiratory diseases. Eur. Respir. J. 2013, 41, 695–705. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-Y.; Huang, C.-H.; Chen, C.-J.; Chen, T.-W.; Lin, C.-Y.; Lin, Y.-T.; Kuo, S.-M.; Huang, C.-G.; Lee, L.-A.; Chen, Y.-H.; et al. Novel Role for miR-1290 in Host Species Specificity of Influenza A Virus. Mol. Ther. Nucleic Acids 2019, 17, 10–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esquela-Kerscher, A.; Slack, F.J. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 2006, 6, 259–269. [Google Scholar] [CrossRef]
- Wang, K.; Chen, M.; Wu, W. Analysis of microRNA (miRNA) expression profiles reveals 11 key biomarkers associated with non-small cell lung cancer. World J. Surg. Oncol. 2017, 15, 175. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Wu, J.; Zhang, H.; Fang, L.; Huang, Y.; Yang, Y.; Zhu, X.; Li, R.; Li, F. miR-186 downregulation correlates with poor survival in lung adenocarcinoma, where it interferes with cell-cycle regulation. Cancer Res. 2013, 73, 756–766. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Ye, B.; Yang, Y.; Shi, J.; Zhao, H. MicroRNA-181 functions as a tumor suppressor in non-small cell lung cancer (NSCLC) by targeting Bcl-2. Tumour Biol. 2015, 36, 3381–3387. [Google Scholar] [CrossRef]
- Yang, F.; Xiong, H.; Duan, L.; Li, Q.; Li, X.; Zhou, Y. MiR-1246 promotes metastasis and invasion of A549 cells by targeting GSK-3β-mediated Wnt/β-catenin pathway. Cancer Res. Treat. 2019, 51, 1420–1429. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.; An, H.-J.; Lee, M.-J.; Song, J.-Y.; Jeong, J.-Y.; Lee, J.-H.; Jeong, H.-C. Hsa-miR-1246 and hsa-miR-1290 are associated with stemness and invasiveness of non-small cell lung cancer. Lung Cancer 2016, 91, 15–22. [Google Scholar] [CrossRef]
- Zhang, W.C.; Chin, T.M.; Yang, H.; Nga, M.E.; Lunny, D.P.; Lim, E.K.H.; Sun, L.L.; Pang, Y.H.; Leow, Y.N.; Malusay, S.R.Y.; et al. Tumour-initiating cell-specific miR-1246 and miR-1290 expression converge to promote non-small cell lung cancer progression. Nat. Commun. 2016, 7, 11702. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.M.; Zhou, X.; Zhang, Y.; Lu, H. miR-1246, a new link of the p53 family with cancer and Down syndrome. Cell Cycle 2012, 11, 2624–2630. [Google Scholar] [CrossRef] [Green Version]
- Javid, J.; Mir, R.; Julka, P.K.; Ray, P.C.; Saxena, A. Association of p53 and mdm2 in the development and progression of non-small cell lung cancer. Tumour Biol. 2015, 36, 5425–5432. [Google Scholar] [CrossRef]
- Othman, N.; Nagoor, N.H. The role of microRNAs in the regulation of apoptosis in lung cancer and its application in cancer treatment. BioMed Res. Int. 2014, 2014, 318030. [Google Scholar] [CrossRef]
- Ciardiello, F.; Tortora, G. EGFR antagonists in cancer treatment. N. Engl. J. Med. 2008, 358, 1160–1174, Erratum in N. Engl. J. Med. 2009, 360, 1579. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.-Y.; Jiao, D.-M.; Yan, L.I.; Wu, Y.; Hu, H.; Song, J.; Yan, J.; Wu, L.; Xu, L.; Shi, J. Comprehensive gene and microRNA expression profiling reveals miR-206 inhibits MET in lung cancer metastasis. Mol. Biosyst. 2015, 11, 2290–2302. [Google Scholar] [CrossRef]
- Wang, X.; Ling, C.; Bai, Y.; Zhao, J. MicroRNA-206 is associated with invasion and metastasis of lung cancer. Anat. Rec. 2011, 294, 88–92. [Google Scholar] [CrossRef]
- Nasser, M.W.; Datta, J.; Nuovo, G.; Kutay, H.; Motiwala, T.; Majumder, S.; Wang, B.; Suster, S.; Jacob, S.T.; Ghoshal, K. Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J. Biol. Chem. 2008, 283, 33394–33405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Wang, W.; Chang, H.; Han, Z.; Yu, X.; Zhang, T. Reciprocal regulation of miR-206 and IL-6/STAT3 pathway mediates IL6-induced gefitinib resistance in EGFR-mutant lung cancer cells. J. Cell Mol. Med. 2019, 23, 7331–7341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, D.; Yang, Y.; Liu, Y.; Wang, P.; Dai, Y.; Liu, Q.; Chen, L.; Shen, J.; Ju, H.; Li, Y.; et al. MicroRNA-206 attenuates the growth and angiogenesis in non-small cell lung cancer cells by blocking the 14-3-3zeta/STAT3/HIF-1alpha/VEGF signaling. Oncotarget 2016, 7, 79805–79813. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Sun, D.; Wang, X.; Liu, T.; Ma, Z.; Duan, L. MiR-206 is an independent prognostic factor and inhibits tumor invasion and migration in colorectal cancer. Cancer Biomark. 2015, 15, 391–396. [Google Scholar] [CrossRef]
- Ren, J.; Huang, H.J.; Gong, Y.; Yue, S.; Tang, L.-M.; Cheng, S.Y. MicroRNA-206 suppresses gastric cancer cell growth and metastasis. Cell Biosci. 2014, 4, 26. [Google Scholar] [CrossRef] [Green Version]
- Lacedonia, D.; Scioscia, G.; Pia Palladino, G.; Gallo, C.; Carpagnano, G.E.; Sabato, R.; Barbaro, M.P.F. MicroRNA expression profile during different conditions of hypoxia. Oncotarget 2018, 9, 35114–35122. [Google Scholar] [CrossRef] [Green Version]
- Eichhorn, L.; Dolscheid-Pommerich, R.; Erdfelder, F.; Ayub, M.A.; Schmitz, T.; Werner, N.; Jansen, F. Sustained apnea induces endothelial activation. Clin. Cardiol. 2017, 40, 704–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Seto, E. HDACs and HDAC Inhibitors in Cancer Development and Therapy. Cold Spring Harb. Perspect. Med. 2016, 6, a026831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casanova, C.; de Torres, J.P.; Aguirre-Jaíme, A.; Pinto-Plata, V.; Marin, J.M.; Cordoba, E.; Baz, R.; Cote, C.; Celli, B.R. The progression of chronic obstructive pulmonary disease is heterogeneous: The experience of the BODE cohort. Am. J. Respir. Crit. Care Med. 2011, 184, 1015–1021. [Google Scholar] [CrossRef] [PubMed]
- Mesa-Guzmán, M.; González, J.; Alcaide, A.B.; Bertó, J.; de-Torres, J.P.; Campo, A.; Seijo, L.M.; Ocón, M.M.; Pueyo, J.C.; Bastarrika, G.; et al. Surgical Outcomes in a Lung Cancer-Screening Program Using Low Dose Computed Tomography. Arch. Bronconeumol. (Engl. Ed.) 2021, 57, 101–106. [Google Scholar]
- American Thoracic Society Statement. Lung function testing: Selection of reference values and interpretative strategies. Am. Rev. Respir. Dis. 1991, 144, 1202–1218. [Google Scholar] [CrossRef]
- Macintyre, N.; Crapo, R.O.; Viegi, G.; Johnson, D.C.; van der Grinten, C.P.M.; Brusasco, V.; Burgos, F.; Casaburi, R.; Coates, A.; Enright, P.; et al. Standardisation of the single-breath determination of carbon monoxide uptake in the lung. Eur. Respir. J. 2005, 26, 720–735. [Google Scholar] [CrossRef] [Green Version]
- Mahler, D.A.; Wells, C.K. Evaluation of clinical methods for rating dyspnea. Chest 1988, 93, 580–586. [Google Scholar] [CrossRef] [Green Version]
- Celli, B.R.; Cote, C.G.; Marin, J.M. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N. Engl. J. Med. 2004, 350, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Charlson, M.; Szatrowski, T.P.; Peterson, J.; Gold, J. Validation of a combined comorbidity index. J. Clin. Epidemiol. 1994, 47, 1245–1251. [Google Scholar] [CrossRef]
- Lynch, D.A.; Austin, J.H.; Hogg, J.C.; Grenier, P.A.; Kauczor, H.U.; Bankier, A.A.; Barr, R.G.; Colby, T.V.; Galvin, J.R.; Gevenois, P.A.; et al. CT-Definable Subtypes of Chronic Obstructive Pulmonary Disease: A Statement of the Fleischner Society. Radiology 2015, 277, 192–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Mi, H.; Muruganujan, A.; Ebert, D.; Huang, X.; Thomas, P.D. PANTHER version 14, more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019, 47, D419–D426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Team R Core and Others. R: A Language and Environment for Statistical Computing. 2013. Available online: https://www.R-project.org/ (accessed on 26 October 2022).
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
Name | Log2FC | p-Value | FDR |
---|---|---|---|
3 years before LC diagnosis | |||
hsa-miR-224-5p | 2.81 | 0.000003 | 0.0024 |
hsa-miR-194-5p | −4.24 | 0.000024 | 0.0082 |
hsa-miR-206 | −5.25 | 0.000105 | 0.0241 |
hsa-miR-26a-5p | −1.91 | 0.001207 | 0.2683 |
At LC diagnosis | |||
hsa-miR-206 | −4.36 | 0.000799 | 0.0553 |
hsa-miR-194-5p | −2.89 | 0.003618 | 0.9977 |
hsa-miR-1246 | 2.25 | 0.003178 | 0.9977 |
Variable | COPD with LC N = 33 | COPD without LC N = 66 | p-Value |
---|---|---|---|
Age * | 63 ± 9 | 63 ± 9 | - |
Sex (male%) | 85 | 85 | - |
BMI * | 28 ± 5 | 28 ± 5 | 0.719 |
Smoking habit (pack-year) ‡ | 64 ± 24 | 61 ± 27 | 0.631 |
Active smoker (%) | 50 | 70 | 0.218 |
FEV1 (L) * | 2.24 ± 0.74 | 1.67 ± 0.72 | 0.001 |
FEV1 (% pred) * | 79 ± 21 | 62 ± 26 | 0.001 |
FVC (% pred) * | 105 ± 20 | 91 ± 24 | 0.005 |
FEV1/FVC (% pred) * | 58 ± 11 | 52 ± 14 | 0.018 |
PaO2 *§ | 72 ± 6 | 71 ± 12 | 0.872 |
KCO *§ | 68 ± 25 | 84 ± 27 | 0.084 |
IC/TLC (%) *§ | 34 ± 8 | 34 ± 9 | 0.881 |
6MWD (mts) *§ | 486 ± 115 | 497 ± 101 | 0.747 |
Dyspnea mMRC ** | 0 (0–1) | 1 (0–2) | 0.242 |
BODE index **§ | 1 (0–2) | 0 (0–2) | 0.191 |
Charlson index **§ | 1 (1–1) | 0 (0–1) | 0.740 |
Emphysema (%) †§ | 67 | 57 | 0.424 |
Lung cancer stage (%) I II III IV | 62 9 19 10 | - - - - |
Variable | COPD with LC N = 21 | COPD without LC N = 30 | p-Value |
---|---|---|---|
Age * | 60 ± 9 | 60 ± 9 | - |
Sex (male%) | 85 | 85 | - |
Smoking habit (pack-year) ‡ | 65 ± 20 | 67 ± 27 | 0.554 |
BMI | 28 ± 5 | 28 ± 4 | 0.662 |
FEV1 (L) * | 2.20 ± 0.78 | 1.51 ± 0.56 | 0.004 |
FEV1 (% pred) * | 76 ± 22 | 54 ± 19 | 0.007 |
FVC (% pred) * | 102 ± 21 | 88 ± 22 | 0.035 |
FEV1/FVC (% pred) * | 58 ± 12 | 48 ± 13 | 0.032 |
PaO2 *§ | 74 ± 5 | 71 ± 10 | 0.457 |
KCO *§ | 72 ± 16 | 84 ± 26 | 0.045 |
IC/TLC (%) *§ | 36 ± 8 | 36 ± 9 | 0.961 |
6MWD (mts) *§ | 532 ± 59 | 508 ± 88 | 0.467 |
Dyspnea mMRC ** | 0 (0–12) | 1 (0–2) | 0.242 |
BODE index **§ | 1 (0–1) | 1(0–2) | 0.645 |
Charlson index **§ | 1 (1–2) | 0(0–1) | 0.058 |
(A) | |||
# | KEGG Pathway | Genes | p-Value * |
1 | Viral carcinogenesis | PIK3CB, BAX, CDK6, TP53, KAT2b, CREB5, CCNE1 | 1.7095e-05 |
2 | Oocyte meiosis | SLK, SMC1 | 0.0052 |
3 | Apoptosis | CASP7, PIK3CB, BAX, BCL2, TP53, PPP3CA, CFLAR | 0.0069 |
4 | Thyroid hormone signaling pathway | MED14, PIK3CB, MED13, NOTCH2, TP53, MED1, KAT2B | 0.0206 |
5 | Central carbon metabolism in cancer | PIK2CB, TPB53, PKD1 | 0.0206 |
6 | p53 signaling pathway | BAX, CDK6, TP53, TP53I3, CCNE1, CCNG2 | 0.0437 |
7 | Adrenergic signaling in cardiomyocytes | PIK3CB, PPP2CA, BCL2, CALM2, ATP2B1, PPP2R1B | 0.0437 |
8 | Glioma | PIK3CB, CDK6, CALM2, TP53 | 0.0437 |
(B) | |||
# | KEGG Pathway | Genes | p-Value * |
1 | Glycosphingolipid biosynthesis-lacto and neolacto series | FUT3, FUT9 | 4.395 × 108 |
2 | MicroRNAs in cancer | PCD4, MET, ROCK1, DICER1, CDC25C, CCND2, EGFR, NOTCH2, KRAS, CDK6, PRKCE, HDAC4, IKBKB, FOXP1, BCRA1, PIM1, TIMP3, NOTCH3, VMP1, MAPK1, GLS2, PDGFA | 0.00101 |
3 | Estrogen signaling pathway | ESR1, ASCY1, ATF2, CREB5, EGFR, KRAS, CALM2, SOS1, KCNJ6, IPTR3, MAPK1, PRKACB | 0.0012 |
4 | Gap junction | ADCY1, GRM5, DRD1, EGFR, KRAS, SOS1, GjA1, ITPR3, MAPK1, PRKACB, PDGFA | 0.0012 |
5 | Dorso-ventral axis formation | ETS1, CPEB1, EGFR, NOTCH2, KRAS, SOS1, NOTCH3, MAPK1 | 0.0043 |
6 | Proteoglycans in cancer | ESR1, ACTB, PDC4, MET, ROCK1, CBL, FRS2, EGFR, KRAS, CBLC, TIMP3, SOS1, DDX5, IGF1, FN1, VMP1, ITPR3, MAPK1, PRKACB | 0.0065 |
7 | Glioma | CDK4, EGFR, KRAS, CDK6, CALM2, SOS1, IGF1, MAPK1, PDGFA | 0.0121 |
8 | Transcriptional misregulation in cancer | MET, PAX7, CCND2, PBX1, WT1, CDK4, H3F3A, DDX5, MAF, MAX, IGF1, PPARG, H3F3B, KMT2A, GOLPH3, MEIS1, PAX3, GRIA3, PDFGFA, COMMD3-BMI1 | 0.0226 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Córdoba-Lanús, E.; Domínguez de-Barros, A.; Oliva, A.; Mayato, D.; Gonzalvo, F.; Remírez-Sanz, A.; Zulueta, J.J.; Celli, B.; Casanova, C. Circulating miR-206 and miR-1246 as Markers in the Early Diagnosis of Lung Cancer in Patients with Chronic Obstructive Pulmonary Disease. Int. J. Mol. Sci. 2023, 24, 12437. https://doi.org/10.3390/ijms241512437
Córdoba-Lanús E, Domínguez de-Barros A, Oliva A, Mayato D, Gonzalvo F, Remírez-Sanz A, Zulueta JJ, Celli B, Casanova C. Circulating miR-206 and miR-1246 as Markers in the Early Diagnosis of Lung Cancer in Patients with Chronic Obstructive Pulmonary Disease. International Journal of Molecular Sciences. 2023; 24(15):12437. https://doi.org/10.3390/ijms241512437
Chicago/Turabian StyleCórdoba-Lanús, Elizabeth, Angélica Domínguez de-Barros, Alexis Oliva, Delia Mayato, Francisca Gonzalvo, Ana Remírez-Sanz, Javier J. Zulueta, Bartolomé Celli, and Ciro Casanova. 2023. "Circulating miR-206 and miR-1246 as Markers in the Early Diagnosis of Lung Cancer in Patients with Chronic Obstructive Pulmonary Disease" International Journal of Molecular Sciences 24, no. 15: 12437. https://doi.org/10.3390/ijms241512437
APA StyleCórdoba-Lanús, E., Domínguez de-Barros, A., Oliva, A., Mayato, D., Gonzalvo, F., Remírez-Sanz, A., Zulueta, J. J., Celli, B., & Casanova, C. (2023). Circulating miR-206 and miR-1246 as Markers in the Early Diagnosis of Lung Cancer in Patients with Chronic Obstructive Pulmonary Disease. International Journal of Molecular Sciences, 24(15), 12437. https://doi.org/10.3390/ijms241512437