Fluid Biomarkers of Neuro-Glial Injury in Human Status Epilepticus: A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Fluid Biomarkers of Neuronal Injury in Status Epilepticus
3.1.1. Neuron-Specific Enolase
3.1.2. UCHL-1
3.1.3. TAU/p-TAU
3.1.4. Neurofilaments
3.2. Fluid Biomarkers of Astroglial Injury in Status Epilepticus
3.2.1. S100B
3.2.2. GFAP
4. Discussion
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Aβ | β-Amyloid |
AD | Alzheimer’s Disease |
AIS | Acute Ischemic Stroke |
ALS | Amyotrophic Lateral Sclerosis |
APP | Amyloid Precursor Protein |
ASM | Anti-Seizure Medication |
AUC | Area Under Curve |
BBB | Blood–Brain Barrier |
CA | Cornu Ammonis |
CJD | Creutzfeldt–Jakob disease |
CMT | Charcot–Marie–Tooth disease |
CNS | Central Nervous System |
COX-2 | Cyclooxygenase-2 |
CSF | Cerebrospinal Fluid |
EEG | Electroencephalogram |
FTD | Fronto-Temporal Dementia |
GFAP | Glial Fibrillary Acid Protein |
H-FABP | Heart-Type Fatty Acid Binding Protein |
HSP-70 | Heat Shock Protein 70 |
KA | Kainic Acid |
IF | Intermediate Filaments |
MAPT | Microtubule-Associated Protein Tau |
MRI | Magnetic Resonance Imaging |
MS | Multiple Sclerosis |
NCSE | Non-Convulsive Status Epilepticus |
NfH | Neurofilament Heavy Chains |
NfL | Neurfilament Light Chains |
NfM | Neurofilament Medium chains |
NSE | Neuron-Specific Enolase |
p-TAU | Phosphorylated-Tau |
PD | Parkinson’s Disease |
PNES | Psychogenic Non-Epileptic Seizure |
RAGE | Receptor for Advanced Glycation Endproducts |
ROS | Reactive Oxygen Species |
RSE | Refractory Status Epilepticus |
SE | Status Epilepticus |
SMA | Spinal Muscular Atrophy |
t-TAU | Total-Tau |
TBI | Traumatic Brain Injury |
TC | Tonic–Clonic |
TLR-4 | Toll-Like Receptor-4 |
UCH-L1 | Ubiquitin C-terminal Hydrolase-L1 |
VEGF | Vascular Endothelial Growth Factor |
References
- Bernhardt, A.M.; Tiedt, S.; Teupser, D.; Dichgans, M.; Meyer, B.; Gempt, J.; Kuhn, P.-H.; Simons, M.; Palleis, C.; Weidinger, E.; et al. A Unified Classification Approach Rating Clinical Utility of Protein Biomarkers across Neurologic Diseases. eBioMedicine 2023, 89, 104456. [Google Scholar] [CrossRef]
- Trinka, E.; Cock, H.; Hesdorffer, D.; Rossetti, A.O.; Scheffer, I.E.; Shinnar, S.; Shorvon, S.; Lowenstein, D.H. A Definition and Classification of Status Epilepticus—Report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia 2015, 56, 1515–1523. [Google Scholar] [CrossRef] [Green Version]
- Hanin, A.; Lambrecq, V.; Denis, J.A.; Imbert-Bismut, F.; Rucheton, B.; Lamari, F.; Bonnefont-Rousselot, D.; Demeret, S.; Navarro, V. Cerebrospinal Fluid and Blood Biomarkers of Status Epilepticus. Epilepsia 2020, 61, 6–18. [Google Scholar] [CrossRef]
- Hanin, A.; Demeret, S.; Lambrecq, V.; Rohaut, B.; Marois, C.; Bouguerra, M.; Demoule, A.; Beaudeux, J.-L.; Bittar, R.; Denis, J.A.; et al. Clinico-Biological Markers for the Prognosis of Status Epilepticus in Adults. J. Neurol. 2022, 269, 5868–5882. [Google Scholar] [CrossRef]
- Simani, L.; Sadeghi, M.; Ryan, F.; Dehghani, M.; Niknazar, S. Elevated Blood-Based Brain Biomarker Levels in Patients with Epileptic Seizures: A Systematic Review and Meta-Analysis. ACS Chem. Neurosci. 2020, 11, 4048–4059. [Google Scholar] [CrossRef]
- Klein, P.; Dingledine, R.; Aronica, E.; Bernard, C.; Blümcke, I.; Boison, D.; Brodie, M.J.; Brooks-Kayal, A.R.; Engel, J.; Forcelli, P.A.; et al. Commonalities in Epileptogenic Processes from Different Acute Brain Insults: Do They Translate? Epilepsia 2018, 59, 37–66. [Google Scholar] [CrossRef]
- Terrone, G.; Frigerio, F.; Balosso, S.; Ravizza, T.; Vezzani, A. Inflammation and Reactive Oxygen Species in Status Epilepticus: Biomarkers and Implications for Therapy. Epilepsy Behav. 2019, 101, 106275. [Google Scholar] [CrossRef]
- Van Vliet, E.A.; Aronica, E.; Vezzani, A.; Ravizza, T. Review: Neuroinflammatory Pathways as Treatment Targets and Biomarker Candidates in Epilepsy: Emerging Evidence from Preclinical and Clinical Studies. Neuropathol. Appl. Neurobiol. 2018, 44, 91–111. [Google Scholar] [CrossRef]
- Vezzani, A.; Dingledine, R.; Rossetti, A.O. Immunity and Inflammation in Status Epilepticus and Its Sequelae: Possibilities for Therapeutic Application. Expert Rev. Neurother. 2015, 15, 1081–1092. [Google Scholar] [CrossRef] [Green Version]
- Campbell, M.; McKenzie, J.E.; Sowden, A.; Katikireddi, S.V.; Brennan, S.E.; Ellis, S.; Hartmann-Boyce, J.; Ryan, R.; Shepperd, S.; Thomas, J.; et al. Synthesis without Meta-Analysis (SWiM) in Systematic Reviews: Reporting Guideline. BMJ 2020, 368, l6890. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Missler, U.; Wiesmann, M.; Friedrich, C.; Kaps, M. S-100 Protein and Neuron-Specific Enolase Concentrations in Blood as Indicators of Infarction Volume and Prognosis in Acute Ischemic Stroke. Stroke 1997, 28, 1956–1960. [Google Scholar] [CrossRef]
- Meynaar, I.A.; Straaten, H.M.O.; Van Der Wetering, J.; Verlooy, P.; Slaats, E.H.; Bosman, R.J.; Van Der Spoel, J.I.; Zandstra, D.F. Serum Neuron-Specific Enolase Predicts Outcome in Post-Anoxic Coma: A Prospective Cohort Study. Intensiv. Care Med. 2003, 29, 189–195. [Google Scholar] [CrossRef]
- Sankar, R.; Shin, D.H.; Wasterlain, C.G. Serum Neuron-Specific Enolase Is a Marker for Neuronal Damage Following Status Epilepticus in the Rat. Epilepsy Res. 1997, 28, 129–136. [Google Scholar] [CrossRef]
- Schreiber, S.S.; Sun, N.; Tocco, G.; Baudry, M.; DeGiorgio, C.M. Expression of Neuron-Specific Enolase in Adult Rat Brain Following Status Epilepticus. Exp. Neurol. 1999, 159, 329–331. [Google Scholar] [CrossRef]
- DeGiorgio, C.M.; Correale, J.D.; Gott, P.S.; Ginsburg, D.L.; Bracht, K.A.; Smith, T.; Boutros, R.; Loskota, W.J.; Rabinowicz, A.L. Serum Neuron-Specific Enolase in Human Status Epilepticus. Neurology 1995, 45, 1134–1137. [Google Scholar] [CrossRef]
- DeGiorgio, C.M.; Gott, P.S.; Rabinowicz, A.L.; Heck, C.N.; Smith, T.D.; Correale, J.D. Neuron-Specific Enolase, a Marker of Acute Neuronal Injury, Is Increased in Complex Partial Status Epilepticus. Epilepsia 1996, 37, 606–609. [Google Scholar] [CrossRef]
- DeGiorgio, C.M.; Heck, C.N.; Rabinowicz, A.L.; Gott, P.S.; Smith, T.; Correale, J. Serum Neuron-Specific Enolase in the Major Subtypes of Status Epilepticus. Neurology 1999, 52, 746. [Google Scholar] [CrossRef]
- Rabinowicz, A.L.; Correale, J.D.; Bracht, K.A.; Smith, T.D.; DeGiorgio, C.M. Neuron-Specific Enolase Is Increased After Nonconvulsive Status Epilepticus. Epilepsia 1995, 36, 475–479. [Google Scholar] [CrossRef]
- Correale, J.; Rabinowicz, A.L.; Heck, C.N.; Smith, T.D.; Loskota, W.J.; DeGiorgio, C.M. Status Epilepticus Increases CSF Levels of Neuron-Specific Enolase and Alters the Blood-Brain Barrier. Neurology 1998, 50, 1388–1391. [Google Scholar] [CrossRef]
- Hanin, A.; Denis, J.A.; Frazzini, V.; Cousyn, L.; Imbert-Bismut, F.; Rucheton, B.; Bonnefont-Rousselot, D.; Marois, C.; Lambrecq, V.; Demeret, S.; et al. Neuron Specific Enolase, S100-Beta Protein and Progranulin as Diagnostic Biomarkers of Status Epilepticus. J. Neurol. 2022, 269, 3752–3760. [Google Scholar] [CrossRef]
- Hanin, A.; Demeret, S.; Nguyen-Michel, V.-H.; Lambrecq, V.; Navarro, V. Continuous EEG Monitoring in the Follow-up of Convulsive Status Epilepticus Patients: A Proposal and Preliminary Validation of an EEG-Based Seizure Build-up Score (EaSiBUSSEs). Neurophysiol. Clin. 2021, 51, 101–110. [Google Scholar] [CrossRef]
- Wong, M.; Ess, K.; Landt, M. Cerebrospinal Fluid Neuron-Specific Enolase Following Seizures in Children: Role of Etiology. J. Child Neurol. 2002, 17, 261–264. [Google Scholar] [CrossRef]
- Shirasaka, Y. Lack of Neuronal Damage in Atypical Absence Status Epilepticus. Epilepsia 2002, 43, 1498–1501. [Google Scholar] [CrossRef]
- O’Regan, M.E.; Brown, J.K. Serum Neuron Specific Enolase: A Marker for Neuronal Dysfunction in Children with Continuous EEG Epileptiform Activity. Eur. J. Paediatr. Neurol. 1998, 2, 193–197. [Google Scholar] [CrossRef]
- Wang, M.; Yu, J.; Xiao, X.; Zhang, B.; Tang, J. Changes of Biochemical Biomarkers in the Serum of Children with Convulsion Status Epilepticus: A Prospective Study. BMC Neurol. 2022, 22, 196. [Google Scholar] [CrossRef]
- Blyth, B.J.; Farahvar, A.; He, H.; Nayak, A.; Yang, C.; Shaw, G.; Bazarian, J.J. Elevated Serum Ubiquitin Carboxy-Terminal Hydrolase L1 Is Associated with Abnormal Blood–Brain Barrier Function after Traumatic Brain Injury. J. Neurotrauma 2011, 28, 2453–2462. [Google Scholar] [CrossRef]
- Lewis, S.B.; Wolper, R.; Chi, Y.-Y.; Miralia, L.; Wang, Y.; Yang, C.; Shaw, G. Identification and Preliminary Characterization of Ubiquitin C Terminal Hydrolase 1 (UCHL1) as a Biomarker of Neuronal Loss in Aneurysmal Subarachnoid Hemorrhage. J. Neurosci. Res. 2010, 88, 1475–1484. [Google Scholar] [CrossRef]
- Brophy, G.M.; Mondello, S.; Papa, L.; Robicsek, S.A.; Gabrielli, A.; Tepas, J.; Buki, A.; Robertson, C.; Tortella, F.C.; Hayes, R.L.; et al. Biokinetic Analysis of Ubiquitin C-Terminal Hydrolase-L1 (UCH-L1) in Severe Traumatic Brain Injury Patient Biofluids. J. Neurotrauma 2011, 28, 861–870. [Google Scholar] [CrossRef] [Green Version]
- Chmielewska, N.; Maciejak, P.; Turzyńska, D.; Sobolewska, A.; Wisłowska-Stanek, A.; Kołosowska, K.; Płaźnik, A.; Szyndler, J. The Role of UCH-L1, MMP-9, and GFAP as Peripheral Markers of Different Susceptibility to Seizure Development in a Preclinical Model of Epilepsy. J. Neuroimmunol. 2019, 332, 57–63. [Google Scholar] [CrossRef]
- Reynolds, J.P.; Jimenez-Mateos, E.M.; Cao, L.; Bian, F.; Alves, M.; Miller-Delaney, S.F.; Zhou, A.; Henshall, D.C. Proteomic Analysis After Status Epilepticus Identifies UCHL1 as Protective Against Hippocampal Injury. Neurochem. Res. 2017, 42, 2033–2054. [Google Scholar] [CrossRef]
- Asadollahi, M.; Simani, L. The Diagnostic Value of Serum UCHL-1 and S100-B Levels in Differentiate Epileptic Seizures from Psychogenic Attacks. Brain Res. 2019, 1704, 11–15. [Google Scholar] [CrossRef]
- Yasak, I.H.; Yilmaz, M.; Gönen, M.; Atescelik, M.; Gurger, M.; Ilhan, N.; Goktekin, M.C. Evaluation of Ubiquitin C-Terminal Hydrolase-L1 Enzyme Levels in Patients with Epilepsy. Arq. Neuro-Psiquiatr. 2020, 78, 424–429. [Google Scholar] [CrossRef]
- Elhady, M.; Youness, E.R.; AbuShady, M.M.; Nassar, M.S.; Elaziz, A.A.; Masoud, M.M.; Foudaa, F.K.; Elhamed, W.A.A. Circulating Glial Fibrillary Acidic Protein and Ubiquitin Carboxy-Terminal Hydrolase-L1 as Markers of Neuronal Damage in Children with Epileptic Seizures. Childs Nerv. Syst. 2021, 37, 879–884. [Google Scholar] [CrossRef]
- Mondello, S.; Palmio, J.; Streeter, J.; Hayes, R.L.; Peltola, J.; Jeromin, A. Ubiquitin Carboxy-Terminal Hydrolase L1 (UCH-L1) Is Increased in Cerebrospinal Fluid and Plasma of Patients after Epileptic Seizure. BMC Neurol. 2012, 12, 85. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Wang, Z.; Zhang, B.; Zhe, X.; Wang, M.; Bai, J.; Lin, T.; Zhang, S. Cerebrospinal Fluid Ubiquitin C-Terminal Hydrolase as a Novel Marker of Neuronal Damage after Epileptic Seizure. Epilepsy Res. 2013, 103, 205–210. [Google Scholar] [CrossRef]
- Alves, M.; Kenny, A.; de Leo, G.; Beamer, E.H.; Engel, T. Tau Phosphorylation in a Mouse Model of Temporal Lobe Epilepsy. Front. Aging Neurosci. 2019, 11, 308. [Google Scholar] [CrossRef] [Green Version]
- Palmio, J.; Suhonen, J.; Keränen, T.; Hulkkonen, J.; Peltola, J.; Pirttilä, T. Cerebrospinal Fluid Tau as a Marker of Neuronal Damage after Epileptic Seizure. Seizure 2009, 18, 474–477. [Google Scholar] [CrossRef] [Green Version]
- Shahim, P.; Darin, N.; Andreasson, U.; Blennow, K.; Jennions, E.; Lundgren, J.; Månsson, J.-E.; Naess, K.; Törnhage, C.-J.; Zetterberg, H.; et al. Cerebrospinal Fluid Brain Injury Biomarkers in Children: A Multicenter Study. Pediatr. Neurol. 2013, 49, 31–39.e2. [Google Scholar] [CrossRef]
- Shahim, P.; Rejdak, R.; Ksiazek, P.; Blennow, K.; Zetterberg, H.; Mattsson, N.; Rejdak, K. Cerebrospinal Fluid Biomarkers of β-Amyloid Metabolism and Neuronal Damage in Epileptic Seizures. Eur. J. Neurol. 2014, 21, 486–491. [Google Scholar] [CrossRef]
- Monti, G.; Tondelli, M.; Giovannini, G.; Bedin, R.; Nichelli, P.F.; Trenti, T.; Meletti, S.; Chiari, A. Cerebrospinal Fluid Tau Proteins in Status Epilepticus. Epilepsy Behav. 2015, 49, 150–154. [Google Scholar] [CrossRef]
- Tumani, H.; Jobs, C.; Brettschneider, J.; Hoppner, A.C.; Kerling, F.; Fauser, S. Effect of Epileptic Seizures on the Cerebrospinal Fluid—A Systematic Retrospective Analysis. Epilepsy Res. 2015, 114, 23–31. [Google Scholar] [CrossRef]
- Motojima, Y.; Nagura, M.; Asano, Y.; Arakawa, H.; Takada, E.; Sakurai, Y.; Moriwaki, K.; Tamura, M. Diagnostic and Prognostic Factors for Acute Encephalopathy. Pediatr. Int. 2016, 58, 1188–1192. [Google Scholar] [CrossRef]
- Sood, S.; Azad, C.; Kaur, J.; Kumar, P.; Guglani, V.; Singla, S. Role of Cerebrospinal Fluid Tau Protein Levels as a Biomarker of Brain Injury in Pediatric Status Epilepticus. Int. J. Neurosci. 2021, 133, 782–790. [Google Scholar] [CrossRef] [PubMed]
- Yuan, A.; Rao, M.V.; Veeranna; Nixon, R.A. Neurofilaments and Neurofilament Proteins in Health and Disease. Cold Spring Harb. Perspect. Biol. 2017, 9, a018309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, A.; Veeranna; Sershen, H.; Basavarajappa, B.S.; Smiley, J.F.; Hashim, A.; Bleiwas, C.; Berg, M.; Guifoyle, D.N.; Subbanna, S.; et al. Neurofilament Light Interaction with GluN1 Modulates Neurotransmission and Schizophrenia-Associated Behaviors. Transl. Psychiatry 2018, 8, 167. [Google Scholar] [CrossRef] [Green Version]
- Gafson, A.R.; Barthélemy, N.R.; Bomont, P.; Carare, R.O.; Durham, H.D.; Julien, J.-P.; Kuhle, J.; Leppert, D.; Nixon, R.A.; Weller, R.O.; et al. Neurofilaments: Neurobiological Foundations for Biomarker Applications. Brain 2020, 143, 1975–1998. [Google Scholar] [CrossRef] [PubMed]
- Abu-Rumeileh, S.; Steinacker, P.; Polischi, B.; Mammana, A.; Bartoletti-Stella, A.; Oeckl, P.; Baiardi, S.; Zenesini, C.; Huss, A.; Cortelli, P.; et al. CSF Biomarkers of Neuroinflammation in Distinct Forms and Subtypes of Neurodegenerative Dementia. Alzheimer’s Res. Ther. 2020, 12, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Disanto, G.; Prosperetti, C.; Gobbi, C.; Barro, C.; Michalak, Z.; Cassina, T.; Kuhle, J.; Casso, G.; Agazzi, P. Serum Neurofilament Light Chain as a Prognostic Marker in Postanoxic Encephalopathy. Epilepsy Behav. 2019, 101, 106432. [Google Scholar] [CrossRef] [PubMed]
- Engel, S.; Steffen, F.; Uphaus, T.; Scholz-Kreisel, P.; Zipp, F.; Bittner, S.; Luessi, F. Association of Intrathecal Pleocytosis and IgG Synthesis with Axonal Damage in Early MS. Neurol.-Neuroimmunol. Neuroinflamm. 2020, 7, e679. [Google Scholar] [CrossRef] [Green Version]
- Khalil, M. Are Neurofilaments Valuable Biomarkers for Long-Term Disease Prognostication in MS? Mult. Scler. 2018, 24, 1270–1271. [Google Scholar] [CrossRef]
- Khalil, M.; Teunissen, C.E.; Otto, M.; Piehl, F.; Sormani, M.P.; Gattringer, T.; Barro, C.; Kappos, L.; Comabella, M.; Fazekas, F.; et al. Neurofilaments as Biomarkers in Neurological Disorders. Nat. Rev. Neurol. 2018, 14, 577–589. [Google Scholar] [CrossRef]
- Figlewicz, D.A.; Krizus, A.; Martinoli, M.G.; Meininger, V.; Dib, M.; Rouleau, G.A.; Julien, J.-P. Variants of the Heavy Neurofilament Subunit Are Associated with the Development of Amyotrophic Lateral Sclerosis. Hum. Mol. Genet. 1994, 3, 1757–1761. [Google Scholar] [CrossRef]
- Horga, A.; Laurà, M.; Jaunmuktane, Z.; Jerath, N.U.; Gonzalez, M.A.; Polke, J.M.; Poh, R.; Blake, J.C.; Liu, Y.-T.; Wiethoff, S.; et al. Genetic and Clinical Characteristics of NEFL -Related Charcot-Marie-Tooth Disease. J. Neurol. Neurosurg. Psychiatry 2017, 88, 575–585. [Google Scholar] [CrossRef]
- Jakobsson, J.; Bjerke, M.; Ekman, C.J.; Sellgren, C.; Johansson, A.G.; Zetterberg, H.; Blennow, K.; Landén, M. Elevated Concentrations of Neurofilament Light Chain in the Cerebrospinal Fluid of Bipolar Disorder Patients. Neuropsychopharmacology 2014, 39, 2349–2356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Disanto, G.; Barro, C.; Benkert, P.; Naegelin, Y.; Schädelin, S.; Giardiello, A.; Zecca, C.; Blennow, K.; Zetterberg, H.; Leppert, D.; et al. Serum Neurofilament Light: A Biomarker of Neuronal Damage in Multiple Sclerosis: Serum NfL as a Biomarker in MS. Ann. Neurol. 2017, 81, 857–870. [Google Scholar] [CrossRef] [Green Version]
- Sherry, A.K.; Turner, D.A. Non-Phosphorylated Neurofilament Protein Imrnunoreactivity in Adult and Developing Rat Hippocampus: Specificity and Appfication in Grafting Studies. Brain Res. 1995, 676, 293–306. [Google Scholar]
- Yang, Q.; Wang, S.; Hamberger, A.; Haglid, K.G. Plasticity of Granule Cell-Mossy Fiber System Following Kainic Acid Induced Seizures: An Immunocytochemical Study on Neurofilament Proteins. Neurosci. Res. 1996, 26, 57–64. [Google Scholar] [PubMed]
- Lopezpicon, F.; Puustinen, N.; Kukkolukjanov, T.; Holopainen, I. Resistance of Neurofilaments to Degradation, and Lack of Neuronal Death and Mossy Fiber Sprouting after Kainic Acid-Induced Status Epilepticus in the Developing Rat Hippocampus. Neurobiol. Dis. 2004, 17, 415–426. [Google Scholar] [CrossRef]
- Custers, M.; Vyver, M.V.; Kaltenböck, L.; Barbé, K.; Bjerke, M.; Van Eeckhaut, A.; Smolders, I. Neurofilament Light Chain—A Possible Fluid Biomarker in the Intrahippocampal Kainic Acid Mouse Model for Chronic Epilepsy? Epilepsia 2023, epi.17669. [Google Scholar] [CrossRef]
- Rejdak, K.; Kuhle, J.; Rüegg, S.; Lindberg, R.L.P.; Petzold, A.; Sulejczak, D.; Papuc, E.; Rejdak, R.; Stelmasiak, Z.; Grieb, P. Neurofilament Heavy Chain and Heat Shock Protein 70 as Markers of Seizure-Related Brain Injury: Seizure-Related Neurodegeneration. Epilepsia 2012, 53, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Lybeck, A.; Friberg, H.; Nielsen, N.; Rundgren, M.; Ullén, S.; Zetterberg, H.; Blennow, K.; Cronberg, T.; Westhall, E. Postanoxic Electrographic Status Epilepticus and Serum Biomarkers of Brain Injury. Resuscitation 2021, 158, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Giovannini, G.; Bedin, R.; Ferraro, D.; Vaudano, A.E.; Mandrioli, J.; Meletti, S. Serum Neurofilament Light as Biomarker of Seizure-Related Neuronal Injury in Status Epilepticus. Epilepsia 2022, 63, e23–e29. [Google Scholar] [CrossRef]
- Giovannini, G.; Bedin, R.; Orlandi, N.; Turchi, G.; Cioclu, M.C.; Biagioli, N.; Madrassi, L.; Pugnaghi, M.; Vaudano, A.E.; Meletti, S. Neuro-Glial Degeneration in Status Epilepticus: Exploring the Role of Serum Levels of Neurofilament Light Chains and S100B as Prognostic Biomarkers for Short-Term Functional Outcome. Epilepsy Behav. 2023, 140, 109131. [Google Scholar] [CrossRef]
- Margraf, N.G.; Dargvainiene, J.; Theel, E.; Leypoldt, F.; Lieb, W.; Franke, A.; Berger, K.; Kuhle, J.; Kuhlenbaeumer, G. Neurofilament Light (NfL) as Biomarker in Serum and CSF in Status Epilepticus. J. Neurol. 2023, 270, 2128–2138. [Google Scholar] [CrossRef] [PubMed]
- Langeh, U.; Singh, S. Targeting S100B Protein as a Surrogate Biomarker and Its Role in Various Neurological Disorders. Curr. Neuropharmacol. 2020, 19, 265–277. [Google Scholar] [CrossRef]
- Michetti, F.; D’Ambrosi, N.; Toesca, A.; Puglisi, M.A.; Serrano, A.; Marchese, E.; Corvino, V.; Geloso, M.C. The S100B Story: From Biomarker to Active Factor in Neural Injury. J. Neurochem. 2019, 148, 168–187. [Google Scholar] [CrossRef] [Green Version]
- Tateishi, N.; Mori, T.; Kagamiishi, Y.; Satoh, S.; Katsube, N.; Morikawa, E.; Morimoto, T.; Matsui, T.; Asano, T. Astrocytic Activation and Delayed Infarct Expansion after Permanent Focal Ischemia in Rats. Part II: Suppression of Astrocytic Activation by a Novel Agent (R)-(−)-2-Propyloctanoic Acid (ONO-2506) Leads to Mitigation of Delayed Infarct Expansion and Early Improvement of Neurologic Deficits. J. Cereb. Blood Flow Metab. 2002, 22, 723–734. [Google Scholar] [CrossRef] [Green Version]
- Barateiro, A.; Afonso, V.; Santos, G.; Cerqueira, J.J.; Brites, D.; Van Horssen, J.; Fernandes, A. S100B as a Potential Biomarker and Therapeutic Target in Multiple Sclerosis. Mol. Neurobiol. 2016, 53, 3976–3991. [Google Scholar] [CrossRef] [Green Version]
- Kabadi, S.V.; Stoica, B.A.; Zimmer, D.B.; Afanador, L.; Duffy, K.B.; Loane, D.J.; Faden, A.I. S100B Inhibition Reduces Behavioral and Pathologic Changes in Experimental Traumatic Brain Injury. J. Cereb. Blood Flow Metab. 2015, 35, 2010–2020. [Google Scholar] [CrossRef] [Green Version]
- Cirillo, C.; Capoccia, E.; Iuvone, T.; Cuomo, R.; Sarnelli, G.; Steardo, L.; Esposito, G. S100B Inhibitor Pentamidine Attenuates Reactive Gliosis and Reduces Neuronal Loss in a Mouse Model of Alzheimer’s Disease. BioMed Res. Int. 2015, 2015, 508342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luger, S.; Koerbel, K.; Martinez Oeckel, A.; Schneider, H.; Maurer, C.J.; Hintereder, G.; Wagner, M.; Hattingen, E.; Foerch, C. Role of S100B Serum Concentration as a Surrogate Outcome Parameter After Mechanical Thrombectomy. Neurology 2021, 97, e2185–e2194. [Google Scholar] [CrossRef] [PubMed]
- Mrak, R. The Role of Activated Astrocytes and of the Neurotrophic Cytokine S100B in the Pathogenesis of Alzheimer’s Disease. Neurobiol. Aging 2001, 22, 915–922. [Google Scholar] [CrossRef]
- Sathe, K.; Maetzler, W.; Lang, J.D.; Mounsey, R.B.; Fleckenstein, C.; Martin, H.L.; Schulte, C.; Mustafa, S.; Synofzik, M.; Vukovic, Z.; et al. S100B Is Increased in Parkinson’s Disease and Ablation Protects against MPTP-Induced Toxicity through the RAGE and TNF-α Pathway. Brain 2012, 135, 3336–3347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rydbirk, R.; Elfving, B.; Andersen, M.D.; Langbøl, M.A.; Folke, J.; Winge, K.; Pakkenberg, B.; Brudek, T.; Aznar, S. Cytokine Profiling in the Prefrontal Cortex of Parkinson’s Disease and Multiple System Atrophy Patients. Neurobiol. Dis. 2017, 106, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Jiang, P.; Xue, H.; Peterson, S.E.; Tran, H.T.; McCann, A.E.; Parast, M.M.; Li, S.; Pleasure, D.E.; Laurent, L.C.; et al. Role of Astroglia in Down’s Syndrome Revealed by Patient-Derived Human-Induced Pluripotent Stem Cells. Nat. Commun. 2014, 5, 4430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steiner, J.; Bernstein, H.-G.; Bielau, H.; Farkas, N.; Winter, J.; Dobrowolny, H.; Brisch, R.; Gos, T.; Mawrin, C.; Myint, A.M.; et al. S100B-Immunopositive Glia Is Elevated in Paranoid as Compared to Residual Schizophrenia: A Morphometric Study. J. Psychiatr. Res. 2008, 42, 868–876. [Google Scholar] [CrossRef]
- de Oliveira, D.L.; Fischer, A.; Jorge, R.S.; da Silva, M.C.; Leite, M.; Gonçalves, C.A.; Quillfeldt, J.A.; Souza, D.O.; e Souza, T.M.; Wofchuk, S. Effects of Early-Life LiCl-Pilocarpine-Induced Status Epilepticus on Memory and Anxiety in Adult Rats Are Associated with Mossy Fiber Sprouting and Elevated CSF S100B Protein. Epilepsia 2008, 49, 842–852. [Google Scholar] [CrossRef]
- Calik, M.; Abuhandan, M.; Sonmezler, A.; Kandemır, H.; Oz, I.; Taskin, A.; Selek, S.; Iscan, A. Elevated Serum S-100B Levels in Children with Temporal Lobe Epilepsy. Seizure 2013, 22, 99–102. [Google Scholar] [CrossRef] [Green Version]
- Liang, K.-G.; Mu, R.-Z.; Liu, Y.; Jiang, D.; Jia, T.-T.; Huang, Y.-J. Increased Serum S100B Levels in Patients With Epilepsy: A Systematic Review and Meta-Analysis Study. Front. Neurosci. 2019, 13, 456. [Google Scholar] [CrossRef] [Green Version]
- Meguid, N.A.; Samir, H.; Bjørklund, G.; Anwar, M.; Hashish, A.; Koura, F.; Chirumbolo, S.; Hashem, S.; El-Bana, M.A.; Hashem, H.S. Altered S100 Calcium-Binding Protein B and Matrix Metallopeptidase 9 as Biomarkers of Mesial Temporal Lobe Epilepsy with Hippocampus Sclerosis. J. Mol. Neurosci. 2018, 66, 482–491. [Google Scholar] [CrossRef]
- Gunawan, P.I.; Saharso, D.; Sari, D.P. Correlation of Serum S100B Levels with Brain Magnetic Resonance Imaging Abnormalities in Children with Status Epilepticus. Korean J. Pediatr. 2019, 62, 281–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- do Nascimento, A.L.; dos Santos, N.F.; Campos Pelágio, F.; Aparecida Teixeira, S.; de Moraes Ferrari, E.A.; Langone, F. Neuronal Degeneration and Gliosis Time-Course in the Mouse Hippocampal Formation after Pilocarpine-Induced Status Epilepticus. Brain Res. 2012, 1470, 98–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avdic, U.; Ahl, M.; Chugh, D.; Ali, I.; Chary, K.; Sierra, A.; Ekdahl, C.T. Nonconvulsive Status Epilepticus in Rats Leads to Brain Pathology. Epilepsia 2018, 59, 945–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borges, K.; Mcdermott, D.; Irier, H.; Smith, Y.; Dingledine, R. Degeneration and Proliferation of Astrocytes in the Mouse Dentate Gyrus after Pilocarpine-Induced Status Epilepticus. Exp. Neurol. 2006, 201, 416–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt-Kastner, R.; Ingvar, M. Loss of Immunoreactivity for Glial Fibrillary Acidic Protein (GFAP) in Astrocytes as a Marker for Profound Tissue Damage in Substantia Nigra and Basal Cortical Areas after Status Epilepticus Induced by Pilocarpine in Rat. Glia 1994, 12, 165–172. [Google Scholar] [CrossRef]
- Griflyuk, A.V.; Postnikova, T.Y.; Zaitsev, A.V. Prolonged Febrile Seizures Impair Synaptic Plasticity and Alter Developmental Pattern of Glial Fibrillary Acidic Protein (GFAP)-Immunoreactive Astrocytes in the Hippocampus of Young Rats. Int. J. Mol. Sci. 2022, 23, 12224. [Google Scholar] [CrossRef]
- Nass, R.D.; Akgün, K.; Elger, C.; Reichmann, H.; Wagner, M.; Surges, R.; Ziemssen, T. Serum Biomarkers of Cerebral Cellular Stress after Self-Limiting Tonic Clonic Seizures: An Exploratory Study. Seizure 2021, 85, 1–5. [Google Scholar] [CrossRef]
- Akel, S.; Asztely, F.; Banote, R.K.; Axelsson, M.; Zetterberg, H.; Zelano, J. Neurofilament Light, Glial Fibrillary Acidic Protein, and Tau in a Regional Epilepsy Cohort: High Plasma Levels Are Rare but Related to Seizures. Epilepsia 2023, epi.17713. [Google Scholar] [CrossRef]
- Gurnett, C.A.; Landt, M.; Wong, M. Analysis of Cerebrospinal Fluid Glial Fibrillary Acidic Protein after Seizures in Children. Epilepsia 2003, 44, 1455–1458. [Google Scholar] [CrossRef]
- Scholl, E.A.; Dudek, F.E.; Ekstrand, J.J. Neuronal Degeneration Is Observed in Multiple Regions Outside the Hippocampus after Lithium Pilocarpine-Induced Status Epilepticus in the Immature Rat. Neuroscience 2013, 252, 45–59. [Google Scholar] [CrossRef] [Green Version]
- Aronica, E.; Gorter, J.A.; Jansen, G.H.; Leenstra, S.; Yankaya, B.; Troost, D. Expression of Connexin 43 and Connexin 32 Gap-Junction Proteins in Epilepsy-Associated Brain Tumors and in the Perilesional Epileptic Cortex. Acta Neuropathol. 2001, 101, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Bedner, P.; Steinhäuser, C. Role of Impaired Astrocyte Gap Junction Coupling in Epileptogenesis. Cells 2023, 12, 1669. [Google Scholar] [CrossRef] [PubMed]
- Göl, M.F.; Erdoğan, F.F.; Bayramov, K.K.; Mehmetbeyoğlu, E.; Özkul, Y. Assessment of Genes Involved in Behavior, Learning, Memory, and Synaptic Plasticity Following Status Epilepticus in Rats. Epilepsy Behav. 2019, 98, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Negi, D.; Granak, S.; Shorter, S.; O’Leary, V.B.; Rektor, I.; Ovsepian, S.V. Molecular Biomarkers of Neuronal Injury in Epilepsy Shared with Neurodegenerative Diseases. Neurotherapeutics 2023, 20, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Ebert, U.; Brandt, C.; Löscher, W. Delayed Sclerosis, Neuroprotection, and Limbic Epileptogenesis After Status Epilepticus in the Rat. Epilepsia 2002, 43, 86–95. [Google Scholar] [CrossRef] [Green Version]
- Nairismagi, J.; Grohn, O.H.J.; Kettunen, M.I.; Nissinen, J.; Kauppinen, R.A.; Pitkanen, A. Progression of Brain Damage after Status Epilepticus and Its Association with Epileptogenesis: A Quantitative MRI Study in a Rat Model of Temporal Lobe Epilepsy. Epilepsia 2004, 45, 1024–1034. [Google Scholar] [CrossRef] [PubMed]
- Canet, G.; Zub, E.; Zussy, C.; Hernandez, C.; Blaquiere, M.; Garcia, V.; Vitalis, M.; deBock, F.; Moreno-Montano, M.; Audinat, E.; et al. Seizure Activity Triggers Tau Hyperphosphorylation and Amyloidogenic Pathways. Epilepsia 2022, 63, 919–935. [Google Scholar] [CrossRef]
- Kumar, G.; Mittal, S.; Moudgil, S.S.; Kupsky, W.J.; Shah, A.K. Histopathological Evidence That Hippocampal Atrophy Following Status Epilepticus Is a Result of Neuronal Necrosis. J. Neurol. Sci. 2013, 334, 186–191. [Google Scholar] [CrossRef]
- Hocker, S.; Nagarajan, E.; Rabinstein, A.A.; Hanson, D.; Britton, J.W. Progressive Brain Atrophy in Super-Refractory Status Epilepticus. JAMA Neurol. 2016, 73, 1201. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Lain, A.; Hedley-Whyte, E.T.; Hariri, L.P.; Molyneaux, B.; Nagle, K.J.; Cole, A.J.; Kilbride, R. Pathology of Bilateral Pulvinar Degeneration Following Long Duration Status Epilepticus. Seizure 2013, 22, 901–904. [Google Scholar] [CrossRef] [Green Version]
- Noe, F.M.; Polascheck, N.; Frigerio, F.; Bankstahl, M.; Ravizza, T.; Marchini, S.; Beltrame, L.; Banderó, C.R.; Löscher, W.; Vezzani, A. Pharmacological Blockade of IL-1β/IL-1 Receptor Type 1 Axis during Epileptogenesis Provides Neuroprotection in Two Rat Models of Temporal Lobe Epilepsy. Neurobiol. Dis. 2013, 59, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Hanin, A.; Cespedes, J.; Pulluru, Y.; Gopaul, M.; Aronica, E.; Decampo, D.; Helbig, I.; Howe, C.L.; Huttner, A.; Koh, S.; et al. Review and Standard Operating Procedures for Collection of Biospecimens and Analysis of Biomarkers in New Onset Refractory Status Epilepticus. Epilepsia 2023, 64, 1444–1457. [Google Scholar] [CrossRef] [PubMed]
Author/Year | N of SE | Age; Gender | Biomarkers | Types of SE | Body Fluids | Sampling during SE | Principal Findings |
---|---|---|---|---|---|---|---|
De Giorgio et al., 1995 [16] | 19 (vs. PWE + HC) | NR | NSE | NR | Serum | N | ↑ NSE in SE vs. PWE and HC |
Rabinowicz et al., 1995 [19] | 2 (vs. 13 PWE + HC) | 38, 40 y; 2F | NSE | NCSE | Serum | N | ↑ NSE in NCSE |
De Giorgio et al., 1996 [17] | 8 (vs. 18 HC + 13 PWE) | NR | NSE | CPSE (non-lesional) | Serum | NR | ↑ NSE in CPSE vs. PWE and HC |
Correale et al., 1998 [20] | 11 (vs. HC) | Mean age, 42.2 ± 13.6 y; 6M, 5F | NSE | NR (cryptogenic and remote symptomatic) | CSF and serum | NR | ↑ CSF-NSE in SE vs. HC |
O’Regan et al., 1998 [25] | Ped: 17 (with continuous ED), 16 (w/o ED) + HC | Mean age, 7.3 y; range, 5 m-17 y; 9M, 8F | NSE | NCSE | Serum | Y | ↑NSE in PWE with continuous ED vs. PWE w/o and vs. HC |
De Giorgio et al., 1999 [18] | 31 (vs. 13 PWE, + 30 HC) | NR | NSE | GCSE, ASE, CPSE, NCSE in coma | Serum | NR | ↑ NSE in SE vs. HC. ↑ NSE in CPSE and NCSE in coma ↑ NSE and longer SE |
Shirasaka et al., 2002 [24] | Ped: 4 (2 vs. 2) | 2-8-11-18 y; 2M, 2F | NSE | NCSE (ASE vs. CPSE) | CSF and serum | N | Normal levels of NSE in ASE |
Wong et al., 2002 [23] | Ped: 19 (vs. 30 with SS + 4 with brain tumors + 39 HC) | PWE: mean age, 55.2 ± 62.8 m; range, 4–212 m; gender, NR | NSE | CSE and NCSE | CSF | NR | NSE levels equal in SE and SS. NSE elevated in symptomatic etiologies |
Hanin et al., 2022 [21] | 82 (vs. 36 HC + 56 PWE) | Mean, 49.8 ± 18.8 y; ratio M/F: 60 | NSE, PRG, S100B | CSE and NCSE | CSF and serum | Y | ↑ s-NSE, progranulin, and S100B in SE vs. PWE and HC. No differences in relation to SE refractoriness, semeiology, and etiology |
Hanin et al., 2022 [22] | 11 | Mean, 41.0 ± 20.6 y; range, 20–75 y; gender, NR | NSE, S100B | CSE and NCSE RSE | Serum | N | NSE as a biomarker of EEG activity and of risk of seizure recurrence |
Hanin et al., 2022 [4] | 81 | Mean, 50 ± 19 y; 49M, 32F | NSE, S100B, PRG, and a panel of lipid and biochemistry * | CSE and NCSE | CSF and serum | Y | = NSE and S100B in dead and alive, in recovered and worsened Models with different variables among which NSE predict poor outcome at discharge and long-term outcome better than existing clinical scores |
Wang et al., 2022 [26] | Ped 57 (vs. 30 HC) | Range, 1–133 m; 32M, 25F | NSE, S100B, VEGF, GFAP, CRP | CSE | Serum | Y | ↑ NSE, S100B, VEGF, GFAP, CRP |
Author/Year | N of SE | Age; Gender | Biomarkers | Types of SE | Body Fluids | Sampling during SE | Principal Findings |
---|---|---|---|---|---|---|---|
Mondello et al., 2012 [35] | 9 (vs. 27 SS, 16 RS, 19 HC) | PWE: mean: 45.5 y, range: 31.5–62 y; 30M, 22F | UCH-L1 | NR | Serum and CSF | NR | ↑ CSF UCH-L1 within 48 h from seizures ↑ Serum UCH-L1 within 12 h from seizures Higher levels in RS (analysis not reported for SE) |
Author/Year | N of SE | Age; Gender | Biomarkers | Types of SE | Body Fluids | Sampling during SE | Principal Findings |
---|---|---|---|---|---|---|---|
Palmio et al., 2009 [38] | 9 (vs. 45 SS or RS) | PWE: mean, 48 y; range, 16–88 y; 30M, 24F | t-TAU, p-TAU | NR | CSF | NR | No increased levels of t-TAU, p-TAU in SE. Increased levels of TAU in patients with seizures of symptomatic cause |
Shahim et al., 2013 [39] | Ped: 4 (vs. 113 PWE, 79 HC, 411 OND) | PWE: median, 1.4 y; range, 0–16; 56M, 44F | t-TAU, NfL, GFAP, CSF:albumin ratio | NR | CSF | NR | ↑ t-TAU in SE compared to PE and PGE |
Shahim et al., 2014 [40] | 4 (vs. 25 SS, 16 RS, 17 HC) | Median, 39 y; range, 30–56 y; 3M, 1F | Aβ peptides, APP, t-TAU, p-TAU, H-FABP | NCSE | CSF | N | ↓ Aβ peptides (Aβx38-40-42) in NCSE compared to RPS; Overall ↓ t-TAU, p-TAU and =Aβ peptides, APP and H-FABP in seizures compared to controls; = levels of Aβ1-42, APP, t-TAU, p-TAU, H-FABP within seizure subgroups |
Monti et al., 2015 [41] | 28 | Mean, 56 y; range, 11–79 y; 10M, 18F | t-TAU, p-TAU, Aβ | CSE and NCSE | CSF | N | ↑ t-TAU in RSE/SRSE, longer SE, worsening of clinical conditions and epilepsy development |
Tumani et al., 2015 [42] | 54 (vs. 255 PWE, 10 PNES) | PWE: mean, 55 y; range, 14–97 y; 170M, 159F | TAU, cell count, lactate, albumin quotient | CSE and NCSE | CSF | NR | ↑ TAU in SE compared to PWE and PNES |
Motojima et al., 2016 [43] | Ped: 33 (13 FC, 20 w Enc) | FC: mean, 3 y 8 m; 7M, 6F. Enc: mean, 2 y 11 m; 9M, 11F | CSF: t- TAU and IL6; Serum: AST, ALT, LDH, NH3, INR | NR | CSF and serum | NR | ↑ t-TAU in patients developing sequelae |
Sood et al., 2021 [44] | Ped: 50 (vs. 15 HC) | Range, 6 m-12 y; 31M, 19F | t-TAU | CSE | CSF | NR | ↓ t-TAU in SE vs. HC. No correlation with type, duration, etiology, response to treatment, outcomes, level of consciousness, ICU admission |
Author/Year | N of SE | Age; Gender | Biomarkers | Types of SE | Body Fluids | Sampling during SE | Principal Findings |
---|---|---|---|---|---|---|---|
Rejdak et al., 2012 [61] | 10 (vs. 20 SS, 11 RS, 18 HC) | Median, 52 y; range, 29–71 y; 6M, 4F | NfH and HSP-70 | CSE | CSF | N | ↑ NfH in SE vs. SS and HC ↑ NfH in worse outcome |
Shahim et al., 2013 [39] | Ped: 4 (vs. 113 PWE, 79 HC, 411 OND) | PWE: median, 1.4 y; range, 0–16; 56M, 44F | t-TAU, NfL, GFAP, CSF:albumin ratio | NR | CSF | NR | ↑ NfL in SE compared to PE, PGE, UE |
Lybeck et al., 2021 [62] | 26 (vs. 102 non-ESE) | Median, 72 y; IQR, 65–81; 21M, 5F | NfL and GFAP | SE in post-anoxic encephalopathy (ESE) | Serum | Y | ↑ s-NfL in ESE vs. non-ESE. |
Giovannini et al., 2022 [63] | 30 (vs. 30 PWE + 30 HC) | Mean, 45 ± 19.9 y; range, 11–79 y; 16M, 14F | NfL | CSE and NCSE (w/o acute symptomatic) | Serum and CSF (17) | Y | ↑ s-NfL in SE (vs. PWE and HC) ↑ s-NfL in RSE/SRSE, SE > 24 h S-NfL predictor of 30 d worsening or death |
Giovannini et al., 2023 [64] | 87 (vs. 30 PWE + 27 HC) | Median, 70 y; IQR, 25; 33M, 54F | NfL and S100B | CSE and NCSE | Serum | Y | ↑ s-NfL in SE (vs. PWE and HC) s-NfL predictor of 30 d worsening |
Margraf et al., 2023 [65] | 28 (vs. 1186 HC) | Mean, 69.4 ± 15 y; 4M, 24F | NfL | CSE and NCSE | Serum and CSF | N | ↑ s-NfL in SE vs. HC ↑ s-NfL in SE of longer duration; equal increment in CSE and NCSE No increment in dead and refractory patients |
Author/Year | N of SE | Age; Gender | Biomarkers | Types of SE | Body Fluids | Sampling during SE | Principal Findings |
---|---|---|---|---|---|---|---|
Gunawan et al., 2019 [82] | 24 (vs. 22 FS) | Median, 1.5 ± 4.51 y; 16M, 8F | S100B | CSE and NCSE | Serum | NR | ↑ S100B in SE (vs. FS) Strong positive correlation with the MRI degree of encephalopathy |
Wang et al., 2022 [26] | Ped: 57 (vs. 30 HC) | Range, 1–133 m; 32M, 25F | S100B, NSE, VEGF, GFAP, CRP | CSE | Serum | Y | ↑ S100B in SE (vs. HC) |
Hanin et al., 2022 [21] | 82 (vs. 56 PWE + 36 HC) | Mean, 49.8 ± 18.8 y; ratio M/F: 60 | S100B, NSE, PRG | CSE and NCSE | Serum and CSF | Y | ↑ s-S100B in SE (vs. PWE and HC). No differences in CSF levels No differences in relation to SE refractoriness, semeiology, and etiology |
Hanin et al., 2022 [22] | 11 | Mean, 41.0 ± 20.6 y; range, 20–75 y; gender, NR | NSE, S100B | CSE and NCSE RSE | Serum | N | S100B is not a biomarker of EEG activity and of risk of seizure recurrence |
Hanin et al., 2022 [4] | 81 | Mean age, 50 ± 19 y; 49M, 32F | NSE, S100B, PRG, and a panel of lipid and biochemistry * | CSE and NCSE | CSF and serum | Y | = NSE and S100B in dead and alive, in recovered and worsened patients |
Giovannini et al., 2023 [64] | 87 (vs. 30 PWE + 27 HC) | Median, 70 y; IQR, 25; 33M, 54F | NfL and S100B | CSE and NCSE | Serum | Y | ↑ s-S100B in SE (vs. PWE and HC) S100B is not a predictor of 30 d worsening |
Author/ Year | N of SE | Age; Gender | Biomarkers | Types of SE | Body Fluids | Sampling during SE | Principal Findings |
---|---|---|---|---|---|---|---|
Gurnett et al., 2003 [90] | Ped: 52 PWE (vs. 33 HC). Num of SE NR | PWE: mean, 47 ± 57 m; range, 5–212 m; gender NR | GFAP and NSE | NR | CSF | N | ↑ GFAP in SE compared to non-SE |
Lybeck et al., 2021 [62] | 26 (vs. 102 non-ESE) | Median, 72 y; IQR, 65–81; 21M, 5F | NfL and GFAP | SE in post-anoxic encephalopathy (ESE) | Serum | Y | ↑ GFAP at 72 h, ESE not an independent predictor of GFAP levels |
Wang et al., 2022 [26] | Ped 57 (vs. 30 HC) | Range, 1–133 m; 32M, 25F | NSE, S100B, VEGF, GFAP, CRP | CSE | Serum | Y | ↑ NSE, S100B, VEGF, GFAP, CRP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giovannini, G.; Meletti, S. Fluid Biomarkers of Neuro-Glial Injury in Human Status Epilepticus: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 12519. https://doi.org/10.3390/ijms241512519
Giovannini G, Meletti S. Fluid Biomarkers of Neuro-Glial Injury in Human Status Epilepticus: A Systematic Review. International Journal of Molecular Sciences. 2023; 24(15):12519. https://doi.org/10.3390/ijms241512519
Chicago/Turabian StyleGiovannini, Giada, and Stefano Meletti. 2023. "Fluid Biomarkers of Neuro-Glial Injury in Human Status Epilepticus: A Systematic Review" International Journal of Molecular Sciences 24, no. 15: 12519. https://doi.org/10.3390/ijms241512519
APA StyleGiovannini, G., & Meletti, S. (2023). Fluid Biomarkers of Neuro-Glial Injury in Human Status Epilepticus: A Systematic Review. International Journal of Molecular Sciences, 24(15), 12519. https://doi.org/10.3390/ijms241512519