Common Variants in One-Carbon Metabolism Genes (MTHFR, MTR, MTHFD1) and Depression in Gynecologic Cancers
Abstract
:1. Introduction
2. Results
2.1. Characteristics of Study Patients
2.2. Association between Studied Polymorphisms and Malignant Neoplasms of Female Genital Organs
2.3. Association between Studied Polymorphisms and Depression
2.4. SNP–SNP Interaction
3. Discussion
4. Materials and Methods
4.1. Patient Selection
4.2. Anxiety Evaluation
4.3. Sample Collection for Genetic Testing and DNA Extraction
4.4. DNA Amplification and Genotyping
4.5. Statistical Analysis
5. Conclusions
Strengths and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Locasale, J.W. Serine, glycine and one-carbon units: Cancer metabolism in full circle. Nat. Rev. Cancer 2013, 13, 572–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tjong, E.; Dimri, M.; Mohiuddin, S.S. Biochemistry, Tetrahydrofolate. In StatPearls [Internet]; Updated 22 July 2021; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Rosenblatt, D.S. Inherited disorders of folate transport and metabolism. In The Metabolic and Molecular Bases of Inherited Disease, 7th ed.; Scriver, C.R., Beaudet, A.L., Sly, S., Valle, D., Eds.; McGraw-Hill: New York, NY, USA, 1995; pp. 3111–3128. [Google Scholar]
- Ducker, G.S.; Rabinowitz, J.D. One-carbon metabolism in health and disease. Cell Metab. 2017, 25, 27–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyon, P.; Strippoli, V.; Fang, B.; Cimmino, L. B vitamins and one-carbon metabolism: Implications in human health and disease. Nutrients 2020, 12, 2867. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, H.; Li, L.; Zhang, Z.; Xu, Y. Association of methylenetetrahydrofolate dehydrogenase 1 polymorphisms with cancer: A meta-analysis. PLoS ONE 2013, 8, e69366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Li, K.; Ouyang, L.; Iko, H.; Safi, A.J.; Gao, S. Effects of methylenetetrahydrofolate reductase single-nucleotide polymorphisms on breast, cervical, ovarian, and endometrial cancer susceptibilities. Chronic Dis. Transl. Med. 2021, 7, 169–181. [Google Scholar] [CrossRef]
- Figueiredo, J.C.; Levine, A.J.; Crott, J.W.; Baurley, J.; Haile, R.W. Folate-genetics and colorectal neoplasia: What we know and need to know next. Mol. Nutr. Food Res. 2013, 57, 607–627. [Google Scholar] [CrossRef]
- Zara-Lopes, T.; Galbiatti-Dias, A.L.S.; Castanhole-Nunes, M.M.U.; Padovani-Júnior, J.A.; Maniglia, J.V.; Pavarino, E.C.; Goloni-Bertollo, E.M. Polymorphisms in MTHFR, MTR, RFC1 and CßS genes involved in folate metabolism and thyroid cancer: A case-control study. Arch. Med. Sci. 2019, 15, 522–530. [Google Scholar] [CrossRef]
- Hasan, T.; Arora, R.; Bansal, A.K.; Bhattacharya, R.; Sharma, G.S.; Singh, L.R. Disturbed homocysteine metabolism is associated with cancer. Exp. Mol. Med. 2019, 51, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Papadimitriou, N.; Markozannes, G.; Kanellopoulou, A.; Critselis, E.; Alhardan, S.; Karafousia, V.; Kasimis, J.C.; Katsaraki, C.; Papadopoulou, A.; Zografou, M.; et al. An umbrella review of the evidence associating diet and cancer risk at 11 anatomical sites. Nat. Commun. 2021, 12, 4579. [Google Scholar] [CrossRef]
- Rosenzweig, A.; Blenis, J.; Gomes, A.P. Beyond the Warburg Effect: How Do Cancer Cells Regulate One-Carbon Metabolism? Front. Cell Dev. Biol. 2018, 6, 90. [Google Scholar] [CrossRef]
- Hasim, A.; Aili, A.; Maimaiti, A.; Mamtimin, B.; Abudula, A.; Upur, H. Plasma-free amino acid profiling of cervical cancer and cervical intraepithelial neoplasia patients and its application for early detection. Mol. Biol. Rep. 2013, 40, 5853–5859. [Google Scholar] [CrossRef]
- Klupczynska, A.; Dereziński, P.; Dyszkiewicz, W.; Pawlak, K.; Kasprzyk, M.; Kokot, Z.J. Evaluation of serum amino acid profiles’ utility in non-small cell lung cancer detection in Polish population. Lung Cancer 2016, 100, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Simińska, E.; Koba, M. Amino acid profiling as a method of discovering biomarkers for early diagnosis of cancer. AminoAcids 2016, 48, 1339–1345. [Google Scholar] [CrossRef]
- Plewa, S.; Horała, A.; Dereziński, P.; Klupczynska, A.; Nowak-Markwitz, E.; Matysiak, J.; Kokot, Z.J. Usefulness of Amino Acid Profiling in Ovarian Cancer Screening with Special Emphasis on Their Role in Cancerogenesis. Int. J. Mol. Sci. 2017, 18, 2727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J.; Lee, I.-M.; Song, Y.; Cook, N.R.; Selhub, J.; Manson, J.E.; Buring, J.E.; Zhang, S.M. Plasma homocysteine and cysteine and risk of breast cancer in women. Cancer Res. 2010, 70, 2397–2405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christodoulakos, G.E.; Lambrinoudaki, I.V.; Rizos, D.A.; Alexandrou, A.; Kountouris, A.V.; Creatsas, G.C. Endogenous sex steroids and circulating homocysteine in healthy Greek postmenopausal women. Hormones 2006, 5, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Güdücü, N.; Görmüş, U.; Kutay, S.S.; Kavak, Z.N.; Telatar, B. Endogenous sex hormones and their associations with cardiovascular risk factors in post-menopausal women. J. Endocrinol. Investig. 2013, 36, 588–592. [Google Scholar] [CrossRef]
- Andersson, A.; Hultberg, B.; Brattstrom, L. Decreased serum homocysteine in pregnancy. Eur. J. Clin. Chem. Clin. Biochem. 1992, 30, 377–379. [Google Scholar]
- Pour, H.R.N.; Grobbee, D.E.; Muller, M.; Emmelot-Vonk, M.; van der Schouw, Y.T. Serum sex hormone and plasma homocysteine levels in middle-aged and elderly men. Eur. J. Endocrinol. 2006, 155, 887–893. [Google Scholar] [CrossRef] [Green Version]
- Lazarou, C.; Kapsou, M. The role of folic acid in prevention and treatment of depression: An overview of existing evidence and implications for practice. Complement. Ther. Clin. Pract. 2010, 16, 161–166. [Google Scholar] [CrossRef]
- Watts, S.; Prescott, P.; Mason, J.; McLeod, N.; Lewith, G. Depression and anxiety in ovarian cancer: A systematic review and meta-analysis of prevalence rates. BMJ Open 2015, 5, e007618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walker, J.; Mulick, A.; Magill, N.; Symeonides, S.; Gourley, C.; Burke, K.; Belot, A.; Quartagno, M.; van Niekerk, M.; Toynbee, M.; et al. Major Depression and Survival in People with Cancer. Psychosom Med. 2021, 83, 410–416. [Google Scholar] [CrossRef] [PubMed]
- Bortolato, B.; Hyphantis, T.N.; Valpione, S.; Perini, G.; Maes, M.; Morris, G.; Kubera, M.; Köhler, C.A.; Fernandes, B.S.; Stubbs, B.; et al. Depression in cancer: The many biobehavioral pathways driving tumor progression. Cancer Treat. Rev. 2017, 52, 58–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naser, A.Y.; Hameed, A.N.; Mustafa, N.; Alwafi, H.; Dahmash, E.Z.; Alyami, H.S.; Khalil, H. Depression and Anxiety in Patients With Cancer: A Cross-Sectional Study. Front. Psychol. 2021, 12, 585534. [Google Scholar] [CrossRef]
- Castro, R.; Rivera, I.; Blom, H.J.; Jakobs, C.; de Almeida, I.T. Homocysteine metabolism, hyperhomocysteinaemia and vascular disease: An overview. J. Inherit. Metab. Dis. 2006, 29, 3–20. [Google Scholar] [CrossRef]
- Azzini, E.; Ruggeri, S.; Polito, A. Homocysteine: Its Possible Emerging Role in At-Risk Population Groups. Int. J. Mol. Sci. 2020, 21, 1421. [Google Scholar] [CrossRef] [Green Version]
- Škovierová, H.; Vidomanová, E.; Mahmood, S.; Sopková, J.; Drgová, A.; Červeňová, T.; Halašová, E.; Lehotský, J. The Molecular and Cellular Effect of Homocysteine Metabolism Imbalance on Human Health. Int. J. Mol. Sci. 2016, 17, 1733. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Jiang, S.; Li, C.; Liu, J.; Tao, M. Relationship between serum homocysteine and different menopausal stage. Climacteric 2020, 23, 59–64. [Google Scholar] [CrossRef]
- Holven, K.B.; Holm, T.; Aukrust, P.; Christensen, B.; Kjekshus, J.; Andreassen, A.K.; Gullestad, L.; Hagve, T.A.; Svilaas, A.; Ose, L.; et al. Effect of folic acid treatment on endothelium-dependent vasodilation and nitric oxide-derived end products in hyperhomocysteinemic subjects. Am. J. Med. 2001, 110, 536–542. [Google Scholar] [CrossRef]
- Elsherbiny, N.M.; Sharma, I.; Kira, D.; Alhusban, S.; Samra, Y.A.; Jadeja, R.; Martin, P.; Al-Shabrawey, M.; Tawfik, A. Homocysteine Induces Inflammation in Retina and Brain. Biomolecules 2020, 10, 393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forges, T.; Monnier-Barbarino, P.; Alberto, J.M.; Guéant-Rodriguez, R.M.; Daval, J.L.; Guéant, J.L. Impact of folate and homocysteine metabolism on human reproductive health. Hum. Reprod. Update 2007, 13, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Rehman, T.; Shabbir, M.A.; Inam-Ur-Raheem, M.; Manzoor, M.F.; Ahmad, N.; Liu, Z.W.; Ahmad, M.H.; Siddeeg, A.; Abid, M.; Aadil, R.M. Cysteine and homocysteine as biomarker of various diseases. Food Sci. Nutr. 2020, 8, 4696–4707. [Google Scholar] [CrossRef] [PubMed]
- Bonifácio, V.D.B.; Pereira, S.A.; Serpa, J.; Vicente, J.B. Cysteine metabolic circuitries: Druggable targets in cancer. Br. J. Cancer 2021, 124, 862–879. [Google Scholar] [CrossRef] [PubMed]
- Dean, O.; Giorlando, F.; Berk, M. N-acetylcysteine in psychiatry: Current therapeutic evidence and potential mechanisms of action. J. Psychiatry Neurosci. 2011, 36, 78–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradlow, R.C.J.; Berk, M.; Kalivas, P.W.; Back, S.E.; Kanaan, R.A. The Potential of N-Acetyl-L-Cysteine (NAC) in the Treatment of Psychiatric Disorders. CNS Drugs 2022, 36, 451–482. [Google Scholar] [CrossRef]
- Cheng, T.D.; Ilozumba, M.N.; Balavarca, Y.; Neuhouser, M.L.; Miller, J.W.; Beresford, S.A.A.; Zheng, Y.; Song, X.; Duggan, D.J.; Toriola, A.T.; et al. Associations between Genetic Variants and Blood Biomarkers of One-Carbon Metabolism in Postmenopausal Women from the Women’s Health Initiative Observational Study. J. Nutr. 2022, 152, 1099–1106. [Google Scholar] [CrossRef]
- Karimi-Zarchi, M.; Moghimi, M.; Abbasi, H.; Hadadan, A.; Salimi, E.; Morovati-Sharifabad, M.; Akbarian-Bafghi, M.J.; Zare-Shehneh, M.; Mosavi-Jarrahi, A.; Neamatzadeh, H. Association of MTHFR 677C>T Polymorphism with Susceptibility to Ovarian and Cervical Cancers: A Systematic Review and Meta-Analysis. Asian Pac. J. Cancer. Prev. 2019, 20, 2569–2577. [Google Scholar] [CrossRef]
- He, L.; Shen, Y. MTHFR C677T polymorphism and breast, ovarian cancer risk: A meta-analysis of 19,260 patients and 26,364 controls. Onco. Targets Ther. 2017, 10, 227–238. [Google Scholar] [CrossRef] [Green Version]
- 1000 Genomes Project Consortium; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Pawlik, P.; Mostowska, A.; Lianeri, M.; Sajdak, S.; Kędzia, H.; Jagodzinski, P.P. Folate and choline metabolism gene variants in relation to ovarian cancer risk in the Polish population. Mol. Biol. Rep. 2012, 39, 5553–5560. [Google Scholar] [CrossRef]
- Mostowska, A.; Myka, M.; Lianeri, M.; Roszak, A.; Jagodziński, P.P. Folate and choline metabolism gene variants and development of uterine cervical carcinoma. Clin. Biochem. 2011, 44, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, L.E.; Sellers, T.A.; Schildkraut, J.M.; Cunningham, J.M.; Vierkant, R.A.; Pankratz, V.S.; Fredericksen, Z.S.; Gadre, M.K.; Rider, D.N.; Liebow, M.; et al. Genetic variation in the one-carbon transfer pathway and ovarian cancer risk. Cancer Res. 2008, 68, 2498–2506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelemen, L.E.; Goodman, M.T.; McGuire, V.; Rossing, M.A.; Webb, P.M.; Australian Cancer Study (Ovarian Cancer) Study Group; Köbel, M.; Anton-Culver, H.; Beesley, J.; Berchuck, A.; et al. Genetic variation in TYMS in the one-carbon transfer pathway is associated with ovarian carcinoma types in the Ovarian Cancer Association Consortium. Cancer Epidemiol. Biomark. Prev. 2010, 19, 1822–1830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.; Jing, Y.; Sun, Z. Lack of association between MTHFD1 G401A polymorphism and ovarian cancer susceptibility. Tumour Biol. 2014, 35, 3385–3389. [Google Scholar] [CrossRef] [PubMed]
- Mori, M.; Harabuchi, I.; Miyake, H.; Casagrande, J.T.; Henderson, B.E.; Ross, R.K. Reproductive, genetic, and dietary risk factors for ovarian cancer. Am. J. Epidemiol. 1988, 128, 771–777. [Google Scholar] [CrossRef]
- Tanha, K.; Mottaghi, A.; Nojomi, M.; Moradi, M.; Rajabzadeh, R.; Lotfi, S.; Janani, L. Investigation on factors associated with ovarian cancer: An umbrella review of systematic review and meta-analyses. J. Ovarian Res. 2021, 14, 153. [Google Scholar] [CrossRef]
- Wang, L.; Ke, Q.; Chen, W.; Wang, J.; Tan, Y.; Zhou, Y.; Hua, Z.; Ding, W.; Niu, J.; Shen, J.; et al. Polymorphisms of MTHFD, plasma homocysteine levels, and risk of gastric cancer in a high-risk Chinese population. Clin. Cancer Res. 2007, 13, 2526–2532. [Google Scholar] [CrossRef] [Green Version]
- Moruzzi, S.; Guarini, P.; Udali, S.; Ruzzenente, A.; Guglielmi, A.; Conci, S.; Pattini, P.; Martinelli, N.; Olivieri, O.; Tammen, S.A.; et al. One-carbon genetic variants and the role of MTHFD1 1958G>A in liver and colon cancer risk according to global DNA methylation. PLoS ONE 2017, 12, e0185792. [Google Scholar] [CrossRef] [Green Version]
- Lévesque, N.; Christensen, K.E.; Van Der Kraak, L.; Best, A.F.; Deng, L.; Caldwell, D.; MacFarlane, A.J.; Beauchemin, N.; Rozen, R. Murine MTHFD1-synthetase deficiency, a model for the human MTHFD1 R653Q polymorphism, decreases growth of colorectal tumors. Mol. Carcinog. 2017, 56, 1030–1040. [Google Scholar] [CrossRef]
- Ben-Sahra, I.; Hoxhaj, G.; Ricoult, S.J.H.; Asara, J.M.; Manning, B.D. mTORC1 induces purine synthesis through control of the mitochondrial tetrahydrofolate cycle. Science 2016, 351, 728–733. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.-Q.; Lu, Y.-X.; Chen, D.-L.; Zuo, Z.-X.; Liu, Z.-X.; Wu, Q.-N.; Mo, H.-Y.; Wang, Z.-X.; Wang, D.-S.; Pu, H.-Y.; et al. Modulation of redox homeostasis by inhibition of MTHFD2 in colorectal Cancer: Mechanisms and therapeutic implications. J. Natl. Cancer Inst. 2019, 111, 584–596. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Liu, Y.; He, C.; Tao, L.; He, X.; Song, H.; Zhang, G. Increased MTHFD2 expression is associated with poor prognosis in breast cancer. Tumour Biol. 2014, 35, 8685–8690. [Google Scholar] [CrossRef]
- Nilsson, R.; Jain, M.; Madhusudhan, N.; Sheppard, N.G.; Strittmatter, L.; Kampf, C.; Huang, J.; Asplund, A.; Mootha, V.K. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer. Nat. Commun. 2014, 5, 3128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, X.; Su, H.; Yang, J.; Wu, X.; Huo, K.; Jing, X.; Zhang, S. Up-regulation of MTHFD2 is associated with clinicopathological characteristics and poor survival in ovarian cancer, possibly by regulating MOB1A signaling. J. Ovarian Res. 2022, 15, 23. [Google Scholar] [CrossRef] [PubMed]
- Eckerling, A.; Ricon-Becker, I.; Sorski, L.; Sandbank, E.; Ben-Eliyahu, S. Stress and cancer: Mechanisms, significance and future directions. Nat. Rev. Cancer 2021, 21, 767–785. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tian, S.; Ning, B.; Huang, T.; Li, Y.; Wei, Y. Stress and cancer: The mechanisms of immune dysregulation and management. Front. Immunol. 2022, 5, 1032294. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.; Brotchie, H. Gender differences in depression. Int. Rev. Psychiatry 2010, 22, 429–436. [Google Scholar] [CrossRef]
- Albert, P.R. Why is depression more prevalent in women? J. Psychiatry Neurosci. 2015, 40, 219–221. [Google Scholar] [CrossRef] [PubMed]
- Nazki, F.H.; Sameer, A.S.; Ganaie, B.A. Folate: Metabolism, genes, polymorphisms and the associated diseases. Gene 2014, 533, 11–20. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Ding, X.X.; Sun, Y.H.; Yang, H.Y.; Chen, J.; Zhao, X.; Jiang, Y.H.; Lv, X.L.; Wu, Z.Q. Association between MTHFR C677T polymorphism and depression: An updated meta-analysis of 26 studies. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013, 46, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Xu, J.; Lu, X.J.; Sun, Y. Association between MTHFR C677T polymorphism and depression: A meta-analysis in the Chinese population. Psychol. Health Med. 2016, 21, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cong, Y.; Liu, H. Folic acid ameliorates depression-like behaviour in a rat model of chronic unpredictable mild stress. BMC Neurosci. 2020, 21, 1. [Google Scholar] [CrossRef]
- Bender, A.; Hagan, K.E.; Kingston, N. The association of folate and depression: A meta-analysis. J. Psychiatr Res. 2017, 95, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Anuk, D.; Özkan, M.; Kizir, A.; Özkan, S. The characteristics and risk factors for common psychiatric disorders in patients with cancer seeking help for mental health. BMC Psychiatry 2019, 19, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golubovic, T.S.; Binic, I.; Krtinic, D.; Djordjevic, V.; Conic, I.; Gugleta, U.; Apostolovic, M.A.; Stanojevic, M.; Kostic, J. Risk Factors and Predictive Value of Depression and Anxiety in Cervical Cancer Patients. Medicina 2022, 58, 507. [Google Scholar] [CrossRef] [PubMed]
- Kumpfer, K.L. Resilience and development: Positive life adaptations. Factors and processes contributing to resilience. In The Resilience Framework; Kluwer Academic/Plenum Publishers: New York, NY, USA, 1999; pp. 179–224. [Google Scholar]
- Davydov, D.M.; Stewart, R.; Ritchie, K.; Chaudieu, I. Resilience and mental health. Clin. Psychol. Rev. 2010, 30, 479–495. [Google Scholar] [CrossRef] [Green Version]
- Festerling, L.; Buentzel, J.; Fischer von Weikersthal, L.; Junghans, C.; Zomorodbakhsch, B.; Stoll, C.; Prott, F.J.; Fuxius, S.; Micke, O.; Richter, A.; et al. Resilience in cancer patients and how it correlates with demographics, psychological factors, and lifestyle. J. Cancer Res. Clin. Oncol. 2022, 149, 5279–5287. [Google Scholar] [CrossRef]
- Beirer, A. Malnutrition and cancer, diagnosis and treatment. Memo 2021, 14, 168–173. [Google Scholar] [CrossRef]
- Bossi, P.; Delrio, P.; Mascheroni, A.; Zanetti, M. The Spectrum of Malnutrition/Cachexia/Sarcopenia in Oncology According to Different Cancer Types and Settings: A Narrative Review. Nutrients 2021, 13, 1980. [Google Scholar] [CrossRef]
- Ravasco, P. Nutrition in Cancer Patients. J. Clin. Med. 2019, 8, 1211. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Torralvo, F.J.; Contreras-Bolívar, V.; Ruiz-Vico, M.; Abuín-Fernández, J.; González-Almendros, I.; Barrios, M.; Olveira, G. Relationship between malnutrition and the presence of symptoms of anxiety and depression in hospitalized cancer patients. Support Care Cancer 2022, 30, 1607–1613. [Google Scholar] [CrossRef]
- Li, S.; Li, G.; Kong, F.; Liu, Z.; Li, N.; Li, Y.; Guo, X. The Association of CYP1A1 Gene with Cervical Cancer and Additional SNP-SNP Interaction in Chinese Women. J. Clin. Lab. Anal. 2016, 30, 1220–1225. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.C.; Zhou, Y.F.; Su, X.C.; Zhang, J. Interaction between TP53 and XRCC1 increases susceptibility to cervical cancer development: A case control study. BMC Cancer 2019, 19, 24. [Google Scholar] [CrossRef]
- Luo, W.; Li, B.; Lin, F.Y.; Yan, B.; Du, Y.F.; Mo, X.F.; Wang, L.; Zhang, C.X. Joint effects of folate intake and one-carbon-metabolizing genetic polymorphisms on breast cancer risk: A case-control study in China. Sci. Rep. 2016, 6, 29555. [Google Scholar] [CrossRef] [Green Version]
- Lewis, S.J.; Lawlor, D.A.; Smith, G.D.; Araya, R.; Timpson, N.; Day, I.N.; Ebrahim, S. The thermolabile variant of MTHFR is associated with depression in the British Women’s Heart and Health Study and a meta-analysis. Mol. Psychiatry 2006, 11, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Gilbody, S.; Lewis, S.; Lightfoot, T. Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: A HuGE review. Am. J. Epidemiol. 2007, 165, 1–13. [Google Scholar] [CrossRef] [Green Version]
- López-León, S.; Janssens, A.C.; Ladd, A.M.G.Z.; Del-Favero, J.; Claes, S.J.; Oostra, B.A.; van Duijn, C.M. Meta-analyses of genetic studies on major depressive disorder. Mol. Psychiatry 2008, 13, 772–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peerbooms, O.L.; van Os, J.; Drukker, M.; Kenis, G.; Hoogveld, L.; MTHFR in Psychiatry Group; de Hert, M.; Delespaul, P.; van Winkel, R.; Rutten, B.P. Meta-analysis of MTHFR gene variants in schizophrenia, bipolar disorder and unipolar depressive disorder: Evidence for a common genetic vulnerability? Brain Behav. Immun. 2011, 25, 1530–1543. [Google Scholar] [CrossRef] [Green Version]
- Zintzaras, E. C677T and A1298C methylenetetrahydrofolate reductase gene polymorphisms in schizophrenia, bipolar disorder and depression: A meta-analysis of genetic association studies. Psychiatr. Genet. 2006, 16, 105–115. [Google Scholar] [CrossRef]
- Gaysina, D.; Cohen, S.; Craddock, N.; Farmer, A.; Hoda, F.; Korszun, A.; Owen, M.J.; Craig, I.W.; McGuffin, P. No association with the 5,10-methylenetetrahydrofolate reductase gene and major depressive disorder: Results of the depression case control (DeCC) study and a meta-analysis. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2008, 147B, 699–706. [Google Scholar] [CrossRef]
- Bottiglieri, T.; Laundy, M.; Crellin, R.; Toone, B.K.; Carney, M.W.; Reynolds, E.H. Homocysteine, folate, methylation, and monoamine metabolism in depression. J. Neurol. Neurosurg. Psychiatry 2000, 69, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Esnafoglu, E.; Ozturan, D.D. The relationship of severity of depression with homocysteine, folate, vitamin B12, and vitamin D levels in children and adolescents. Child Adolesc. Ment. Health 2020, 25, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Khosravi, M.; Sotoudeh, G.; Amini, M.; Raisi, F.; Mansoori, A.; Hosseinzadeh, M. The relationship between dietary patterns and depression mediated by serum levels of Folate and vitamin B12. BMC Psychiatry 2020, 20, 63. [Google Scholar] [CrossRef] [Green Version]
- Bremner, J.D.; Goldberg, J.; Vaccarino, V. Plasma homocysteine concentrations and depression: A twin study. J. Affect. Disord. Rep. 2021, 4, 100087. [Google Scholar] [CrossRef]
- National Collaborating Centre for Mental Health (UK). Depression: The Treatment and Management of Depression in Adults (Updated Edition); British Psychological Society: Leicester, UK, 2010. [Google Scholar]
- Frosst, P.; Blom, H.; Milos, R.; Goyette, P.; Sheppard, C.A.; Matthews, R.G.; Boers, G.J.; den Heijer, M.; Kluijtmans, L.A.; van den Heuvel, L.P.; et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 1995, 10, 111–113. [Google Scholar] [CrossRef]
- Harmon, D.L.; Shields, D.C.; Woodside, J.V.; McMaster, D.; Yarnell, J.W.; Young, I.S.; Peng, K.; Shane, B.; Evans, A.E.; Whitehead, A.S. Methionine synthase D919G polymorphism is a significant but modest determinant of circulating homocysteine concentrations. Genet. Epidemiol. 1999, 17, 298–309. [Google Scholar] [CrossRef]
- Hol, F.A.; van der Put, N.M.; Geurds, M.P.; Heil, S.G.; Trijbels, F.J.; Hamel, B.C.; Mariman, E.C.; Blom, H.J. Molecular genetic analysis of the gene encoding the trifunctional enzyme MTHFD (methylenetetrahydrofolate-dehydrogenase, methenyltetrahydrofolate-cyclohydrolase, formyltetrahydrofolate synthetase) in patients with neural tube defects. Clin. Genet. 1998, 53, 119–125. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Gonzalez, J.R.; Moreno, V. SNPassoc: SNPs-Based Whole Genome Association Studies. R Package Version 2.0-2. Available online: https://CRAN.R-project.org/package=SNPassoc (accessed on 14 December 2020).
- Patil, I. Visualizations with statistical details: The ‘ggstatsplot’ approach. J. Open Source Softw. 2021, 6, 3167. [Google Scholar] [CrossRef]
- Hahn, L.W.; Ritchie, M.D.; Moore, J.H. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 2003, 19, 376–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, C.M.; Jacobson, S.A.; Fingerlin, T.E. Power and Sample Size Calculations for Genetic Association Studies in the Presence of Genetic Model Misspecification. Hum. Hered. 2019, 84, 256–271. [Google Scholar] [CrossRef] [PubMed]
- Mijatovic, V.; van der Mooren, M.J. Homocysteine in postmenopausal women and the importance of hormone replacement therapy. Clin. Chem. Lab. Med. 2001, 39, 764–767. [Google Scholar] [CrossRef] [PubMed]
- Lakryc, E.M.; Machado, R.B.; Soares, J.M., Jr.; Fernandes, C.E., 3rd; Baracat, E.C. What is the influence of hormone therapy on homocysteine and crp levels in postmenopausal women? Clinics 2015, 70, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, E.K.; Teixeira, B.M.; Yoshihara, R.N.; Kuniyoshi, R.K.; Alves, B.C.; Gehrke, F.S.; Vilas-Bôas, V.A.; Correia, J.A.; Azzalis, L.A.; Junqueira, V.B.; et al. Systemic chemotherapy interferes in homocysteine metabolism in breast cancer patients. J. Clin. Lab. Anal. 2014, 28, 157–162. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Controls | Cancers | p |
---|---|---|---|
Sample size, n | 240 | 200 | |
Age (years) | 60.10 ± 7.82 | 61.40 ± 12.17 | 0.1920 * |
Age at diagnosis (years) | - | 59.59 ± 12.32 | - |
Postmenopausal status, n (%) | <0.001 | ||
Yes | 164 (68.3) | 198 (99.0) | |
No | 76 (31.7) | 2 (1.0) | |
Depression **, n (%) | <0.001 | ||
Yes | 82 (34.2) | 139 (69.5) | |
No | 158 (65.8) | 61 (30.5) | |
Depression **, median [IQR] | |||
Yes | 12.0 [10.0–14.0] | 13.0 [10.0–19.0] | 0.008 |
No | 4.0 [2.0–5.0] | 4.0 [3.0–6.0] | 0.249 |
Depression Levels HDRS Points | Controls n = 240 (%) | Ovarian n = 128 (%) | Endometrial n = 48 (%) | Cervical n = 24 (%) | p |
---|---|---|---|---|---|
Not depressed: 0–7 | 158 (65.8%) | 36 (28.1%) | 16 (33.3%) | 9 (37.5%) | <0.001 |
Mild (subthreshold): 8–13 | 55 (22.9%) | 46 (35.9%) | 19 (39.6%) | 7 (29.2%) | |
Moderate (mild): 14–18 | 21(8.8%) | 18 (14.1%) | 4 (8.3%) | 3 (12.5%) | |
Severe (moderate): 19–22 | 6 (2.5%) | 12 (9.4%) | 2 (4.2%) | 3 (12.5%) | |
Very severe (severe): >23 | 0 (0.0%) | 16 (12.5%) | 7 (14.6%) | 2 (8.3%) |
SNP | Alleles | Controls n = 480 | Cancers n = 400 | p | ||
---|---|---|---|---|---|---|
MAF n (Frequency) | HWE p | MAF n (Frequency) | HWE p | |||
MTHFR (rs1801133) | C>T | 161 (0.335) | 0.248 | 133 (0.332) | 0.114 | 0.927 |
MTR (rs1805087) | A>G | 106 (0.221) | 0.452 | 94 (0.235) | 1.000 | 0.618 |
MTHFD1 (rs2236225) | G>A | 166 (0.346) | 1.000 | 168 (0.420) | 0.773 | 0.024 |
SNP/Genetic Model | Genotypes | Controls n (%) | Cancers n (%) | OR (95% CI) | p | AIC |
---|---|---|---|---|---|---|
MTHFR (rs1801133) | ||||||
Codominant | CC | 110 (45.8) | 94 (47.0) | 1.00 | 0.931 | 612.2 |
CT | 99 (41.2) | 79 (39.5) | 0.93 (0.62–1.40) | |||
TT | 31 (12.9) | 27 (13.5) | 1.02 (0.57–1.83) | |||
Dominant | CC vs. CT-TT | 130 (54.2) | 106 (53.0) | 0.95 (0.65–1.39) | 0.807 | 610.3 |
Recessive | CC-CT vs. TT | 209 (87.1) | 173 (86.5) | 1.05 (0.60–1.83) | 0.857 | 610.3 |
Over dominant | CC-TT vs. CT | 141 (58.8) | 121 (60.5) | 0.93 (0.63–1.36) | 0.710 | 610.2 |
log-Additive | 1, 2, 3 | 240 (54.5) | 200 (45.5) | 0.99 (0.75–1.29) | 0.930 | 610.3 |
MTR (rs1805087) | ||||||
Codominant | AA | 148 (61.7) | 117 (58.5) | 1.00 | 0.743 | 611.7 |
AG | 78 (32.5) | 72 (36.0) | 1.17 (0.78–1.74) | |||
GG | 14 (5.8) | 11 (5.5) | 0.99 (0.44–2.27) | |||
Dominant | AA vs. AG-GG | 92 (38.3) | 83 (41.5) | 1.14 (0.78–1.67) | 0.499 | 609.9 |
Recessive | AA-AG vs. GG | 226 (94.2) | 189 (94.5) | 0.94 (0.42–2.12) | 0.880 | 610.3 |
Over dominant | AA-GG vs. AG | 162 (67.5) | 128 (64.0) | 1.17 (0.79–1.73) | 0.441 | 609.7 |
log-Additive | 1, 2, 3 | 240 (54.5) | 200 (45.5) | 1.08 (0.79–1.48) | 0.623 | 610.1 |
MTHFD1 (rs2236225) | ||||||
Codominant | GG | 103 (42.9) | 66 (33.0) | 1.00 | 0.073 | 607.1 |
GA | 108 (45.0) | 100 (50.0) | 1.45 (0.96–2.18) | |||
AA | 29 (12.1) | 34 (17.0) | 1.83 (1.02–3.28) | |||
Dominant | GG vs. GA-AA | 137 (57.1) | 134 (67.0) | 1.53 (1.03–2.25) | 0.033 | 605.8 |
Recessive | GG-GA vs. AA | 211 (87.9) | 166 (83.0) | 1.49 (0.87–2.55) | 0.144 | 608.2 |
Over dominant | GG-AA vs. GA | 132 (55.0) | 100 (50.0) | 1.22 (0.84–1.78) | 0.300 | 609.2 |
log-Additive | 1, 2, 3 | 240 (54.5) | 200 (45.5) | 1.37 (1.04–1.81) | 0.024 | 605.2 |
SNP/Genotypes | Ovarian n = 128 (%) | Endometrial n = 48 (%) | Cervical n = 24 (%) | p | |
---|---|---|---|---|---|
MTHFR (rs1801133) | CC | 59 (46.1) | 23 (47.9) | 12 (50.0) | 0.835 |
CT | 49 (38.3) | 20 (41.7) | 10 (41.7) | ||
TT | 20 (15.6) | 5 (10.4) | 2 (8.3) | ||
MTR (rs1805087) | AA | 76 (59.4) | 28 (58.3) | 13 (54.2) | 0.977 |
AG | 45 (35.2) | 17 (35.4) | 10 (41.7) | ||
GG | 7 (5.5) | 3 (6.2) | 1 (4.2) | ||
MTHFD1 (rs2236225) | GG | 38 (29.7) | 20 (41.7) | 8 (33.3) | 0.441 |
GA | 68 (53.1) | 22 (45.8) | 10 (41.7) | ||
AA | 22 (17.2) | 6 (12.5) | 6 (25.0) |
SNP/Genotypes | Cancers | p | Controls | p | |||
---|---|---|---|---|---|---|---|
Depressed n = 139 (%) | Not Depressed n = 61 (%) | Depressed n = 82 (%) | Not Depressed n = 158 (%) | ||||
MTHFR (rs1801133) | CC | 64 (46.0) | 30 (49.2) | 0.919 | 29 (35.4) | 81 (51.3) | 0.011 |
CT | 56 (40.3) | 23 (37.7) | 36 (43.9) | 63 (39.9) | |||
TT | 19 (13.7) | 8 (13.1) | 17 (20.7) | 14 (8.8) | |||
MTR (rs1805087) | AA | 80 (57.6) | 37 (60.7) | 0.912 | 50 (61.0) | 98 (62.0) | 0.984 |
AG | 51 (36.7) | 21 (34.4) | 27 (32.9) | 51 (32.3) | |||
GG | 8 (5.8) | 3 (4.9) | 5 (6.1) | 9 (5.7) | |||
MTHFD1 (rs2236225) | GG | 47 (33.8) | 19 (31.1) | 0.897 | 39 (47.6) | 64 (40.5) | 0.376 |
GA | 68 (48.9) | 32 (52.5) | 36 (43.9) | 72 (45.6) | |||
AA | 24 (17.3) | 10 (16.4) | 7 (8.5) | 22 (13.9) |
Model | Training Balanced Accuracy | Testing Balanced Accuracy | CVC | OR (95% CI) | p |
---|---|---|---|---|---|
MTHFD1 | 0.5496 | 0.5496 | 10/10 | 1.53 (1.03–2.25) | 0.033 |
MTHFR, MTHFD1 | 0.5588 | 0.5208 | 8/10 | 1.59 (1.09–2.34) | 0.016 |
MTHFR, MTR, MTHFD1 | 0.5787 | 0.5221 | 10/10 | 1.99 (1.33–2.98) | 0.001 |
Gene Symbol | rs No. | Location * | Alleles | MAF ** |
---|---|---|---|---|
MTHFR | rs1801133 | chr1:11796321 | C>T | T = 0.3648 |
MTR | rs1805087 | chr1:236885200 | A>G | G = 0.1730 |
MTHFD1 | rs2236225 | chr14:64442127 | G>A | A = 0.4294 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawlik, P.; Kurzawińska, G.; Ożarowski, M.; Wolski, H.; Piątek, K.; Słopień, R.; Sajdak, S.; Olbromski, P.; Seremak-Mrozikiewicz, A. Common Variants in One-Carbon Metabolism Genes (MTHFR, MTR, MTHFD1) and Depression in Gynecologic Cancers. Int. J. Mol. Sci. 2023, 24, 12574. https://doi.org/10.3390/ijms241612574
Pawlik P, Kurzawińska G, Ożarowski M, Wolski H, Piątek K, Słopień R, Sajdak S, Olbromski P, Seremak-Mrozikiewicz A. Common Variants in One-Carbon Metabolism Genes (MTHFR, MTR, MTHFD1) and Depression in Gynecologic Cancers. International Journal of Molecular Sciences. 2023; 24(16):12574. https://doi.org/10.3390/ijms241612574
Chicago/Turabian StylePawlik, Piotr, Grażyna Kurzawińska, Marcin Ożarowski, Hubert Wolski, Krzysztof Piątek, Radosław Słopień, Stefan Sajdak, Piotr Olbromski, and Agnieszka Seremak-Mrozikiewicz. 2023. "Common Variants in One-Carbon Metabolism Genes (MTHFR, MTR, MTHFD1) and Depression in Gynecologic Cancers" International Journal of Molecular Sciences 24, no. 16: 12574. https://doi.org/10.3390/ijms241612574
APA StylePawlik, P., Kurzawińska, G., Ożarowski, M., Wolski, H., Piątek, K., Słopień, R., Sajdak, S., Olbromski, P., & Seremak-Mrozikiewicz, A. (2023). Common Variants in One-Carbon Metabolism Genes (MTHFR, MTR, MTHFD1) and Depression in Gynecologic Cancers. International Journal of Molecular Sciences, 24(16), 12574. https://doi.org/10.3390/ijms241612574