Molecular Mechanisms of Synaptic Plasticity: Dynamic Changes in Neuron Functions
Conflicts of Interest
References
- Herculano-Houzel, S. The Human Brain in Numbers: A Linearly Scaled-up Primate Brain. Front. Hum. Neurosci. 2009, 3, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colbran, R.J. Thematic Minireview Series: Molecular Mechanisms of Synaptic Plasticity. J. Biol. Chem. 2015, 290, 28594–28595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busceti, C.L.; Ferese, R.; Bucci, D.; Ryskalin, L.; Gambardella, S.; Madonna, M.; Nicoletti, F.; Fornai, F. Corticosterone Upregulates Gene and Protein Expression of Catecholamine Markers in Organotypic Brainstem Cultures. Int. J. Mol. Sci. 2019, 20, 2901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imbriani, P.; Tassone, A.; Meringolo, M.; Ponterio, G.; Madeo, G.; Pisani, A.; Bonsi, P.; Martella, G. Loss of Non-Apoptotic Role of Caspase-3 in the PINK1 Mouse Model of Parkinson’s Disease. Int. J. Mol. Sci. 2019, 20, 3407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laricchiuta, D.; Balsamo, F.; Fabrizio, C.; Panuccio, A.; Termine, A.; Petrosini, L. CB1 Activity Drives the Selection of Navigational Strategies: A Behavioral and c-Fos Immunoreactivity Study. Int. J. Mol. Sci. 2020, 21, 1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’angelo, V.; Giorgi, M.; Paldino, E.; Cardarelli, S.; Fusco, F.R.; Saverioni, I.; Sorge, R.; Martella, G.; Biagioni, S.; Mercuri, N.B.; et al. A2a Receptor Dysregulation in Dystonia Dyt1 Knock-out Mice. Int. J. Mol. Sci. 2021, 22, 2691. [Google Scholar] [CrossRef] [PubMed]
- Gopaul, K.R.; Irfan, M.; Miry, O.; Vose, L.R.; Moghadam, A.; Subah, G.; Hökfelt, T.; Bark, C.; Stanton, P.K. Developmental Time Course of SNAP-25 Isoforms Regulate Hippocampal Long-Term Synaptic Plasticity and Hippocampus-Dependent Learning. Int. J. Mol. Sci. 2020, 21, 1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capetian, P.; Müller, L.; Volkmann, J.; Heckmann, M.; Ergün, S.; Wagner, N. Visualizing the Synaptic and Cellular Ultrastructure in Neurons Differentiated from Human Induced Neural Stem Cells—An Optimized Protocol. Int. J. Mol. Sci. 2020, 21, 1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandolfi, D.; Bigiani, A.; Porro, C.A.; Mapelli, J. Inhibitory Plasticity: From Molecules to Computation and Beyond. Int. J. Mol. Sci. 2020, 21, 1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, C.; Colangelo, A.M.; Virtuoso, A.; Alberghina, L.; Papa, M. Neurons, Glia, Extracellular Matrix and Neurovascular Unit: A Systems Biology Approach to the Complexity of Synaptic Plasticity in Health and Disease. Int. J. Mol. Sci. 2020, 21, 1539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franchini, L.; Carrano, N.; Di Luca, M.; Gardoni, F. Synaptic GluN2A-Containing NMDA Receptors: From Physiology to Pathological Synaptic Plasticity. Int. J. Mol. Sci. 2020, 21, 1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crispino, M.; Volpicelli, F.; Perrone-Capano, C. Role of the Serotonin Receptor 7 in Brain Plasticity: From Development to Disease. Int. J. Mol. Sci. 2020, 21, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ledonne, A.; Mercuri, N.B. On the Modulatory Roles of Neuregulins/ErbB Signaling on Synaptic Plasticity. Int. J. Mol. Sci. 2019, 21, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stampanoni Bassi, M.; Iezzi, E.; Gilio, L.; Centonze, D.; Buttari, F. Synaptic Plasticity Shapes Brain Connectivity: Implications for Network Topology. Int. J. Mol. Sci. 2019, 20, 6193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stampanoni Bassi, M.; Iezzi, E.; Pavone, L.; Mandolesi, G.; Musella, A.; Gentile, A.; Gilio, L.; Centonze, D.; Buttari, F. Modeling Resilience to Damage in Multiple Sclerosis: Plasticity Meets Connectivity. Int. J. Mol. Sci. 2019, 21, 143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Limanaqi, F.; Biagioni, F.; Busceti, C.L.; Ryskalin, L.; Soldani, P.; Frati, A.; Fornai, F. Cell Clearing Systems Bridging Neuro-Immunity and Synaptic Plasticity. Int. J. Mol. Sci. 2019, 20, 2197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martella, G. Molecular Mechanisms of Synaptic Plasticity: Dynamic Changes in Neuron Functions. Int. J. Mol. Sci. 2023, 24, 12567. https://doi.org/10.3390/ijms241612567
Martella G. Molecular Mechanisms of Synaptic Plasticity: Dynamic Changes in Neuron Functions. International Journal of Molecular Sciences. 2023; 24(16):12567. https://doi.org/10.3390/ijms241612567
Chicago/Turabian StyleMartella, Giuseppina. 2023. "Molecular Mechanisms of Synaptic Plasticity: Dynamic Changes in Neuron Functions" International Journal of Molecular Sciences 24, no. 16: 12567. https://doi.org/10.3390/ijms241612567
APA StyleMartella, G. (2023). Molecular Mechanisms of Synaptic Plasticity: Dynamic Changes in Neuron Functions. International Journal of Molecular Sciences, 24(16), 12567. https://doi.org/10.3390/ijms241612567