Inhibitory Plasticity: From Molecules to Computation and Beyond
Abstract
:1. Introduction
2. Variety of Inhibitory Circuits in the Central Nervous System
3. Induction and Expression Mechanisms
4. Learning Rules and Computational Consequences of Inhibitory Plasticity
5. Perspectives and Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Siegelbaum, S.A.; Kandel, E.R. Learning-related synaptic plasticity: LTP and LTD. Curr. Opin. Neurobiol. 1991, 1, 113–120. [Google Scholar] [CrossRef]
- Maffei, A. The many forms and functions of long term plasticity at GABAergic synapses. Neural Plast. 2011, 254724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allene, C.; Lourenço, J.; Bacci, A. The neuronal identity bias behind neocortical GABAergic plasticity. Trends Neurosci. 2015, 38, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Vogels, T.P.; Froemk e, R.C.; Doyon, N.; Gilson, M.; Haas, J.S.; Liu, R.; Maffei, A.; Miller, P.; Wierenga, C.J.; Woodin, M.A.; et al. Inhibitory synaptic plasticity: Spike timing-dependence and putative network function. Front. Neural Circuits 2013, 18, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scanziani, M.; Häusser, M. Electrophysiology in the age of light. Nature 2009, 461, 930–939. [Google Scholar] [CrossRef]
- Lewis, D.A.; Hashimoto, T. Deciphering the disease process of schizophrenia: The contribution of cortical GABA neurons. Neuron 2011, 72, 231–243. [Google Scholar]
- Isaacson, J.S.; Scanziani, M. How inhibition shapes cortical activity. Trends Neurosci. 2015, 38, 524–534. [Google Scholar] [CrossRef] [Green Version]
- Pouille, F.; Marin-Burgin, A.; Adesnik, H.; Atallah, B.V.; Scanziani, M. Input normalization by global feedforward inhibition expands cortical dynamic range. Nat. Neurosci. 2009, 12, 1577–1585. [Google Scholar] [CrossRef]
- Tepper, J.M.; Koós, T.; Wilson, C.J. GABAergic microcircuits in the neostriatum. Trends Neurosci. 2004, 27, 662–669. [Google Scholar] [CrossRef]
- Mapelli, J.; Gandolfi, D.; D’Angelo, E. Combinatorial responses controlled by synaptic inhibition in the cerebellum granular layer. J. Neurophysiol. 2010, 103, 250–261. [Google Scholar] [CrossRef] [Green Version]
- Wehr, M.; Zador, A.M. Balanced inhibition underlies tuning and sharpens spike timing in auditory cortex. Nature 2003, 426, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Okun, M.; Lampl, I. Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat. Neurosci. 2008, 11, 535–537. [Google Scholar] [CrossRef]
- Wilent, W.B.; Contreras, D. Dynamics of excitation and inhibition underlying stimulus selectivity in rat somatosensory cortex. Nat. Neurosci. 2005, 8, 1364–1370. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Atallah, B.V.; Scanziani, M. Equalizing excitation-inhibition ratios across visual cortical neurons. Nature 2014, 596–600. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Q.; Lur, G.; Morse, T.M.; Carnevale, N.T.; Ellis-Davies, G.C.; Higley, M.J. Compartmentalization of GABAergic inhibition by dendritic spines. Science 2013, 340, 759–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Angelo, E.; Solinas, S.; Mapelli, J.; Gandolfi, D.; Mapelli, L.; Prestori, F. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Front. Neural Circuits 2013, 7, 93. [Google Scholar] [CrossRef] [Green Version]
- Sahara, S.; Yanagawa, Y.; O’Leary, D.D.; Stevens, C.F. The fraction of cortical GABAergic neurons is constant from near the start of cortical neurogenesis to adulthood. J. Neurosci. 2012, 32, 4755–4761. [Google Scholar] [CrossRef] [Green Version]
- Markram, H.; Toledo-Rodriguez, M.; Wang, Y.; Gupta, A.; Silberberg, G.; Wu, C. D Interneurons of the neocortical inhibitory system. Nat. Rev. Neurosci. 2004, 5, 793–807. [Google Scholar] [CrossRef]
- Méndez, P.; Bacci, A. Assortment of GABAergic plasticity in the cortical interneuron melting pot. Neural Plast. 2011, 2011, 976856. [Google Scholar] [CrossRef]
- Taniguchi, H. Genetic dissection of GABAergic neural circuits in mouse neocortex. Front. Cell Neurosci. 2014, 8, 8. [Google Scholar] [CrossRef] [Green Version]
- Ben-Ari, Y.; Gaiarsa, J.L.; Tyzio, R.; Khazipov, R. GABA: A pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev. 2007, 87, 1215–1284. [Google Scholar] [CrossRef] [PubMed]
- Szabadics, J.; Varga, C.; Molnár, G.; Oláh, S.; Barzó, P.; Tamás, G. Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 2006, 311, 233–235. [Google Scholar] [CrossRef] [PubMed]
- DeFelipe, J.; López-Cruz, P.L.; Benavides-Piccione, R.; Bielza, C.; Larrañaga, P.; Anderson, S.; Burkhalter, A.; Cauli, B.; Fairén, A.; Feldmeyer, D.; et al. New insights into the classification and nomenclature of cortical GABAergic interneurons. Nat. Rev. Neurosc. 2013, 14, 202–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasic, B.; Menon, V.; Nguyen, T.N.; Kim, T.K.; Jarsky, T.; Yao, Z.; Levi, B.; Gray, L.T.; Sorensen, S.A.; Dolbeare, T.; et al. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 2016, 19, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Wefelmeyer, W.; Cattaert, D.; Burrone, J. Activity-dependent mismatch between axo-axonic synapses and the axon initial segment controls neuronal output. Proc. Natl. Acad. Sci. USA 2015, 112, 9757–9762. [Google Scholar] [CrossRef] [Green Version]
- Somogyi, P.; Klausberger, T. Defined types of cortical interneurone structure space and spike timing in the hippocampus. J. Physiol. 2005, 562, 9–26. [Google Scholar] [CrossRef]
- Pouille, F.; Scanziani, M. Enforcement of temporal fidelity in pyramidal cells by somatic feed-forward inhibition. Science 2001, 293, 1159–1163. [Google Scholar] [CrossRef] [Green Version]
- Sohal, V.S.; Zhang, F.; Yizhar, O.; Deisseroth, K. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature 2009, 459, 698–702. [Google Scholar] [CrossRef] [Green Version]
- Cardin, J.A.; Carlén, M.; Meletis, K.; Knoblich, U.; Zhang, F.; Deisseroth, K.; Tsai, L.H.; Moore, C.I. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature 2009, 459, 663–667. [Google Scholar] [CrossRef] [Green Version]
- Whissell, P.D.; Bang, J.Y.; Khan, I.; Xie, Y.F.; Parfitt, G.M.; Grenon, M.; Plummer, N.W.; Jensen, P.; Bonin, R.P.; Kim, J.C. Selective Activation of Cholecystokinin-Expressing GABA (CCK-GABA) Neurons Enhances Memory and Cognition. eNeuro 2019, 6, 1. [Google Scholar] [CrossRef]
- Pelkey, K.A.; Chittajallu, R.; Craig, M.T.; Tricoire, L.; Wester, J.C.; McBain, C.J. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev. 2017, 97, 1619–1747. [Google Scholar] [CrossRef] [PubMed]
- Mullner, F.E.; Wierenga, C.J.; Bonhoeffer, T. Precision of inhibition: Dendritic inhibition by individual GABAergic synapses on hippocampal pyramidal cells is confined in space and time. Neuron 2015, 87, 576–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayama, T.; Noguchi, J.; Watanabe, S.; Takahashi, N.; Hayashi-Takagi, A.; Ellis-Davies, G.C.; Matsuzaki, M.; Kasai, H. GABA promotes the competitive selection of dendritic spines by controlling local Ca2+ signaling. Nat. Neurosci. 2013, 16, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Urban-Ciecko, J.; Barth, A.L. Somatostatin-expressing neurons in cortical networks. Nat. Rev. Neurosci. 2016, 17, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Overstreet-Wadiche, L.; McBain, C.J. Neurogliaform cells in cortical circuits. Nat. Rev. Neurosci. 2015, 16, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, C.K.; Xue, M.; He, M.; Huang, Z.J.; Scanziani, M. Inhibition of inhibition in visual cortex: The logic of connections between molecularly distinct interneurons. Nat. Neurosci. 2013, 16, 1068–1076. [Google Scholar] [CrossRef]
- Miao, C.; Cao, Q.; Moser, M.B.; Moser, E.I. Parvalbumin and Somatostatin Interneurons Control Different Space-Coding Networks in the Medial Entorhinal Cortex. Cell 2017, 171, 507–521.e17. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, Y.; Kubota, Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex 1997, 7, 476–486. [Google Scholar] [CrossRef] [Green Version]
- Galarreta, M.; Hestrin, S. A network of fast-spiking cells in the neocortex connected by electrical synapses. Nature 1999, 402, 72–75. [Google Scholar] [CrossRef]
- Song, H.F.; Yang, G.R.; Wang, X.J. Training Excitatory-Inhibitory Recurrent Neural Networks for Cognitive Tasks: A Simple and Flexible Framework. PLoS Comput. Biol. 2016, 12, e1004792. [Google Scholar] [CrossRef] [Green Version]
- Shu, Y.; Hasenstaub, A.; McCormick, D.A. Turning on and off recurrent balanced cortical activity. Nature. 2003, 423, 288–293. [Google Scholar] [CrossRef]
- Haider, B.; Krause, M.R.; Duque, A.; Yu, Y.; Touryan, J.; Mazer, J.A.; McCormick, D.A. Synaptic and network mechanisms of sparse and reliable visual cortical activity during nonclassical receptive field stimulation. Neuron 2010, 65, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Gaiarsa, J.; Caillard, O.; Ben-Ari, Y. Long-term plasticity at GABAergic and glycinergic synapses: Mechanisms and functional significance. Trends Neurosci. 2002, 25, 564–570. [Google Scholar] [CrossRef]
- Nugent, F.S.; Penick, E.C.; Kauer, J.A. Opioids block long-term potentiation of inhibitory synapses. J. Nature 2007, 446, 1086–1090. [Google Scholar] [CrossRef]
- Petrini, E.M.; Barberis, A. Diffusion dynamics of synaptic molecules during inhibitory postsynaptic plasticity. Front. Cell Neurosci. 2014, 8, 300. [Google Scholar]
- Mapelli, J.; Gandolfi, D.; Vilella, A.; Zoli, M.; Bigiani, A. Heterosynaptic GABAergic plasticity bidirectionally driven by the activity of pre- and postsynaptic NMDA receptors. Proc. Natl. Acad. Sci. USA 2016, 113, 9898–9903. [Google Scholar] [CrossRef] [Green Version]
- Regehr, W.G.; Carey, M.R.; Best, A.R. Activity-dependent regulation of synapses by retrograde messengers. Neuron 2009, 63, 154–170. [Google Scholar] [CrossRef] [Green Version]
- Mathew, S.S.; Hablitz, J.J. Presynaptic NMDA receptors mediate IPSC potentiation at GABAergic synapses in developing rat neocortex. PLoS ONE 2011, 6, e17311. [Google Scholar] [CrossRef] [Green Version]
- Chevaleyre, V.; Castillo, P.E. Heterosynaptic LTD of hippocampal GABAergic synapses: A novel role of endocannabinoids in regulating excitability. Neuron 2003, 38, 461–472. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, Y.; Iwakiri, M. Long-term modification of inhibitory synaptic transmission in developing visual cortex. Neuroreport 1993, 4, 907–910. [Google Scholar] [CrossRef]
- Maffei, A.; Nelson, S.B.; Turrigiano, G.G. Selective reconfiguration of layer 4 visual cortical circuitry by visual deprivation. Nat. Neurosci. 2004, 7, 1353–1359. [Google Scholar] [CrossRef] [PubMed]
- Kano, M.; Rexhausen, U.; Dreesen, J.; Konnerth, A. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 1992, 356, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Fenselau, H.; Heinke, B.; Sandkühler, J. Heterosynaptic long-term potentiation at GABAergic synapses of spinal lamina I neurons. J. Neurosci. 2011, 31, 17383–17391. [Google Scholar] [CrossRef] [PubMed]
- Caillard, O.; Ben-Ari, Y.; Gaiarsa, J.L. Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus. J. Physiol. 1999, 518 (Pt 1), 109–119. [Google Scholar] [CrossRef]
- Braga, M.F.; Aroniadou-Anderjaska, V.; Xie, J.; Li, H. Bidirectional modulation of GABA release by presynaptic glutamate receptor 5 kainate receptors in the basolateral amygdala. J. Neurosci. 2003, 23, 442–452. [Google Scholar] [CrossRef] [Green Version]
- Bliss, T.V.; Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 1973, 232, 331–356. [Google Scholar] [CrossRef]
- Nieus, T.; Sola, E.; Mapelli, J.; Saftenku, E.; Rossi, P.; D’Angelo, E. LTP regulates burst initiation and frequency at mossy fiber-granule cell synapses of rat cerebellum: Experimental observations and theoretical predictions. J. Neurophysiol. 2006, 95, 686–699. [Google Scholar] [CrossRef] [Green Version]
- Baldelli, P.; Novara, M.; Carabelli, V.; Hernandez-Guijo, J.M.; Carbone, E. BDNF up-regulates evoked GABAergic transmission in developing hippocampus by potentiating presynaptic N- and P/Q-type Ca2+ channels signaling. Eur. J. Neurosci. 2002, 16, 2297–2310. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.I.; Tao, H.W. Heterosynaptic scaling of developing GABAergic synapses: Dependence on glutamatergic input and developmental stage. J. Neurosci. 2007, 27, 5301–5312. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.; Garthwaite, J. Models of the diffusional spread of nitric oxide: Impli- cations for neural nitric oxide signalling and its pharmacological properties. Neuropharmacology 1994, 33, 1235–1244. [Google Scholar] [CrossRef]
- Bathina, S.; Das, U.N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 2015, 11, 1164–1178. [Google Scholar]
- Gandolfi, D.; Cerri, S.; Mapelli, J.; Polimeni, M.; Tritto, S.; Fuzzati-Armentero, M.T.; Bigiani, A.; Blandini, F.; Mapelli, L.; D’Angelo, E. Activation of the CREB/c-Fos Pathway during Long-Term Synaptic Plasticity in the Cerebellum Granular Layer. Front. Cell Neurosci. 2017, 11, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Kotak, V.C.; Sanes, P.H. Normal hearing is required for the emergence of long-lasting inhibitory potentiation in cortex. J. Neurosci. 2010, 30, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, Y. GABAB receptors, monoamine receptors, and postsynaptic inositol trisphosphate-induced Ca2+ release are involved in the induction of long-term potentiation at visual cortical inhibitory synapses. J. Neurosci. 1996, 16, 6342–6352. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.J.; Lachamp, P. The activation of excitatory glutamate receptors evokes a long-lasting increase in the release of GABA from cerebellar stellate cells. J. Neurosci. 2006, 26, 9332–9339. [Google Scholar] [CrossRef]
- Crosby, K.M.; Murphy-Royal, C.; Wilson, S.A.; Gordon, G.R.; Bains, J.S.; Pittman, Q.J. Cholecystokinin Switches the Plasticity of GABA Synapses in the Dorsomedial Hypothalamus via Astrocytic ATP Release. J. Neurosci. 2018, 38, 8515–8525. [Google Scholar] [CrossRef]
- Castillo, P.E.; Chiu, C.Q.; Carroll, R.C. Long-term plasticity at inhibitory synapses. Curr. Opin. Neurobiol. 2011, 21, 328–338. [Google Scholar] [CrossRef] [Green Version]
- Marsicano, G.; Wotjak, C.T.; Azad, S.C.; Bisogno, T.; Rammes, G.; Cascio, M.G.; Hermann, H.; Tang, J.; Hofmann, C.; Zieglgänsberger, W.; et al. The endogenous cannabinoid system controls extinction of aversive memories. Nature 2002, 418, 530–534. [Google Scholar] [CrossRef]
- Adermark, L.; Lovinger, D.M. Frequency-dependent inversion of net striatal output by endocannabinoid-dependent plasticity at different synaptic inputs. J. Neurosci. 2009, 29, 1375–1380. [Google Scholar] [CrossRef]
- Henneberger, C.; Redman, S.J.; Grantyn, R. Cortical efferent control of subcortical sensory neurons by synaptic disinhibition. Cereb Cortex 2007, 17, 2039–2049. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Huang, S.; de Pasquale, R.; Millman, D.; Song, L.; Lee, H.K.; Tsumoto, T.; Kirkwood, A. The maturation of GABAergic transmission in visual cortex requires endocannabinoid- mediated LTD of inhibitory inputs during a critical period. Neuron 2010, 66, 248–259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azad, S.C.; Monory, K.; Marsicano, G.; Cravatt, B.F.; Lutz, B.; Zieglgansberger, W.; Rammes, G. Circuitry for associative plasticity in the amygdala involves endocannabinoid signaling. J. Neurosci. 2004, 24, 9953–9961. [Google Scholar] [CrossRef] [PubMed]
- Ahumada, J.; Fernández de Sevilla, D.; Couve, A.; Buño, W.; Fuenzalida, M. Long-term depression of inhibitory synaptic transmission induced by spike-timing dependent plasticity requires coactivation of endocannabinoid and muscarinic receptors. Hippocampus 2013, 23, 1439–1452. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.Q.; Puente, N.; Grandes, P.; Castillo, P.E. Dopaminergic modulation of endocannabinoid-mediated plasticity at GABAergic synapses in the prefrontal cortex. J. Neurosci. 2010, 30, 7236–7248. [Google Scholar] [CrossRef]
- Pan, B.; Hillard, C.J.; Liu, Q.S. D2 dopamine receptor activation facilitates endocannabinoid-mediated long-term synaptic depression of GABAergic synaptic transmission in midbrain dopamine neurons via cAMP-protein kinase A signaling. J. Neurosci. 2008, 28, 14018–14030. [Google Scholar] [CrossRef]
- Lien, C.C.; Mu, Y.; Vargas-Caballero, M.; Poo, M.M. Visual stimuli-induced LTD of GABAergic synapses mediated by presynaptic NMDA receptors. Nat. Neurosci. 2006, 9, 372–380. [Google Scholar] [CrossRef]
- Maffei, A.; Nataraj, K.; Nelson, S.B.; Turrigiano, G.G. Potentiation of cortical inhibition by visual deprivation. Nature 2006, 443, 81–84. [Google Scholar] [CrossRef]
- Holmgren, C.D.; Zilberter, Y. Coincident spiking activity induces long-term changes in inhibition of neocortical pyramidal cells. J. Neurosci. 2001, 21, 8270–8277. [Google Scholar] [CrossRef]
- Woodin, M.A.; Ganguly, K.; Poo, M.M. Coincident pre- and postsynaptic activity modifies GABAergic synapses by postsynaptic changes in Cl− transporter activity. Neuron 2003, 39, 807–820. [Google Scholar] [CrossRef] [Green Version]
- Barberis, A. Postsynaptic plasticity of GABAergic synapses. Neuropharmacology 2019, 107643. [Google Scholar] [CrossRef]
- Malenka, R.C.; Nicoll, R.A. Learning and memory. Never fear, LTP is hear. Nature 1997, 390, 552–553. [Google Scholar] [PubMed]
- Kittler, J.T.; Moss, S.J. Modulation of GABAA receptor activity by phosphorylation and receptor trafficking: Implications for the efficacy of synaptic inhibition. Curr. Opin. Neurobiol. 2003, 13, 341–347. [Google Scholar] [CrossRef]
- Kurotani, T.; Yamada, K.; Yoshimura, Y.; Crair, M.C.; Komatsu, Y. State-dependent bidirectional modification of somatic inhibition in neocortical pyramidal cells. Neuron 2008, 57, 905–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, C.Q.; Barberis, A.; Higley, M.J. Preserving the balance: Diverse forms of long-term GABAergic synaptic plasticity. Nat. Rev. Neurosci. 2019, 20, 272–281. [Google Scholar] [CrossRef]
- Petrini, E.M.; Ravasenga, T.; Hausrat, T.J.; Iurilli, G.; Olcese, U.; Racine, V.; Sibarita, J.B.; Jacob, T.C.; Moss, S.J.; Benfenati, F.; et al. Synaptic recruitment of gephyrin regulates surface GABAA receptor dynamics for the expression of inhibitory LTP. Nat. Commun. 2014, 5, 3921. [Google Scholar]
- Tyagarajan, S.K.; Ghosh, H.; Yévenes, G.E.; Nikonenko, I.; Ebeling, C.; Schwerdel, C.; Sidler, C.; Zeilhofer, H.U.; Gerrits, B.; Muller, D.; et al. Regulation of GABAergic synapse formation and plasticity by GSK3beta-dependent phosphorylation of gephyrin. Proc. Natl. Acad. Sci. USA 2011, 108, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Bannai, H.; Levi, S.; Schweizer, C.; Inoue, T.; Launey, T.; Racine, V.; Sibarit, J.B.; Mikoshiba, K.; Triller, A. Activity-dependent tuning of inhibitory neurotransmission based on GABAAR diffusion dynamics. Neuron 2009, 62, 670–682. [Google Scholar] [CrossRef] [Green Version]
- Arancibia-Carcamo, I.L.; Kittler, J.T. Regulation of GABA(A) receptor membrane trafficking and synaptic localization. Pharmacol. Ther. 2009, 123, 17–31. [Google Scholar]
- Fiumelli, H.; Woodin, M.A. Role of activity-dependent regulation of neuronal chloride homeostasis in development. Curr. Opin. Neurobiol. 2007, 17, 81–86. [Google Scholar] [CrossRef]
- Farrant, M.; Nusser, Z. Variations on an inhibitory theme: Phasic and tonic activation of GABAA receptors. Nat. Rev. Neurosci. 2005, 6, 215–229. [Google Scholar] [CrossRef]
- Jiang, L.; Kang, D.; Kang, J. Potentiation of tonic GABAergic inhibition by activation of postsynaptic kainate receptors. Neuroscience 2015, 298, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Zhou, L.; Lu, W. An NMDA receptor-dependent mechanism underlies inhibitory synapse development. Cell Rep. 2016, 14, 471–478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaenisch, N.; Liebmann, L.; Guenther, M.; Hübner, C.A.; Frahm, C.; Witte, O.W. Reduced tonic inhibition after stroke promotes motor performance and epileptic seizures. Sci. Rep. 2016, 6, 26173. [Google Scholar]
- Sigel, E.; Baur, R.; Rácz, I.; Marazzi, J.; Smart, T.G.; Zimmer, A.; Gertsch, J. The major central endocannabinoid directly acts at GABAA receptors. Proc. Natl. Acad. Sci. USA 2011, 108, 18150–18155. [Google Scholar] [CrossRef] [Green Version]
- Gasulla, J.; Calvo, D.J. Enhancement of tonic and phasic GABAergic currents following nitric oxide synthase inhibition in hippocampal CA1 pyramidal neurons. Neurosci. Lett. 2015, 590, 29–34. [Google Scholar]
- Dominguez, S.; Fernandez de Sevilla, D.; Buno, W. Muscarinic long-term enhancement of tonic and phasic GABAA inhibition in rat CA1 pyramidal neurons. Front. Cell Neurosci. 2016, 10, 244. [Google Scholar]
- Chandler, K.E.; Princivalle, A.P.; Fabian-Fine, R.; Bowery, N.G.; Kullmann, D.M.; Walker, M.C. Plasticity of GABAB receptor-mediated heterosynaptic interactions at mossy fibers after status epilepticus. J. Neurosci. 2003, 23, 11382–11391. [Google Scholar] [CrossRef] [Green Version]
- Lecca, S.; Trusel, M.; Mameli, M. Footshock-induced plasticity of GABAB signalling in the lateral habenula requires dopamine and glucocorticoid receptors. Synapse 2017, 71, e21948. [Google Scholar] [CrossRef]
- Chung, H.J.; Ge, W.P.; Qian, X.; Wiser, O.; Jan, Y.N.; Jan, L.Y. G protein-activated inwardly rectifying potassium channels mediate depotentiation of long-term potentiation. PNAS 2009, 106, 635–640. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Rodríguez, I.; Gruart, A.; Delgado-García, J.M.; Jiménez-Díaz, L.; Navarro-López, J.D. Role of GirK Channels in Long-Term Potentiation of Synaptic Inhibition in an In Vivo Mouse Model of Early Amyloid-β Pathology. Int. J. Mol. Sci. 2019, 20, 1168. [Google Scholar] [CrossRef] [Green Version]
- Abbott, L.; Nelson, S. Synaptic plasticity: Taming the beast. Nat. Neurosci. 2000, 3, 1178–1183. [Google Scholar] [CrossRef] [PubMed]
- Markram, H.; Gerstner, W.; Sjöström, P.J. A history of spike-timing-dependent plasticity. Front. Synaptic Neurosci. 2011, 3, 1–24. [Google Scholar]
- Hennequin, G.; Agnes, E.J.; Vogels, T.P. Inhibitory Plasticity: Balance, Control, and Codependence. Ann. Rev. Neurosci. 2017, 25, 557–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiumelli, H.; Cancedda, L.; Poo, M.M. Modulation of GABAergic transmission by activity via postsynaptic Ca2+-dependent regulation of KCC2 function. Neuron 2005, 48, 773–786. [Google Scholar] [CrossRef] [Green Version]
- Gubellini, P.; Ben-Ari, Y.; Gaiarsa, J.L. Activity- and age-dependent GABAergic synaptic plasticity in the developing rat hippocampus. Eur. J. Neurosci. 2001, 14, 1937–1946. [Google Scholar] [CrossRef]
- Huang, C.S.; Shi, S.H.; Ule, J.; Ruggiu, M.; Barker, L.A.; Darnell, R.B.; Jan, Y.N.; Jan, L.Y. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition. Cell 2005, 123, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Haas, J.S.; Nowotny, T.; Abarbanel, H.D.I. Spike-timing-dependent plasticity of inhibitory synapses in the entorhinal cortex. J. Neurophysiol. 2006, 96, 3305–3313. [Google Scholar] [CrossRef] [Green Version]
- D’amour, J.; Froemke, R. Inhibitory and excitatory spike-timing-dependent plasticity in the auditory cortex. Neuron 2015, 86, 514–528. [Google Scholar]
- Vickers, E.D.; Clark, C.; Osypenko, D.; Fratzl, A.; Kochubey, O.; Bettler, B.; Schneggenburger, R. Parvalbumin-Interneuron Output Synapses Show Spike-Timing-Dependent Plasticity that Contributes to Auditory Map Remodeling. Neuron 2018, 99, 720–735.e6. [Google Scholar] [CrossRef] [Green Version]
- Turrigiano, G. Homeostatic synaptic plasticity: Local and global mechanisms for stabilizing neuronal function. Cold Spring Harb. Perspect. Biol. 2012, 4, a005736. [Google Scholar]
- House, D.R.; Elstrott, J.; Koh, E.; Chung, J.; Feldman, D.E. Parallel regulation of feedforward inhibition and excitation during whisker map plasticity. Neuron 2011, 72, 819–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Maffei, A. Inhibitory plasticity dictates the sign of plasticity at excitatory synapses. J. Neurosci. 2014, 34, 1083–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campanac, E.; Gasselin, C.; Baude, A.; Rama, S.; Ankri, N.; Debanne, D. Enhanced intrinsic excitability in basket cells maintains excitatory-inhibitory balance in hippocampal circuits. Neuron 2013, 77, 712–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapfer, C.; Glickfeld, L.L.; Atallah, B.V.; Scanziani, M. Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex. Nat. Neurosci. 2007, 10, 743–753. [Google Scholar] [CrossRef] [PubMed]
- Atallah, B.V.; Scanziani, M. Instantaneous modulation of gamma oscillation frequency by balancing excitation with inhibition. Neuron 2009, 62, 566–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Froemke, R.C.; Merzenich, M.M.; Schreiner, C.E. A synaptic memory trace for cortical receptive field plasticity. Nature 2007, 450, 425–429. [Google Scholar] [CrossRef] [Green Version]
- Gambino, F.; Holtmaat, A. Spike-timing-dependent potentiation of sensory surround in the somatosensory cortex is facilitated by deprivation-mediated disinhibition. Neuron 2012, 75, 490–502. [Google Scholar] [CrossRef] [Green Version]
- Lourenço, J.; Pacioni, S.; Rebola, N.; van Woerden, G.M.; Marinelli, S.; DiGregorio, D.; Bacci, A. Non-associative potentiation of perisomatic Inhibition alters the temporal coding of neocortical layer 5 pyramidal neurons. PLoS Biol. 2014, 12, e1001903. [Google Scholar] [CrossRef] [Green Version]
- Gandolfi, D.; Mapelli, J.; D’Angelo, E. Long-Term Spatiotemporal Reconfiguration of Neuronal Activity Revealed by Voltage-Sensitive Dye Imaging in the Cerebellar Granular Layer. Neural Plas 2015, 2015, 284986. [Google Scholar] [CrossRef] [Green Version]
- Mapelli, J.; Gandolfi, D.; Giuliani, E.; Prencipe, F.P.; Pellati, F.; Barbieri, A.; D’Angelo, E.; Bigiani, A. The effect of desflurane on neuronal communication at a central synapse. PLoS ONE 2015, 10, e0123534. [Google Scholar] [CrossRef] [Green Version]
- Silver, R.A. Neuronal Arithmetic. Nat. Rev. Neurosci. 2010, 11, 474–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freund, T.F. Interneuron diversity series: Rhythm and mood in perisomatic inhibition. Trends Neurosci. 2003, 26, 489–495. [Google Scholar] [CrossRef]
- Buszaki, G. Neural syntax: Cell assemblies, synapsembles, and reader. Neuron 2010, 68, 362–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adesnik, H.; Bruns, W.; Taniguchi, H.; Huang, Z.J.; Scanziani, M. A neural circuit for spatial summation in visual cortex. Nature 2012, 490, 226–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsodyks, M.V.; Sejnowski, T. Rapid state switching in balanced cortical network models. Netw. Comput. Neural Syst. 1995, 6, 111–124. [Google Scholar] [CrossRef]
- Vogels, T.P.; Sprekeler, H.; Zenke, F.; Clopath, C.; Gerstner, W. Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 2011, 334, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Luz, Y.; Shamir, M. Balancing feed-forward excitation and inhibition via Hebbian inhibitory synaptic plasticity. PLOS Comput. Biol. 2012, 8, e1002334. [Google Scholar]
- Litwin-Kumar, A.; Doiron, B. Slow dynamics and high variability in balanced cortical networks with clustered connections. Nat. Neurosci. 2012, 15, 1498–1505. [Google Scholar]
- Landau, I.; Egger, R.; Dercksen, V.; Oberlaender, M.; Sompolinsky, H. The impact of structural heterogeneity on excitation–inhibition balance in cortical networks. Neuron 2016, 92, 1106–1121. [Google Scholar] [CrossRef] [Green Version]
- Vogels, T.P.; Abbott, L.F. Gating multiple signals through detailed balance of excitation and inhibition in spiking networks. Nat. Neurosci. 2009, 12, 483–491. [Google Scholar]
- Wilmes, K.A.; Clopath, C. Inhibitory microcircuits for top-down plasticity of sensory representations. Nat. Commun. 2019, 10, 5055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soloduchin, S.; Shamir, M. Rhythmogenesis evolves as a consequence of long-term plasticity of inhibitory synapses. Sci. Rep. 2018, 8, 13050. [Google Scholar]
- Weber, S.N.; Sprekeler, H. Learning place cells, grid cells and invariances with excitatory and inhibitory plasticity. Elife 2018, 7, e34560. [Google Scholar] [CrossRef] [PubMed]
- Stelly, C.E.; Pomrenze, M.B.; Cook, J.B.; Morikawa, H. Repeated social defeat stress enhances glutamatergic synaptic plasticity in the VTA and cocaine place conditioning. Elife 2016, 4, e15448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. PNAS 1982, 79, 2554–2558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maass, W.; Natschläger, T.; Markram, H. Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Comput. 2002, 14, 2531–2560. [Google Scholar] [CrossRef]
- Hennequin, G.; Vogels, T.P.; Gerstner, W. Optimal control of transient dynamics in balanced networks supports generation of complex movements. Neuron 2014, 82, 1394–1406. [Google Scholar] [CrossRef] [Green Version]
- Gilra, A.; Gerstner, W. Predicting non-linear dynamics by stable local learning in a recurrent spiking neural network. Elife 2017, 6, e28295. [Google Scholar] [CrossRef]
- Luque, N.R.; Garrido, J.A.; Naveros, F.; Carrillo, R.R.; D’Angelo, E.; Ros, E. Distributed Cerebellar Motor Learning: A Spike-Timing-Dependent Plasticity Model. Front. Comput Neurosci. 2016, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Widloski, J.; Fiete, I. A model of grid cell development through spatial exploration and spike time– dependent plasticity. Neuron 2014, 83, 481–495. [Google Scholar]
- Inagaki, T.; Begum, T.; Reza, F.; Horibe, S.; Inaba, M.; Yoshimura, Y.; Komatsu, Y. Brain-derived neurotrophic factor-mediated retrograde signaling required for the induction of long-term potentiation at inhibitory synapses of visual cortical pyramidal neurons. Neurosci. Res. 2008, 61, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Lange, M.D.; Doengi, M.; Lesting, J.; Pape, H.C.; Jüngling, K. Heterosynaptic long-term potentiation at interneuron-principal neuron synapses in the amygdala requires nitric oxide signalling. J. Physiol. 2012, 590, 131–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivakumaran, S.; Mohajerani, M.H.; Cherubini, E. At immature mossy-fiber-CA3 synapses, correlated presynaptic and postsynaptic activity persistently enhances GABA release and network excitability via BDNF and cAMP-dependent PKA. J. Neurosci. 2009, 29, 2637–2647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duguid, I.C.; Smart, T.G. Retrograde activation of presynaptic NMDA receptors enhances GABA release at cerebellar interneuron–Purkinje cell synapses. Nat. Neurosci. 2004, 7, 525–533. [Google Scholar] [CrossRef]
- He, Q.; Duguid, I.; Clark, B.; Panzanelli, P.; Patel, B.; Thomas, P.; Fritschy, J.M.; Smart, T.G. Interneuron- and GABA(A) receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells. Nat. Commun. 2015, 16, 7364. [Google Scholar] [CrossRef] [Green Version]
- Ouardouz, M.; Sastry, B.R. Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei. J. Neurophysiol. 2000, 84, 1414–1421. [Google Scholar] [CrossRef] [Green Version]
- Chiu, C.Q.; Martenson, J.S.; Yamazaki, M.; Natsume, R.; Sakimura, K.; Tomita, S.; Tavalin, S.J.; Higley, M.J. Input-Specific NMDAR-Dependent Potentiation of Dendritic GABAergic Inhibition. Neuron 2018, 97, 368–377.e3. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, S.Y.; Hirano, T. Sustained structural change of GABA(A) receptor-associated protein underlies long-term potentiation at inhibitory synapses on a cerebellar Purkinje neuron. J. Neurosci. 2007, 27, 6788–6799. [Google Scholar] [CrossRef]
- Patenaude, C.; Chapman, C.A.; Bertrand, S.; Congar, P.; Lacaille, J.C. GABAB receptor- and metabotropic glutamate receptor-dependent cooperative long-term potentiation of rat hippocampal GABAA synaptic transmission. J. Physiol. 2003, 553 (Pt 1), 155–167. [Google Scholar] [CrossRef]
- Bauer, E.P.; LeDoux, J.E. Heterosynaptic long-term potentiation of inhibitory interneurons in the lateral amygdala. J. Neurosci. 2004, 24, 9507–9512. [Google Scholar] [CrossRef] [Green Version]
- Caillard, O.; Ben-Ari, Y.; Gaïarsa, J.L. Mechanisms of induction and expression of long-term depression at GABAergic synapses in the neonatal rat hippocampus. J. Neurosci. 1999, 19, 7568–7777. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.M.; Mansuy, I.M.; Kandel, E.R.; Roder, J. Calcineurin-mediated LTD of GABAergic inhibition underlies the increased excitability of CA1 neurons associated with LTP. Neuron 2000, 26, 197–205. [Google Scholar] [CrossRef] [Green Version]
- Morishita, W.; Sastry, B.R. Postsynaptic mechanisms underlying long-term depression of GABAergic transmission in neurons of the deep cerebellar nuclei. J. Neurophysiol. 1996, 76, 59–68. [Google Scholar] [CrossRef]
- Pan, B.; Hillard, C.J.; Liu, Q.S. Endocannabinoid signaling mediates cocaine-induced inhibitory synaptic plasticity in midbrain dopamine neurons. J. Neurosci. 2008, 28, 1385–1397. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rodríguez, I.; Djebari, S.; Temprano-Carazo, S.; Vega-Avelaira, D.; Jiménez-Herrera, R.; Iborra-Lázaro, G.; Yajeya, J.; Jiménez-Díaz, L.; Navarro-López, J.D. Hippocampal long-term synaptic depression and memory deficits induced in early amyloidopathy are prevented by enhancing G-protein-gated inwardly rectifying potassium channel activity. J. Neurochem. 2019, e14946. [Google Scholar]
- Gogolla, N.; Leblanc, J.J.; Quast, K.B.; Südhof, T.C.; Fagiolini, M.; Hensch, T.K. Common circuit defect of excitatory-inhibitory balance in mouse models of autism. J. Neurodev. Disord. 2009, 1, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Davenport, E.C.; Szulc, B.R.; Drew, J.; Taylor, J.; Morgan, T.; Higgs, N.F.; López-Doménech, G.; Kittler, J.T. Autism and Schizophrenia-Associated CYFIP1 Regulates the Balance of Synaptic Excitation and Inhibition. Cell Rep. 2019, 26, 2037–2051.e6. [Google Scholar] [CrossRef] [Green Version]
- Lewis, D.A.; Hashimoto, T. Deciphering the disease process of schizophrenia: The contribution of cortical GABA neurons. Int. Rev. Neurobiol. 2007, 78, 109–131. [Google Scholar]
- Scharfman, H.E.; Brooks-Kayal, A.R. Is plasticity of GABAergic mechanisms relevant to epileptogenesis? Adv. Exp. Med. Biol. 2014, 813, 133–150. [Google Scholar]
- Milosevic, L.; Gramer, R.; Kim, T.H.; Algarni, M.; Fasano, A.; Kalia, S.K.; Hodaie, M.; Lozano, A.M.; Popovic, M.R.; Hutchison, W.D. Modulation of inhibitory plasticity in basal ganglia output nuclei of patients with Parkinson’s disease. Neurobiol. Dis. 2019, 124, 46–56. [Google Scholar] [CrossRef]
- Li, Q.; Serb, A.; Prodromakis, T.; Xu, H. A memristor SPICE model accounting for synaptic activity dependence. PLoS ONE 2015, 10, e0120506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serrano-Gotarredona, T.; Masquelier, T.; Prodromakis, T.; Indiveri, G.; Linares-Barranco, B. STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front. Neurosci. 2013, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Chen, B.; Lu, W.D. Memristive physically evolving networks enabling the emulation of heterosynaptic plasticity. Adv. Mater. 2015, 27, 7720–7727. [Google Scholar] [CrossRef] [PubMed]
- Abu-Hassan, K.; Taylor, J.D.; Morris, P.G.; Donati, E.; Bortolotto, Z.A.; Indiveri, G.; Paton, J.F.R.; Nogaret, A. Optimal solid state neuron. Nat. Commun. 2019, 10, 5309. [Google Scholar] [CrossRef] [PubMed]
- Serb, A.; Bill, J.; Khiat, A.; Berdan, R.; Legenstein, R.; Prodromakis, T. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun. 2016, 7, 12611. [Google Scholar] [CrossRef] [PubMed]
Sign of Plasticity | Molecular Mechanism | Brain Region/Neuron | Site of Expression | Computation/Functional Significance | Refs |
---|---|---|---|---|---|
LTP | GABAB receptor dependent, BDNF signaling | Visual cortex/Neonatal hippocampus | Presynaptic | Critical period plasticity/ E/I balancing | [54,104,105,141] |
LTP | Postsynaptic NMDA, retrograde NO | VTA, Basolateral amygdala Cerebellum, | Presynaptic | Reward modulation/ spatio temporal pattern sharpening/ shaping conditioned fear response | [44,46,142] |
LTP | Postsynaptic calcium, retrograde BDNF | Hippocampus | Presynaptic | Associative memory formation | [143] |
LTP | Presynaptic NMDA | Cerebellum | Presynaptic | Motor learning regulation | [65,144] |
LTP | Postsynaptic mGluR and retrograde NO | Lamina I spinal cord | Presynaptic | Signal to noise regulation | [53] |
LTP | Postsynaptic calcium/NMDA | Deep cerebellar nuclei | Presynaptic | Regulation of spike firing for motor coordination | [145,146] |
LTP | Postsynaptic NMDA and CamKII | Medial prefrontal cortex | Postsynaptic | Local regulation of E/I at cellular level | [147] |
LTP | Postsynaptic Calcium/ CamKII | Cerebellum Purkinje cell | Postsynaptic | Regulation of output firing patterns | [52,141,148] |
LTP | GABAB/ mGluR | Hippocampal CA1 | Postsynaptic | Reinforcement of rhythmic activity | [149] |
LTP | Presynaptic firing paired with mild depolarization | Developing visual cortex | Postsynaptic | Regulating critical period for ocular dominance | [76] |
LTP | Calcium influx receptor phosphorilation | Neocortex | postsynaptic | E/I balancing | [83,84,85] |
LTP | Postsynaptic NMDA and calcium rise | Lateral amygdala | Postsynaptic | Processing stimuli during fear conditioning | [150] |
LTP | Postsynaptic NMDA, L type calcium channels | Auditory cortex | Postsynaptic | Normalizing E/I and remodeling auditory map | [108] |
LTD | mGlur, retrograde eCB | Hippocampus, amygdala, Visual cortex, prefrontal cortex | Presynaptic | Changes of E/I / extinction of aversive memories/ regulation of development in critical period | [49,69,72,75] |
LTD | GABAA activation and postsynaptic NMDA | Neonatal hippocampus | Presynaptic | Regulation of synapse formation and maturation | [151] |
LTD | Presynaptic NMDA | Cerebellum, visual cortex | Presynaptic | Spatio-temporal sharpening sensory information | [46,77] |
LTD | Postsynaptic NMDA and mediated by calcineurin | hippocampus | postsynaptic | Disinhibit excitatory circuits | [152] |
LTD | Postsynaptic calcium and protein phosphatase | Deep cerebellar nuclei | postsynaptic | Modulation of spontaneous cerebellar firing for motor coordination | [153] |
LTD | Dopamine mediated eCBN signaling | Ventral tegmental area | postsynaptic | Regulation of addiction mechanisms | [75,154] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gandolfi, D.; Bigiani, A.; Porro, C.A.; Mapelli, J. Inhibitory Plasticity: From Molecules to Computation and Beyond. Int. J. Mol. Sci. 2020, 21, 1805. https://doi.org/10.3390/ijms21051805
Gandolfi D, Bigiani A, Porro CA, Mapelli J. Inhibitory Plasticity: From Molecules to Computation and Beyond. International Journal of Molecular Sciences. 2020; 21(5):1805. https://doi.org/10.3390/ijms21051805
Chicago/Turabian StyleGandolfi, Daniela, Albertino Bigiani, Carlo Adolfo Porro, and Jonathan Mapelli. 2020. "Inhibitory Plasticity: From Molecules to Computation and Beyond" International Journal of Molecular Sciences 21, no. 5: 1805. https://doi.org/10.3390/ijms21051805
APA StyleGandolfi, D., Bigiani, A., Porro, C. A., & Mapelli, J. (2020). Inhibitory Plasticity: From Molecules to Computation and Beyond. International Journal of Molecular Sciences, 21(5), 1805. https://doi.org/10.3390/ijms21051805