Catalyst Design through Grafting of Diazonium Salts—A Critical Review on Catalyst Stability
Abstract
:1. Introduction
2. Diazonium Salts
3. Different Approaches to Catalyst Production via Diazonium Salt Chemistry
3.1. Immobilization of Catalysts by a Chemical Reaction with a Diazonium Moiety
3.2. Diazonium Salts and Nanoparticles as Catalysts
3.3. Modulating Wettability of a Carrier
3.4. Transforming a Catalyst into a Corresponding Diazonium Salt
4. Choice of a Carrier
5. Deactivation Routes of Diazonium-Based Catalysts
5.1. Mechanical Stability
5.2. Thermal Stability
5.3. Chemical Stability
5.4. Deactivation through Poisoning
6. Stability of Diazonium-Based Catalysts: Experimental Studies
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sunol, A.K.; Sunol, S.G.; Cogswell, K.; Rooney, D.; Jacquemin, J.; García-álvarez, J.; Villanueva-Bermejo, D.; Fornari, T. Substitution of solvents by safer products. In Handbook of Solvents, Volume 2: Use, Health, and Environment; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1455–1634. [Google Scholar] [CrossRef]
- Fadhel, A.Z.; Pollet, P.; Liotta, C.L.; Eckert, C.A. Combining the Benefits of Homogeneous and Heterogeneous Catalysis with Tunable Solvents and Nearcritical Water. Molecules 2010, 15, 8400. [Google Scholar] [CrossRef] [Green Version]
- de Vos, D.E.; Sels, B.F.; Jacobs, P.A. Immobilization of Homogeneous Oxidation Catalysts. Adv. Catal. 2001, 46, 1–87. [Google Scholar] [CrossRef]
- Vankelecom, I. Catalyst Immobilization in Membranes. In Encyclopedia of Membranes; Springer: Berlin/Heidelberg, Germany, 2016; pp. 315–316. [Google Scholar] [CrossRef]
- Stasiak, M.; Röben, C.; Rosenberger, N.; Schleth, F.; Studer, A.; Greiner, A.; Wendorff, J.H. Design of Polymer Nanofiber Systems for the Immobilization of Homogeneous Catalysts—Preparation and Leaching Studies. Polymer 2007, 48, 5208–5218. [Google Scholar] [CrossRef]
- Bélanger, D.; Pinson, J. Electrografting: A Powerful Method for Surface Modification. Chem. Soc. Rev. 2011, 40, 3995–4048. [Google Scholar] [CrossRef]
- Radi, A.E.; Muñoz-Berbel, X.; Cortina-Puig, M.; Marty, J.L. Novel Protocol for Covalent Immobilization of Horseradish Peroxidase on Gold Electrode Surface. Electroanalysis 2009, 21, 696–700. [Google Scholar] [CrossRef]
- Guo, D.J.; Li, H.L. Highly Dispersed Ag Nanoparticles on Functional MWNT Surfaces for Methanol Oxidation in Alkaline Solution. Carbon 2005, 43, 1259–1264. [Google Scholar] [CrossRef]
- Revenga-Parra, M.; Villa-Manso, A.M.; Briones, M.; Mateo-Martí, E.; Martínez-Periñán, E.; Lorenzo, E.; Pariente, F. Bioelectrocatalytic Platforms Based on Chemically Modified Nanodiamonds by Diazonium Salt Chemistry. Electrochim. Acta 2020, 357, 136876. [Google Scholar] [CrossRef]
- Hayat, A.; Sassolas, A.; Marty, J.L.; Radi, A.E. Highly Sensitive Ochratoxin A Impedimetric Aptasensor Based on the Immobilization of Azido-Aptamer onto Electrografted Binary Film via Click Chemistry. Talanta 2013, 103, 14–19. [Google Scholar] [CrossRef]
- Alonso-Lomillo, M.A.; Rüdiger, O.; Maroto-Valiente, A.; Velez, M.; Rodríguez-Ramos, I.; Muñoz, F.J.; Fernández, V.M.; De Lacey, A.L. Hydrogenase-Coated Carbon Nanotubes for Efficient H2 Oxidation. Nano Lett. 2007, 7, 1603–1608. [Google Scholar] [CrossRef]
- Marwan, J.; Addou, T.; Bélanger, D. Functionalization of Glassy Carbon Electrodes with Metal-Based Species. Chem. Mater. 2005, 17, 2395–2403. [Google Scholar] [CrossRef]
- Belbekhouche, S.; Kebe, S.I.; Mahouche-Chergui, S.; Guerrouache, M.; Carbonnier, B.; Jaziri, M.; Chehimi, M.M. Aryl Diazonium-Modified Olive Waste: A Low Cost Support for the Immobilization of Nanocatalysts. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 541–549. [Google Scholar] [CrossRef]
- Mirkhalaf, F.; Graves, J.E. Nanostructured Electrocatalysts Immobilised on Electrode Surfaces and Organic Film Templates. Chem. Pap. 2012, 66, 472–483. [Google Scholar] [CrossRef]
- Mousli, F.; Snoussi, Y.; Chehimi, M.M.; Wojcieszak, R. On the Use of Diazonium Salts in the Design of Catalytic Hybrid Materials and Coatings. In Aryl Diazonium Salts and Related Compounds: Surface Chemistry and Applications; Springer International Publishing: Cham, Switzerland, 2022; pp. 287–308. [Google Scholar] [CrossRef]
- Mo, F.; Dong, G.; Zhang, Y.; Wang, J. Recent Applications of Arene Diazonium Salts in Organic Synthesis. Org. Biomol. Chem. 2013, 11, 1582–1593. [Google Scholar] [CrossRef]
- Yates, E.; Yates, A. Johann Peter Griess FRS (1829–88): Victorian Brewer and Synthetic Dye Chemist. Notes Rec. R. Soc. Lond. 2016, 70, 65. [Google Scholar] [CrossRef]
- Li, X.; Ye, X.; Wei, C.; Shan, C.; Wojtas, L.; Wang, Q.; Shi, X. Diazo Activation with Diazonium Salts: Synthesis of Indazole and 1,2,4-Triazole. Org. Lett. 2020, 22, 4151–4155. [Google Scholar] [CrossRef]
- Mahouche-Chergui, S.; Gam-Derouich, S.; Mangeney, C.; Chehimi, M.M. Aryl Diazonium Salts: A New Class of Coupling Agents for Bonding Polymers, Biomacromolecules and Nanoparticles to Surfaces. Chem. Soc. Rev. 2011, 40, 4143–4166. [Google Scholar] [CrossRef]
- Hetemi, D.; Noël, V.; Pinson, J. Grafting of Diazonium Salts on Surfaces: Application to Biosensors. Biosensors 2020, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Noël, J.M.; Sjöberg, B.; Marsac, R.; Zigah, D.; Bergamini, J.F.; Wang, A.; Rigaut, S.; Hapiot, P.; Lagrost, C. Flexible Strategy for Immobilizing Redox-Active Compounds Using in Situ Generation of Diazonium Salts. Investigations of the Blocking and Catalytic Properties of the Layers. Langmuir 2009, 25, 12742–12749. [Google Scholar] [CrossRef] [PubMed]
- Vaz-Dominguez, C.; Campuzano, S.; Rüdiger, O.; Pita, M.; Gorbacheva, M.; Shleev, S.; Fernandez, V.M.; de Lacey, A.L. Laccase Electrode for Direct Electrocatalytic Reduction of O2 to H2O with High-Operational Stability and Resistance to Chloride Inhibition. Biosens. Bioelectron. 2008, 24, 531–537. [Google Scholar] [CrossRef] [Green Version]
- Le Goff, A.; Artero, V.; Jousselme, B.; Tran, P.D.; Guillet, N.; Métayé, R.; Fihri, A.; Palacin, S.; Fontecave, M. From Hydrogenases to Noble Metal-Free Catalytic Nanomaterials for H2 Production and Uptake. Science 2009, 326, 1384–1387. [Google Scholar] [CrossRef] [Green Version]
- Harper, J.C.; Polsky, R.; Dirk, S.M.; Wheeler, D.R.; Brozik, S.M. Electroaddressable Selective Functionalization of Electrode Arrays: Catalytic NADH Detection Using Aryl Diazonium Modified Gold Electrodes. Electroanalysis 2007, 19, 1268–1274. [Google Scholar] [CrossRef]
- Bourdillon, C.; Delamar, M.; Demaille, C.; Hitmi, R.; Moiroux, J.; Pinson, J. Immobilization of Glucose Oxidase on a Carbon Surface Derivatized by Electrochemical Reduction of Diazonium Salts. J. Electroanal. Chem. 1992, 336, 113–123. [Google Scholar] [CrossRef]
- Radi, A.E.; Lates, V.; Marty, J.L. Mediatorless Hydrogen Peroxide Biosensor Based on Horseradish Peroxidase Immobilized on 4-Carboxyphenyl Film Electrografted on Gold Electrode. Electroanalysis 2008, 20, 2557–2562. [Google Scholar] [CrossRef]
- Marshall, N.; Locklin, J. Reductive Electrografting of Benzene (p-Bisdiazonium Hexafluorophosphate): A Simple and Effective Protocol for Creating Diazonium-Functionalized Thin Films. Langmuir 2011, 27, 13367–13373. [Google Scholar] [CrossRef] [PubMed]
- Press Release: The Nobel Prize in Chemistry 2022. Available online: https://www.nobelprize.org/prizes/chemistry/2022/press-release/ (accessed on 26 October 2022).
- Ran, Q.; Peng, R.; Liang, C.; Ye, S.; Xian, Y.; Zhang, W.; Jin, L. Covalent Immobilization of Horseradish Peroxidase via Click Chemistry and Its Direct Electrochemistry. Talanta 2011, 83, 1381–1385. [Google Scholar] [CrossRef]
- Zhang, L.; Vilà, N.; Klein, T.; Kohring, G.W.; Mazurenko, I.; Walcarius, A.; Etienne, M. Immobilization of Cysteine-Tagged Proteins on Electrode Surfaces by Thiol-Ene Click Chemistry. ACS Appl. Mater. Interfaces 2016, 8, 17591–17598. [Google Scholar] [CrossRef]
- Zhang, L.; Vilà, N.; Walcarius, A.; Etienne, M. Molecular and Biological Catalysts Coimmobilization on Electrode by Combining Diazonium Electrografting and Sequential Click Chemistry. ChemElectroChem 2018, 5, 2208–2217. [Google Scholar] [CrossRef]
- Bensghaïer, A.; Bhullar, V.; Kaur, N.; Lo, M.; Bdiri, M.; Mahajan, A.; Chehimi, M.M. “Painted CNT”@Au Nanoparticles: A Nanohybrid Electrocatalyst of Direct Methanol Oxidation. Emergent Mater. 2021, 4, 515–524. [Google Scholar] [CrossRef]
- Aghajani, A.; Santoni, M.P.; Mirzaei, P.; Mohamed, A.A.; Chehimi, M.M.; Jouini, M. Tuning Arylation of Gold Nanoparticles for the Electrocatalyzed Oxidation of Ethanol. Appl. Organomet. Chem. 2022, 36, e6835. [Google Scholar] [CrossRef]
- Ait-Touchente, Z.; Falah, S.; Scavetta, E.; Chehimi, M.M.; Touzani, R.; Tonelli, D.; Taleb, A. Different Electrochemical Sensor Designs Based on Diazonium Salts and Gold Nanoparticles for Pico Molar Detection of Metals. Molecules 2020, 25, 3903. [Google Scholar] [CrossRef]
- Yang, H.; Li, S.; Shen, S.; Jin, Z.; Jin, J.; Ma, J. Unraveling the Cooperative Synergy of Palladium/Tin Oxide/Aniline-Functionalized Carbon Nanotubes Enabled by Layer-by-Layer Synthetic Strategy for Ethanol Electrooxidation. ACS Sustain. Chem. Eng. 2019, 7, 10008–10015. [Google Scholar] [CrossRef]
- Mirzaei, P.; Bastide, S.; Aghajani, A.; Bourgon, J.; Leroy, É.; Zhang, J.; Snoussi, Y.; Bensghaier, A.; Hamouma, O.; Chehimi, M.M.; et al. Bimetallic Cu-Rh Nanoparticles on Diazonium-Modified Carbon Powders for the Electrocatalytic Reduction of Nitrates. Langmuir 2019, 35, 14428–14436. [Google Scholar] [CrossRef]
- Bollella, P.; Hibino, Y.; Kano, K.; Gorton, L.; Antiochia, R. Enhanced Direct Electron Transfer of Fructose Dehydrogenase Rationally Immobilized on a 2-Aminoanthracene Diazonium Cation Grafted Single-Walled Carbon Nanotube Based Electrode. ACS Catal. 2018, 8, 10279–10289. [Google Scholar] [CrossRef]
- Park, Y.B.; You, E.; Pak, C.; Min, M. Preparation and Characterization of Durable Catalyst via Diazonium Reaction in PEMFC. Electrochim. Acta 2018, 284, 242–252. [Google Scholar] [CrossRef]
- Gross, A.J.; Tanaka, S.; Colomies, C.; Giroud, F.; Nishina, Y.; Cosnier, S.; Tsujimura, S.; Holzinger, M. Diazonium Electrografting vs. Physical Adsorption of Azure A at Carbon Nanotubes for Mediated Glucose Oxidation with FAD-GDH. ChemElectroChem 2020, 7, 4543–4549. [Google Scholar] [CrossRef]
- Revenga-Parra, M.; Gómez-Anquela, C.; García-Mendiola, T.; Gonzalez, E.; Pariente, F.; Lorenzo, E. Grafted Azure A Modified Electrodes as Disposable β-Nicotinamide Adenine Dinucleotide Sensors. Anal. Chim. Acta 2012, 747, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Karthik, M.; Suresh, P. Brønsted Acidic Reduced Graphene Oxide as a Sustainable Carbocatalyst: A Selective Method for the Synthesis of C-2-Substituted Benzimidazole. New J. Chem. 2018, 42, 17931–17938. [Google Scholar] [CrossRef]
- Firth, J.D.; Fairlamb, I.J.S. A Need for Caution in the Preparation and Application of Synthetically Versatile Aryl Diazonium Tetrafluoroborate Salts. Org. Lett. 2020, 22, 7057–7059. [Google Scholar] [CrossRef]
- Nasri, Z.; Shams, E.; Ahmadi, M. Direct Modification of a Glassy Carbon Electrode with Toluidine Blue Diazonium Salt: Application to NADH Determination and Biosensing of Ethanol. Electroanalysis 2013, 25, 1917–1925. [Google Scholar] [CrossRef]
- Yang, X.; Hall, S.B.; Tan, S.N. Electrochemical Reduction of a Conjugated Cinnamic Acid Diazonium Salt as an Immobilization Matrix for Glucose Biosensor. Electroanalysis 2003, 15, 885–891. [Google Scholar] [CrossRef]
- DeKrafft, K.E.; Wang, C.; Xie, Z.; Su, X.; Hinds, B.J.; Lin, W. Electrochemical Water Oxidation with Carbon-Grafted Iridium Complexes. ACS Appl. Mater. Interfaces 2012, 4, 608–613. [Google Scholar] [CrossRef] [PubMed]
- Cesbron, M.; Dabos-Seignon, S.; Gautier, C.; Breton, T. Enhanced Electrocatalytic Activity on TEMPO Mixed Film Grafted by Diazonium Reduction. Electrochim. Acta 2020, 345, 136190. [Google Scholar] [CrossRef]
- Kudas, Z.; Atmaca, U.; Saruhan, T.; Celik, M.; Ekinci, D. Electrocatalytic Reduction of Oxygen at Glassy Carbon Electrodes Coated with Diazonium-Derived Porphyrin/Metalloporphyrin Films. Electroanalysis 2020, 32, 1379–1390. [Google Scholar] [CrossRef]
- Bartholomew, C.H. Mechanisms of Catalyst Deactivation. Appl. Catal. A Gen. 2001, 212, 17–60. [Google Scholar] [CrossRef]
- Anariba, F.; DuVall, S.H.; McCreery, R.L. Mono- and Multilayer Formation by Diazonium Reduction on Carbon Surfaces Monitored with Atomic Force Microscopy “Scratching”. Anal. Chem. 2003, 75, 3837–3844. [Google Scholar] [CrossRef]
- Hinge, M.; Gonçalves, E.S.; Pedersen, S.U.; Daasbjerg, K. On the Electrografting of Stainless Steel from Para-Substituted Aryldiazonium Salts and the Thermal Stability of the Grafted Layer. Surf. Coat. Technol. 2010, 205, 820–827. [Google Scholar] [CrossRef]
- Toupin, M.; Bélanger, D. Thermal Stability Study of Aryl Modified Carbon Black by in Situ Generated Diazonium Salt. J. Phys. Chem. C 2007, 111, 5394–5401. [Google Scholar] [CrossRef]
- Civit, L.; Fragoso, A.; O’Sullivan, C.K. Thermal Stability of Diazonium Derived and Thiol-Derived Layers on Gold for Application in Genosensors. Electrochem. Commun. 2010, 12, 1045–1048. [Google Scholar] [CrossRef]
- Mahesh, S.; Tang, K.C.; Raj, M. Amide Bond Activation of Biological Molecules. Molecules 2018, 23, 2615. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Ma, S.; Szostak, M. Amide Bond Activation: The Power of Resonance. Trends Chem. 2020, 2, 914–928. [Google Scholar] [CrossRef]
- Huang, L.; Shi, Y.I.; Chen, L.; Jin, X.; Liu, R.; Winnik, M.A.; Mitchell, D. Thermal Decomposition of Amide and Imide Derivatives of Maleated Polyethylene. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 730–740. [Google Scholar] [CrossRef]
- Çanakçı, D. Thermal Stability, Degradation Kinetic and Structural Characterization of Novel Aromatic Amide Compounds. J. Mol. Struct. 2020, 1205, 127645. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Saleh, M.A. Thermal Degradation of Azobenzene Dyes. Results Chem. 2020, 2, 100085. [Google Scholar] [CrossRef]
- Arabahmadi, R. Synthesis, Spectral Characterization, Thermal Analysis and Electrochemistry Properties of Ni(II) Complexes Derived from Azo Dyes. J. Therm. Anal. Calorim. 2016, 123, 595–605. [Google Scholar] [CrossRef]
- Guo, S.; Wan, W.; Chen, C.; Chen, W.H. Thermal Decomposition Kinetic Evaluation and Its Thermal Hazards Prediction of AIBN. J. Therm. Anal. Calorim. 2013, 113, 1169–1176. [Google Scholar] [CrossRef]
- Yamashina, M.; Sei, Y.; Akita, M.; Yoshizawa, M. Safe Storage of Radical Initiators within a Polyaromatic Nanocapsule. Nat. Commun. 2014, 5, 4662. [Google Scholar] [CrossRef] [Green Version]
- Kazem-Rostami, M. Factors Influencing the Thermal Stability of Azo and Bisazo Compounds. J. Therm. Anal. Calorim. 2020, 140, 613–623. [Google Scholar] [CrossRef]
- Zhou, A.; Wan, L.; Hu, Y.; Huang, F.; Du, L. Synthesis and Characterization of Novel Polytriazoleimides by CuAAC Step-Growth Polymerization. Polym. J. 2010, 42, 216–222. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Lu, H.; Qu, Y.; Liao, L.; Li, J.; Fan, G.; Chen, Y. A Facile Synthesis of 3,3’-Dinitro-5,5’-Diamino-Bi-1,2,4-Triazole and a Study of Its Thermal Decomposition. J. Energ. Mater. 2017, 2017, 281–295. [Google Scholar] [CrossRef]
- Sykam, K.; Donempudi, S.; Basak, P. 1,2,3-Triazole Rich Polymers for Flame Retardant Application: A Review. J. Appl. Polym. Sci. 2022, 139, e52771. [Google Scholar] [CrossRef]
- Griffete, N.; Herbst, F.; Pinson, J.; Ammar, S.; Mangeney, C. Preparation of Water-Soluble Magnetic Nanocrystals Using Aryl Diazonium Salt Chemistry. J. Am. Chem. Soc. 2011, 133, 1646–1649. [Google Scholar] [CrossRef] [PubMed]
- Fantoni, N.Z.; El-Sagheer, A.H.; Brown, T. A Hitchhiker’s Guide to Click-Chemistry with Nucleic Acids. Chem. Rev. 2021, 121, 7122–7154. [Google Scholar] [CrossRef] [PubMed]
- Hein, J.E.; Fokin, V.V. Copper-Catalyzed Azide–Alkyne Cycloaddition (CuAAC) and beyond: New Reactivity of Copper(i) Acetylides. Chem. Soc. Rev. 2010, 39, 1302. [Google Scholar] [CrossRef] [PubMed]
- Ji Ram, V.; Sethi, A.; Nath, M.; Pratap, R. Five-Membered Heterocycles. In The Chemistry of Heterocycles; Elsevier: Amsterdam, The Netherlands, 2019; pp. 149–478. [Google Scholar] [CrossRef]
- O’Connor, C. Acidic and Basic Amide Hydrolysis. Q. Rev. Chem. Soc. 1970, 24, 553–564. [Google Scholar] [CrossRef]
- Broqvist, P.; Molina, L.M.; Grönbeck, H.; Hammer, B. Promoting and Poisoning Effects of Na and Cl Coadsorption on CO Oxidation over MgO-Supported Au Nanoparticles. J. Catal. 2004, 227, 217–226. [Google Scholar] [CrossRef]
- Shekhar, M.; Wang, J.; Lee, W.S.; Cem Akatay, M.; Stach, E.A.; Nicholas Delgass, W.; Ribeiro, F.H. Counting Au Catalytic Sites for the Water-Gas Shift Reaction. J. Catal. 2012, 293, 94–102. [Google Scholar] [CrossRef]
- Ma, W.; Lv, X.; Han, D.; Li, F.; Dong, X.; Niu, L. Decoration of Electro-Reduced Graphene Oxide with Uniform Gold Nanoparticles Based on in Situ Diazonium Chemistry and Their Application in Methanol Oxidation. J. Electroanal. Chem. 2013, 690, 111–116. [Google Scholar] [CrossRef]
- Jlassi, K.; Zavahir, S.; Kasak, P.; Krupa, I.; Mohamed, A.A.; Chehimi, M.M. Emerging Clay-Aryl-Gold Nanohybrids for Efficient Electrocatalytic Proton Reduction. Energy Convers. Manag. 2018, 168, 170–177. [Google Scholar] [CrossRef]
- Bangle, R.; Sampaio, R.N.; Troian-Gautier, L.; Meyer, G.J. Surface Grafting of Ru(II) Diazonium-Based Sensitizers on Metal Oxides Enhances Alkaline Stability for Solar Energy Conversion. ACS Appl. Mater. Interfaces 2018, 10, 3121–3132. [Google Scholar] [CrossRef]
- Ahmad, A.A.L.; Panicker, S.; Chehimi, M.M.; Monge, M.; Lopez-De-Luzuriaga, J.M.; Mohamed, A.A.; Bruce, A.E.; Bruce, M.R.M. Synthesis of Water-Soluble Gold–Aryl Nanoparticles with Distinct Catalytic Performance in the Reduction of the Environmental Pollutant 4-Nitrophenol. Catal. Sci. Technol. 2019, 9, 6059–6071. [Google Scholar] [CrossRef]
Catalysts | Type of Bonds | Application | Advantages | Ref. |
---|---|---|---|---|
Au/MWCNTs/4-aminophenyl/hydrogenase | amide bonds | hydrogen oxidation | impressive stability compared to adsorbed hydrogenase | [11] |
MWCNT/4-aminophenyl/AgNPs | C-C bonds | methanol oxidation in alkaline solution | prevention of NPs nucleation | [8] |
GC/N,N-diethylaniline/Cu | C-C bonds | electrochemical reduction of nitrate | much lower current response compared to catalysts without Cu | [12] |
GC/4-sulfonatephenyl/Ru | C-C bonds | electrochemical oxidation of H2O2 | unmodified electrode showed no current response, when modified showed strong peak typical for H2O2 oxidation | [12] |
Au/4-aminophenyl/PQQ | amide bonds | electrooxidation of NADH | protection against non-specific adsorption and mild chemical reactions | [24] |
Au/p-diazoniumphenyl/HPP | azo-coupling | electrochemical reduction of H2O2 | electrocatalytic activity towards the reduction of H2O2 without any mediator; fast amperometric response to H2O2; acceptable sensitivity, good reproducibility and long-term stability | [7] |
Carbon electrode/4-((trimethylsilyl)ethynyl)benzene/p-nitrobenzene/aptamer | Click chemistry | detection of ochratoxin A | wide detection range (from 1.25 ng/L to 500 ng/L), detection limit of 0.25 ng/L | [10] |
GC/SWCNT/2-aminoantraceneFDH | π-π interactions | detection of fructose | efficient direct electron transfer reaction between FDH and GC electrode | [37] |
Screen printed carbon electrodes/Azure A | C-C bonds | NADH oxidation | high and stable electrocatalytic response | [40] |
Olive pits/-NH2/AuNP Olive pits/-SH/AuNP Olive pits/-COOH/AgNP | C-C bonds | reduction of nitrophenol | remarkable catalytic activity | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smołka, S.; Krukiewicz, K. Catalyst Design through Grafting of Diazonium Salts—A Critical Review on Catalyst Stability. Int. J. Mol. Sci. 2023, 24, 12575. https://doi.org/10.3390/ijms241612575
Smołka S, Krukiewicz K. Catalyst Design through Grafting of Diazonium Salts—A Critical Review on Catalyst Stability. International Journal of Molecular Sciences. 2023; 24(16):12575. https://doi.org/10.3390/ijms241612575
Chicago/Turabian StyleSmołka, Szymon, and Katarzyna Krukiewicz. 2023. "Catalyst Design through Grafting of Diazonium Salts—A Critical Review on Catalyst Stability" International Journal of Molecular Sciences 24, no. 16: 12575. https://doi.org/10.3390/ijms241612575
APA StyleSmołka, S., & Krukiewicz, K. (2023). Catalyst Design through Grafting of Diazonium Salts—A Critical Review on Catalyst Stability. International Journal of Molecular Sciences, 24(16), 12575. https://doi.org/10.3390/ijms241612575