Comparative Analysis of Muscle Atrophy During Spaceflight, Nutritional Deficiency and Disuse in the Nematode Caenorhabditis elegans
Abstract
:1. Introduction
2. Results
2.1. Muscle Atrophy in Space-Microgravity-Exposed C. elegans
2.2. Muscle Atrophy in Nutritional Deprivation and Disuse Conditions in C. elegans
2.3. clp-4 Promotes Muscle Atrophy during Nutritional Deprivation
3. Discussion
4. Materials and Methods
4.1. Strains and Culture
4.2. Conditions for MME Space Experiment
4.3. MME Space Experiments
4.4. NIS Space Experiments
4.5. Starvation and Disuse Experiments
4.6. Phalloidin Muscle Staining
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C. elegans | Caenorhabditis elegans |
ISS | International Space Station |
ESA | European Space Agency |
WT | Wild type |
NASA | National Aeronautics and Space Administration |
MME | Molecular muscle experiment |
NIS | Neural integration system |
MBR | Muscle-to-body length ratio |
EM | Electron microscope |
FUdR | Fluorodeoxyuridine |
PFA | Paraformaldehyde |
GFP | Green fluorescent protein |
DMSO | Dimethyl sulfoxide |
EC | Experiment cassette |
JAXA | Japan Aerospace Exploration Agency |
References
- Riley, D.A.; Ilyina-Kakueva, E.I.; Ellis, S.; Bain, J.L.; Slocum, G.R.; Sedlak, F.R. Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats. FASEB J. 1990, 4, 84–91. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, A.; Rowe, R.; Schneider, V.; Evans, H.; Hedrick, T. Regional muscle loss after short duration spaceflight. Aviat. Space Environ. Med. 1995, 66, 1151–1154. [Google Scholar]
- Trappe, S.; Costill, D.; Gallagher, P.; Creer, A.; Peters, J.R.; Evans, H.; Riley, D.A.; Fitts, R.H. Exercise in space: Human skeletal muscle after 6 months aboard the International Space Station. J. Appl. Physiol. 2009, 106, 1159–1168. [Google Scholar] [PubMed] [Green Version]
- Deitrick, J.E.; Whedon, G.D.; Shorr, E. Effects of immobilization upon various metabolic and physiologic functions of normal men. Am. J. Med. 1948, 4, 3–36. [Google Scholar] [CrossRef] [PubMed]
- Reijnierse, E.M.; Trappenburg, M.C.; Leter, M.J.; Blauw, G.J.; de van der Schueren, M.A.; Meskers, C.G.; Maier, A.B. The Association between Parameters of Malnutrition and Diagnostic Measures of Sarcopenia in Geriatric Outpatients. PLoS ONE 2015, 10, e0135933. [Google Scholar]
- Abe, T.; Kazama, R.; Okauchi, H.; Oishi, K. Food deprivation during active phase induces skeletal muscle atrophy via IGF-1 reduction in mice. Arch. Biochem. Biophys. 2019, 677, 108160. [Google Scholar] [CrossRef]
- Evans, W.J. Skeletal muscle loss: Cachexia, sarcopenia, and inactivity. Am. J. Clin. Nutr. 2010, 91, 1123S–1127S. [Google Scholar]
- Narici, M.V.; Maffulli, N. Sarcopenia: Characteristics, mechanisms and functional significance. Br. Med. Bull. 2010, 95, 139–159. [Google Scholar]
- Bodine, S.C.; Latres, E.; Baumhueter, S.; Lai, V.K.; Nunez, L.; Clarke, B.A.; Poueymirou, W.T.; Panaro, F.J.; Na, E.; Dharmarajan, K.; et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 2001, 294, 1704–1708. [Google Scholar] [CrossRef]
- Blake, D.J.; Weir, A.; Newey, S.E.; Davies, K.E. Function and genetics of dystrophin and dystrophin-related proteins in muscle. Physiol. Rev. 2002, 82, 291–329. [Google Scholar]
- Huang, J.; Forsberg, N.E. Role of calpain in skeletal-muscle protein degradation. Proc. Natl. Acad. Sci. USA 1998, 95, 12100–12105. [Google Scholar] [CrossRef] [PubMed]
- Brenner, S. The genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef] [PubMed]
- Corsi, A.K.; Wightman, B.; Chalfie, M. A Transparent Window into Biology: A Primer on Caenorhabditis elegans. Genetics 2015, 200, 387–407. [Google Scholar] [CrossRef] [Green Version]
- Gieseler, K.; Qadota, H.; Benian, G.M. Development, structure, and maintenance of C. elegans body wall muscle. WormBook 2017, 2017, 1–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, A.; Willis, C.R.G.; Muratani, M.; Higashitani, A.; Etheridge, T.; Szewczyk, N.J.; Deane, C.S. Caenorhabditis elegans in microgravity: An omics perspective. iScience 2023, 26, 107189. [Google Scholar] [CrossRef]
- Szewczyk, N.J.; Tillman, J.; Conley, C.A.; Granger, L.; Segalat, L.; Higashitani, A.; Honda, S.; Honda, Y.; Kagawa, H.; Adachi, R.; et al. Description of International Caenorhabditis elegans Experiment first flight (ICE-FIRST). Adv. Space Res. 2008, 42, 1072–1079. [Google Scholar] [CrossRef] [Green Version]
- Higashitani, A.; Hashizume, T.; Sugimoto, T.; Mori, C.; Nemoto, K.; Etheridge, T.; Higashitani, N.; Takanami, T.; Suzuki, H.; Fukui, K.; et al. C. elegans RNAi space experiment (CERISE) in Japanese Experiment Module KIBO. Biol. Sci. Space 2009, 23, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Pollard, A.K.; Gaffney, C.J.; Deane, C.S.; Balsamo, M.; Cooke, M.; Ellwood, R.A.; Hewitt, J.E.; Mierzwa, B.E.; Mariani, A.; Vanapalli, S.A.; et al. Molecular Muscle Experiment: Hardware and Operational Lessons for Future Astrobiology Space Experiments. Astrobiology 2020, 20, 935–943. [Google Scholar]
- Higashibata, A.; Szewczyk, N.J.; Conley, C.A.; Imamizo-Sato, M.; Higashitani, A.; Ishioka, N. Decreased expression of myogenic transcription factors and myosin heavy chains in Caenorhabditis elegans muscles developed during spaceflight. J. Exp. Biol. 2006, 209 Pt 16, 3209–3218. [Google Scholar] [CrossRef] [Green Version]
- Higashibata, A.; Hashizume, T.; Nemoto, K.; Higashitani, N.; Etheridge, T.; Mori, C.; Harada, S.; Sugimoto, T.; Szewczyk, N.J.; Baba, S.A.; et al. Microgravity elicits reproducible alterations in cytoskeletal and metabolic gene and protein expression in space-flown Caenorhabditis elegans. NPJ Microgravity 2016, 2, 15022. [Google Scholar] [CrossRef] [Green Version]
- Kalichamy, S.S.; Alcantara, A.V., Jr.; Kim, B.S.; Park, J.; Yoon, K.H.; Lee, J.I. Muscle and epidermal contributions of the structural protein β-spectrin promote hypergravity-induced motor neuron axon defects in C. elegans. Sci. Rep. 2020, 10, 21214. [Google Scholar] [CrossRef]
- Moorthy, S.; Chen, L.; Bennett, V. Caenorhabditis elegans beta-G spectrin is dispensable for establishment of epithelial polarity, but essential for muscular and neuronal function. J. Cell Biol. 2000, 149, 915–930. [Google Scholar] [CrossRef] [PubMed]
- Hammarlund, M.; Davis, W.S.; Jorgensen, E.M. Mutations in beta-spectrin disrupt axon outgrowth and sarcomere structure. J. Cell Biol. 2000, 149, 931–942. [Google Scholar] [CrossRef]
- Sulston, J.E.; Horvitz, H.R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 1977, 56, 110–156. [Google Scholar] [CrossRef] [PubMed]
- Francis, G.R.; Waterston, R.H. Muscle organization in Caenorhabditis elegans: Localization of proteins implicated in thin filament attachment and I-band organization. J. Cell Biol. 1985, 101, 1532–1549. [Google Scholar] [CrossRef] [PubMed]
- Higashitani, A.; Hashizume, T.; Takiura, M.; Higashitani, N.; Teranishi, M.; Oshima, R.; Yano, S.; Kuriyama, K.; Higashibata, A. Histone deacetylase HDA-4-mediated epigenetic regulation in space-flown C. elegans. NPJ Microgravity 2021, 7, 33. [Google Scholar] [CrossRef]
- Demontis, F.; Perrimon, N. Integration of Insulin receptor/Foxo signaling and dMyc activity during muscle growth regulates body size in Drosophila. Development 2009, 136, 983–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeBlanc, A.D.; Schneider, V.S.; Evans, H.J.; Pientok, C.; Rowe, R.; Spector, E. Regional changes in muscle mass following 17 weeks of bed rest. J. Appl. Physiol. 1992, 73, 2172–2178. [Google Scholar] [CrossRef]
- Yoshihara, T.; Natsume, T.; Tsuzuki, T.; Chang, S.W.; Kakigi, R.; Machida, S.; Sugiura, T.; Naito, H. Long-term physical inactivity exacerbates hindlimb unloading-induced muscle atrophy in young rat soleus muscle. J. Appl. Physiol. 2021, 130, 1214–1225. [Google Scholar] [CrossRef]
- Ahmed, S.; Maruyama, I.N.; Kozma, R.; Lee, J.; Brenner, S.; Lim, L. The Caenorhabditis elegans unc-13 gene product is a phospholipid-dependent high-affinity phorbol ester receptor. Biochem. J. 1992, 287 Pt 3, 995–999. [Google Scholar] [CrossRef] [Green Version]
- Betz, A.; Ashery, U.; Rickmann, M.; Augustin, I.; Neher, E.; Südhof, T.C.; Rettig, J.; Brose, N. Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron 1998, 21, 123–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richmond, J.E.; Jorgensen, E.M. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat. Neurosci. 1999, 2, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Rogalski, T.M.; Gilbert, M.M.; Devenport, D.; Norman, K.R.; Moerman, D.G. DIM-1, a novel immunoglobulin superfamily protein in Caenorhabditis elegans, is necessary for maintaining bodywall muscle integrity. Genetics 2003, 163, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Etheridge, T.; Oczypok, E.A.; Lehmann, S.; Fields, B.D.; Shephard, F.; Jacobson, L.A.; Szewczyk, N.J. Calpains mediate integrin attachment complex maintenance of adult muscle in Caenorhabditis elegans. PLoS Genet. 2012, 8, e1002471. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Wu, Q.Y.; Ma, Y.C.; Chen, Y.L.; Zou, C.G. Antioxidant response is a protective mechanism against nutrient deprivation in C. elegans. Sci. Rep. 2017, 7, 43547. [Google Scholar] [CrossRef] [Green Version]
- Moosavi, D.; Wolovsky, D.; Depompeis, A.; Uher, D.; Lennington, D.; Bodden, R.; Garber, C.E. The effects of spaceflight microgravity on the musculoskeletal system of humans and animals, with an emphasis on exercise as a countermeasure: A systematic scoping review. Physiol. Res. 2021, 70, 119–151. [Google Scholar]
- Selch, F.; Higashibata, A.; Imamizo-Sato, M.; Higashitani, A.; Ishioka, N.; Szewczyk, N.J.; Conley, C.A. Genomic response of the nematode Caenorhabditis elegans to spaceflight. Adv. Space Res. 2008, 41, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Higashibata, A.; Higashitani, N.; Imamizo-Sato, M.; Hashizume, T.; Etheridge, T.; Szewczyk, J.N.; Higashitani, A.; Ishioka, N. Space Flight Induces Reduction of Paramyosin and Troponin T: Proteomic Analysis of Space-Flown Caenorhabditis elegans. Curr. Biotechnol. 2013, 2, 262–271. [Google Scholar]
- Furukawa, S.; Chatani, M.; Higashitani, A.; Higashibata, A.; Kawano, F.; Nikawa, T.; Numaga-Tomita, T.; Ogura, T.; Sato, F.; Sehara-Fujisawa, A.; et al. Findings from recent studies by the Japan Aerospace Exploration Agency examining musculoskeletal atrophy in space and on Earth. NPJ Microgravity 2021, 7, 18. [Google Scholar] [CrossRef]
- Cahill, T.; Cope, H.; Bass, J.J.; Overbey, E.G.; Gilbert, R.; da Silveira, W.A.; Paul, A.M.; Mishra, T.; Herranz, R.; Reinsch, S.S.; et al. Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight. Int. J. Mol. Sci. 2021, 22, 9470. [Google Scholar] [CrossRef]
- Harada, S.; Hashizume, T.; Nemoto, K.; Shao, Z.; Higashitani, N.; Etheridge, T.; Szewczyk, N.J.; Fukui, K.; Higashibata, A.; Higashitani, A. Fluid dynamics alter Caenorhabditis elegans body length via TGF-β/DBL-1 neuromuscular signaling. NPJ Microgravity 2016, 2, 16006. [Google Scholar] [CrossRef] [Green Version]
- Baugh, L.R.; Hu, P.J. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020, 216, 837–878. [Google Scholar] [CrossRef]
- Kaeberlein, T.L.; Smith, E.D.; Tsuchiya, M.; Welton, K.L.; Thomas, J.H.; Fields, S.; Kennedy, B.K.; Kaeberlein, M. Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 2006, 5, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.D.; Wilson, M.A.; Zhu, M.; Wolkow, C.A.; de Cabo, R.; Ingram, D.K.; Zou, S. Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell 2006, 5, 515–524. [Google Scholar] [CrossRef] [Green Version]
- Bayer, E.A.; Hobert, O. Past experience shapes sexually dimorphic neuronal wiring through monoaminergic signalling. Nature 2018, 561, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Rengarajan, S.; Yankura, K.A.; Guillermin, M.L.; Fung, W.; Hallem, E.A. Feeding state sculpts a circuit for sensory valence in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2019, 116, 1776–1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfonso, A.; Grundahl, K.; Duerr, J.S.; Han, H.P.; Rand, J.B. The Caenorhabditis elegans unc-17 gene: A putative vesicular acetylcholine transporter. Science 1993, 261, 617–619. [Google Scholar]
- Jorgensen, E.M.; Nonet, M.L. Neuromuscular junctions in the nematode C. elegans. Semin. Dev. Biol. 1995, 6, 207–220. [Google Scholar] [CrossRef]
- Rand, J.B. Genetic analysis of the cha-1-unc-17 gene complex in Caenorhabditis. Genetics 1989, 122, 73–80. [Google Scholar] [CrossRef]
- Speese, S.; Petrie, M.; Schuske, K.; Ailion, M.; Ann, K.; Iwasaki, K.; Jorgensen, E.M.; Martin, T.F. UNC-31 (CAPS) is required for dense-core vesicle but not synaptic vesicle exocytosis in Caenorhabditis elegans. J. Neurosci. 2007, 27, 6150–6162. [Google Scholar] [CrossRef]
- Kishimoto, A.; Mikawa, K.; Hashimoto, K.; Yasuda, I.; Tanaka, S.; Tominaga, M.; Kuroda, T.; Nishizuka, Y. Limited proteolysis of protein kinase C subspecies by calcium-dependent neutral protease (calpain). J. Biol. Chem. 1989, 264, 4088–4092. [Google Scholar] [CrossRef]
- Suzuki, K.; Imajoh, S.; Emori, Y.; Kawasaki, H.; Minami, Y.; Ohno, S. Calcium-activated neutral protease and its endogenous inhibitor. Activation at the cell membrane and biological function. FEBS Lett. 1987, 220, 271–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goll, D.E.; Thompson, V.F.; Taylor, R.G.; Christiansen, J.A. Role of the calpain system in muscle growth. Biochimie 1992, 74, 225–237. [Google Scholar] [CrossRef] [PubMed]
- Squier, M.K.T.; Miller, A.C.K.; Malkinson, A.M.; Cohen, J.J. Calpain activation in apoptosis. J. Cell. Physiol. 1994, 159, 229–237. [Google Scholar] [CrossRef]
- Richard, I.; Broux, O.; Allamand, V.; Fougerousse, F.; Chiannilkulchai, N.; Bourg, N.; Brenguier, L.; Devaud, C.; Pasturaud, P.; Roudaut, C.; et al. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 1995, 81, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Joyce, P.I.; Satija, R.; Chen, M.; Kuwabara, P.E. The atypical calpains: Evolutionary analyses and roles in Caenorhabditis elegans cellular degeneration. PLoS Genet. 2012, 8, e1002602. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J.A.; Fleming, J.T. Basic culture methods. Methods Cell Biol. 1995, 48, 3–29. [Google Scholar] [PubMed]
- Laranjeiro, R.; Harinath, G.; Pollard, A.K.; Gaffney, C.J.; Deane, C.S.; Vanapalli, S.A.; Etheridge, T.; Szewczyk, N.J.; Driscoll, M. Spaceflight affects neuronal morphology and alters transcellular degradation of neuronal debris in adult Caenorhabditis elegans. iScience 2021, 24, 102105. [Google Scholar] [CrossRef]
- Sudevan, S.; Muto, K.; Higashitani, N.; Hashizume, T.; Higashibata, A.; Ellwood, R.A.; Deane, C.S.; Rahman, M.; Vanapalli, S.A.; Etheridge, T.; et al. Loss of physical contact in space alters the dopamine system in C. elegans. iScience 2022, 25, 103762. [Google Scholar] [CrossRef]
- Stiernagle, T. Maintenance of C. elegans; WormBook, Ed.; The C. elegans Research Community, WormBook: Online, 2006; pp. 1–11. [Google Scholar]
- Sudevan, S.; Takiura, M.; Kubota, Y.; Higashitani, N.; Cooke, M.; Ellwood, R.A.; Etheridge, T.; Szewczyk, N.J.; Higashitani, A. Mitochondrial dysfunction causes Ca(2+) overload and ECM degradation-mediated muscle damage in C. elegans. FASEB J. 2019, 33, 9540–9550. [Google Scholar] [CrossRef] [Green Version]
- Hedgecock, E.M.; Culotti, J.G.; Hall, D.H.; Stern, B.D. Genetics of cell and axon migrations in Caenorhabditis elegans. Development 1987, 100, 365–382. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.-s.; Alcantara, A.V., Jr.; Moon, J.-H.; Higashitani, A.; Higashitani, N.; Etheridge, T.; Szewczyk, N.J.; Deane, C.S.; Gaffney, C.J.; Higashibata, A.; et al. Comparative Analysis of Muscle Atrophy During Spaceflight, Nutritional Deficiency and Disuse in the Nematode Caenorhabditis elegans. Int. J. Mol. Sci. 2023, 24, 12640. https://doi.org/10.3390/ijms241612640
Kim B-s, Alcantara AV Jr., Moon J-H, Higashitani A, Higashitani N, Etheridge T, Szewczyk NJ, Deane CS, Gaffney CJ, Higashibata A, et al. Comparative Analysis of Muscle Atrophy During Spaceflight, Nutritional Deficiency and Disuse in the Nematode Caenorhabditis elegans. International Journal of Molecular Sciences. 2023; 24(16):12640. https://doi.org/10.3390/ijms241612640
Chicago/Turabian StyleKim, Ban-seok, Alfredo V. Alcantara, Jr., Je-Hyun Moon, Atsushi Higashitani, Nahoko Higashitani, Timothy Etheridge, Nathaniel J. Szewczyk, Colleen S. Deane, Christopher J. Gaffney, Akira Higashibata, and et al. 2023. "Comparative Analysis of Muscle Atrophy During Spaceflight, Nutritional Deficiency and Disuse in the Nematode Caenorhabditis elegans" International Journal of Molecular Sciences 24, no. 16: 12640. https://doi.org/10.3390/ijms241612640
APA StyleKim, B. -s., Alcantara, A. V., Jr., Moon, J. -H., Higashitani, A., Higashitani, N., Etheridge, T., Szewczyk, N. J., Deane, C. S., Gaffney, C. J., Higashibata, A., Hashizume, T., Yoon, K. -h., & Lee, J. I. (2023). Comparative Analysis of Muscle Atrophy During Spaceflight, Nutritional Deficiency and Disuse in the Nematode Caenorhabditis elegans. International Journal of Molecular Sciences, 24(16), 12640. https://doi.org/10.3390/ijms241612640