Antiseizure Medications in Alzheimer’s Disease from Preclinical to Clinical Evidence
Abstract
:1. Epilepsy and Alzheimer’s Disease: Connection Points between Two Different Pathologies
2. Antiseizure Medications in Alzheimer’s Disease: Evidence from Experimental Models
3. Antiseizure Medications in Alzheimer’s Disease: Evidence from Clinical Trials
ASMs | Dose/Duration | Study Type/Patients | Clinical Benefits | Side Effects | References |
---|---|---|---|---|---|
VPA | 10–12 mg/kg/day. | Randomized, double-blinded, placebo-controlled; 313 patients with mild-to-moderate AD. Study performed from 1 November 2005 to 31 March 2009. | No clinical benefits were reported. | Worsening of existing cognitive impairment and greater brain atrophy. | [99] |
VPA | 10–12 mg/kg/day. | Randomized, double-blinded, placebo- controlled (24 months); 313 patients with moderate AD. | No clinical benefits were reported. | Worsening of existing cognitive impairment and increased hippocampal volume loss. | [101] |
LTG | 25–100 mg/day; 1-year evaluation period. | Randomized, three parallel treatment groups; patients with AD–epilepsy comorbidity. | Improved score in the Cornell depression scale, with 59% responder rate at 1 year. | Seven patients described mild AEs: somnolence, dizziness, and headache. Slight decreases in MMSE and ADAS–Cog scores. No patients stopped treatment because of AEs. | [105] |
LEV | 1000–1500 mg/day; 1-year evaluation period. | Randomized, three parallel treatment groups; patients with AD–epilepsy comorbidity. | Improved MMSE and ADAS–Cog scores; 29% became seizure-free, 71% responder rate at 1 year. | AEs reported: dizziness, headache, asthenia, and somnolence. No patients stopped treatment because of AEs. | [105] |
PB | 25–100 mg/day; 1-year evaluation period | Randomized, three parallel treatment groups; patients with AD–epilepsy comorbidity. | No significant differences among LEV, LTG, and PB in seizure freedom, 64% responder rate after 1 year. | Worsening of existing cognitive impairment. Twelve patients reported AEs: somnolence and asthenia. Seventeen patients reported side effects. Five patients stopped treatment because of side effects. | [105] |
LEV | 125 mg/day twice daily, for 1 month. | Phase 2, randomized, double-blinded, placebo-controlled clinical study; 17 LEV-treated patients and 17 placebo-treated patients | Thirteen AD patients without epileptiform activity did not improve executive functions, whereas nine AD patients with epileptiform activity showed a significant improvement in spatial memory and executive function. LEV vs. placebo, no significant differences in cognitive function | AEs reported: dizziness, headache, vivid dreams, and gastrointestinal discomfort | [109] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scearce-Levie, K.; Sanchez, P.E.; Lewcock, J.W. Leveraging preclinical models for the development of Alzheimer disease therapeutics. Nat. Rev. Drug Discov. 2020, 19, 447–462. [Google Scholar] [CrossRef] [PubMed]
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef] [PubMed]
- Long, J.M.; Holtzman, D.M. Alzheimer Disease: An Update on Pathobiology and Treatment Strategies. Cell 2019, 179, 312–339. [Google Scholar]
- Leo, A.; Tallarico, M.; Sciaccaluga, M.; Citraro, R.; Costa, C. Epilepsy and Alzheimer’s Disease: Current Concepts and Treatment Perspective on Two Closely Related Pathologies. Curr. Neuropharmacol. 2022, 20, 2029–2033. [Google Scholar] [PubMed]
- Sen, A.; Jette, N.; Husain, M.; Sander, J.W. Epilepsy in older people. Lancet 2020, 395, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Vossel, K.A.; Tartaglia, M.C.; Nygaard, H.B.; Zeman, A.Z.; Miller, B.L. Epileptic activity in Alzheimer’s disease: Causes and clinical relevance. Lancet Neurol. 2017, 16, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Helmstaedter, C.; Witt, J.A. Epilepsy and cognition—A bidirectional relationship? Seizure 2017, 49, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asadollahi, M.; Atazadeh, M.; Noroozian, M. Seizure in Alzheimer’s Disease: An Underestimated Phenomenon. Am. J. Alzheimer’s Dis. Other Demen. 2019, 34, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Chen, L.; Yu, Y.; Xu, T.; Chen, L.; Yang, W.; Wu, Q.; Han, Y. Alzheimer’s disease and epilepsy: An increasingly recognized comorbidity. Front. Aging Neurosci. 2022, 14, 940515. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, F.S.; Saccaro, L.F.; Busceti, C.L.; Biagioni, F.; Fornai, F. Epilepsy and Alzheimer’s Disease: Potential mechanisms for an association. Brain Res. Bull. 2020, 160, 107–120. [Google Scholar] [CrossRef] [PubMed]
- Palop, J.J.; Mucke, L. Epilepsy and cognitive impairments in alzheimer disease. Arch. Neurol. 2009, 66, 435–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sen, A.; Capelli, V.; Husain, M. Cognition and dementia in older patients with epilepsy. Brain 2018, 141, 1592–1608. [Google Scholar] [CrossRef] [PubMed]
- Bero, A.W.; Yan, P.; Roh, J.H.; Cirrito, J.R.; Stewart, F.R.; Raichle, M.E.; Lee, J.M.; Holtzman, D.M. Neuronal activity regulates the regional vulnerability to amyloid-β 2 deposition. Nat. Neurosci. 2011, 14, 750–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cirrito, J.R.; Yamada, K.A.; Finn, M.B.; Sloviter, R.S.; Bales, K.R.; May, P.C.; Schoepp, D.D.; Paul, S.M.; Mennerick, S.; Holtzman, D.M. Synaptic activity regulates interstitial fluid amyloid-β levels in vivo. Neuron 2005, 48, 913–922. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, K.; Tanei, Z.I.; Hashimoto, T.; Wakabayashi, T.; Okuno, H.; Naka, Y.; Yizhar, O.; Fenno, L.E.; Fukayama, M.; Bito, H.; et al. Chronic Optogenetic Activation Augments Aβ Pathology in a Mouse Model of Alzheimer Disease. Cell Rep. 2015, 11, 859–865. [Google Scholar] [CrossRef] [Green Version]
- Romoli, M.; Sen, A.; Parnetti, L.; Calabresi, P.; Costa, C. Amyloid-β: A potential link between epilepsy and cognitive decline. Nat. Rev. Neurol. 2021, 17, 469–485. [Google Scholar] [CrossRef]
- Sciaccaluga, M.; Megaro, A.; Bellomo, G.; Ruffolo, G.; Romoli, M.; Palma, E.; Costa, C. An unbalanced synaptic transmission: Cause or consequence of the amyloid oligomers neurotoxicity? Int. J. Mol. Sci. 2021, 22, 5991. [Google Scholar] [CrossRef]
- Yang, J.W.; Czech, T.; Felizardo, M.; Baumgartner, C.; Lubec, G. Aberrant expression of cytoskeleton proteins in hippocampus from patients with mesial temporal lobe epilepsy. Amino Acids 2006, 30, 477–493. [Google Scholar] [CrossRef]
- Choi, J.; Kim, S.Y.; Kim, H.; Lim, B.C.; Hwang, H.; Chae, J.H.; Kim, K.J.; Oh, S.; Kim, E.Y.; Shin, J.S. Serum α-synuclein and IL-1β are increased and correlated with measures of disease severity in children with epilepsy: Potential prognostic biomarkers? BMC Neurol. 2020, 20, 85. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Choi, Y.S.; Dziema, H.; Cao, R.; Cho, H.Y.; Jung, Y.J.; Obrietan, K. Proteomic profiling of the epileptic dentate gyrus. Brain Pathol. 2010, 20, 1077–1089. [Google Scholar] [CrossRef] [Green Version]
- Hussein, A.M.; Eldosoky, M.; El-Shafey, M.; El-Mesery, M.; Ali, A.N.; Abbas, K.M.; Abulseoud, O.A. Effects of metformin on apoptosis and α-synuclein in a rat model of pentylenetetrazole-induced epilepsy. Can. J. Physiol. Pharmacol. 2019, 97, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Dejakaisaya, H.; Kwan, P.; Jones, N.C. Astrocyte and glutamate involvement in the pathogenesis of epilepsy in Alzheimer’s disease. Epilepsia 2021, 62, 1485–1493. [Google Scholar] [CrossRef]
- Langworth-Green, C.; Patel, S.; Jaunmuktane, Z.; Jabbari, E.; Morris, H.; Thom, M.; Lees, A.; Hardy, J.; Zandi, M.; Duff, K. Chronic effects of inflammation on tauopathies. Lancet Neurol. 2023, 22, 430–442. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Li, X.; Yu, E.; Li, M.; Pan, X. Identification of common core ion channel genes in epilepsy and Alzheimer’s disease. Ir. J. Med. Sci. 2023; Online ahead of print. [Google Scholar] [CrossRef]
- Perversi, F.; Costa, C.; Labate, A.; Lattanzi, S.; Liguori, C.; Maschio, M.; Meletti, S.; Nobili, L.; Operto, F.F.; Romigi, A.; et al. The broad-spectrum activity of perampanel: State of the art and future perspective of AMPA antagonism beyond epilepsy. Front. Neurol. 2023, 14, 1182304. [Google Scholar] [CrossRef] [PubMed]
- Leo, A.; Giovannini, G.; Russo, E.; Meletti, S. The role of AMPA receptors and their antagonists in status epilepticus. Epilepsia 2018, 59, 1098–1108. [Google Scholar] [CrossRef] [Green Version]
- Tallarico, M.; Leo, A.; Russo, E.; Citraro, R.; Palma, E.; De Sarro, G. Seizure susceptibility to various convulsant stimuli in the BTBR mouse model of autism spectrum disorders. Front. Pharmacol. 2023, 14, 1155729. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.; Parnetti, L.; D’Amelio, M.; Tozzi, A.; Tantucci, M.; Romigi, A.; Siliquini, S.; Cavallucci, V.; Di Filippo, M.; Mazzocchetti, P.; et al. Epilepsy, amyloid-β, and D1 dopamine receptors: A possible pathogenetic link? Neurobiol. Aging 2016, 48, 161–171. [Google Scholar] [CrossRef]
- Palop, J.J.; Chin, J.; Roberson, E.D.; Wang, J.; Thwin, M.T.; Bien-Ly, N.; Yoo, J.; Ho, K.O.; Yu, G.Q.; Kreitzer, A.; et al. Aberrant Excitatory Neuronal Activity and Compensatory Remodeling of Inhibitory Hippocampal Circuits in Mouse Models of Alzheimer’s Disease. Neuron 2007, 55, 697–711. [Google Scholar] [CrossRef] [Green Version]
- Bellingacci, L.; Tallarico, M.; Mancini, A.; Megaro, A.; De Caro, C.; Citraro, R.; De Sarro, G.; Tozzi, A.; Di Filippo, M.; Sciaccaluga, M.; et al. Non-competitive AMPA glutamate receptors antagonism by perampanel as a strategy to counteract hippocampal hyper-excitability and cognitive deficits in cerebral amyloidosis. Neuropharmacology 2023, 225, 109373. [Google Scholar] [CrossRef]
- Zott, B.; Konnerth, A. Impairments of glutamatergic synaptic transmission in Alzheimer’s disease. Semin. Cell Dev. Biol. 2023, 139, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Beghi, E.; Beghi, M. Epilepsy, antiepileptic drugs and dementia. Curr. Opin. Neurol. 2020, 33, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Lozano, R.; Fullman, N.; Mumford, J.E.; Knight, M.; Barthelemy, C.M.; Abbafati, C.; Abbastabar, H.; Abd-Allah, F.; Abdollahi, M.; Abedi, A.; et al. Measuring universal health coverage based on an index of effective coverage of health services in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1250–1284. [Google Scholar]
- Müller, L.; Kirschstein, T.; Köhling, R.; Kuhla, A.; Teipel, S. Neuronal Hyperexcitability in APPSWE/PS1dE9 Mouse Models of Alzheimer’s Disease. J. Alzheimer’s Dis. 2021, 81, 855–869. [Google Scholar] [CrossRef]
- Altuna, M.; Olmedo-Saura, G.; Carmona-Iragui, M.; Fortea, J. Mechanisms Involved in Epileptogenesis in Alzheimer’s Disease and Their Therapeutic Implications. Int. J. Mol. Sci. 2022, 23, 4307. [Google Scholar] [CrossRef] [PubMed]
- Powell, G.; Ziso, B.; Larner, A.J. The overlap between epilepsy and Alzheimer’s disease and the consequences for treatment. Expert Rev. Neurother. 2019, 19, 653–661. [Google Scholar] [CrossRef]
- Ziyatdinova, S.; Viswanathan, J.; Hiltunen, M.; Tanila, H.; Pitkänen, A. Reduction of epileptiform activity by valproic acid in a mouse model of Alzheimer’s disease is not long-lasting after treatment discontinuation. Epilepsy Res. 2015, 112, 43–55. [Google Scholar] [CrossRef]
- Ziyatdinova, S.; Gurevicius, K.; Kutchiashvili, N.; Bolkvadze, T.; Nissinen, J.; Tanila, H.; Pitkänen, A. Spontaneous epileptiform discharges in a mouse model of Alzheimer’s disease are suppressed by antiepileptic drugs that block sodium channels. Epilepsy Res. 2011, 94, 75–85. [Google Scholar] [CrossRef]
- Qing, H.; He, G.; Ly, P.T.T.; Fox, C.J.; Staufenbiel, M.; Cai, F.; Zhang, Z.; Wei, S.; Sun, X.; Chen, C.H.; et al. Valproic acid inhibits aβ production, neuritic plaque formation, and behavioral deficits in alzheimer’s disease mouse models. J. Exp. Med. 2008, 205, 2781–2789. [Google Scholar] [CrossRef]
- Grimes, C.A.; Jope, R.S. The multifaceted roles of glycogen synthase kinase 3β in cellular signaling. Prog. Neurobiol. 2001, 65, 391–426. [Google Scholar] [CrossRef]
- Mark, R.J.; Wesson Ashford, J.; Goodman, Y.; Mattson, M.P. Anticonvulsants attenuate amyloid β-peptide neurotoxicity, Ca2+ deregulation, and cytoskeletal pathology. Neurobiol. Aging 1995, 16, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Barker-Haliski, M.; White, H.S. Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harb. Perspect. Med. 2015, 5, a022863. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Jiang, X.; Ma, L.; Wei, W.; Li, Z.; Chang, S.; Wen, J.; Sun, J.; Li, H. Role of Aβ in Alzheimer’s-related synaptic dysfunction. Front. Cell Dev. Biol. 2022, 10, 964075. [Google Scholar] [CrossRef] [PubMed]
- Whitcomb, D.J.; Hogg, E.L.; Regan, P.; Piers, T.; Narayan, P.; Whitehead, G.; Winters, B.L.; Kim, D.H.; Kim, E.; St George-Hyslop, P.; et al. Intracellular oligomeric amyloid-beta rapidly regulates GluA1 subunit of AMPA receptor in the hippocampus. Sci. Rep. 2015, 5, 10934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Alonso, J.; Nicoll, R.A. AMPA receptor trafficking and LTP: Carboxy-termini, amino-termini and TARPs. Neuropharmacology 2021, 197, 108710. [Google Scholar] [CrossRef]
- Nakajima, M.; Suda, S.; Sowa, K.; Sakamoto, Y.; Nito, C.; Nishiyama, Y.; Aoki, J.; Ueda, M.; Yokobori, S.; Yamada, M.; et al. AMPA Receptor Antagonist Perampanel Ameliorates Post-Stroke Functional and Cognitive Impairments. Neuroscience 2018, 386, 256–264. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Wang, R.; Gao, Y.; Che, H.; Pan, Y.; Fu, P. Evaluating the effectiveness of GTM-1, rapamycin, and carbamazepine on autophagy and Alzheimer disease. Med. Sci. Monit. 2017, 23, 801–808. [Google Scholar] [CrossRef] [Green Version]
- Nygaard, H.B.; Kaufman, A.C.; Sekine-Konno, T.; Huh, L.L.; Going, H.; Feldman, S.J.; Kostylev, M.A.; Strittmatter, S.M. Brivaracetam, but not ethosuximide, reverses memory impairments in an Alzheimer’s disease mouse model. Alzheimer’s Res. Ther. 2015, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, P.E.; Zhu, L.; Verret, L.; Vossel, K.A.; Orr, A.G.; Cirrito, J.R.; Devidze, N.; Ho, K.; Yu, G.Q.; Palop, J.J.; et al. Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer’s disease model. Proc. Natl. Acad. Sci. USA 2012, 109, E2895–E2903. [Google Scholar] [CrossRef]
- Morris, M.; Sanchez, P.E.; Verret, L.; Beagle, A.J.; Guo, W.; Dubal, D.; Ranasinghe, K.G.; Koyama, A.; Ho, K.; Yu, G.Q.; et al. Network dysfunction in α-synuclein transgenic mice and human Lewy body dementia. Ann. Clin. Transl. Neurol. 2015, 2, 1012–1028. [Google Scholar] [CrossRef]
- He, Y.X.; Shen, Q.Y.; Tian, J.H.; Wu, Q.; Xue, Q.; Zhang, G.P.; Wei, W.; Liu, Y.H. Zonisamide Ameliorates Cognitive Impairment by Inhibiting ER Stress in a Mouse Model of Type 2 Diabetes Mellitus. Front. Aging Neurosci. 2020, 12, 192. [Google Scholar] [CrossRef] [PubMed]
- Strzelczyk, A.; Schubert-Bast, S. Psychobehavioural and Cognitive Adverse Events of Anti-Seizure Medications for the Treatment of Developmental and Epileptic Encephalopathies. CNS Drugs 2022, 36, 1079–1111. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.H.; Ahn, J.H.; Park, J.H.; Song, M.; Kim, H.; Lee, T.K.; Lee, J.C.; Kim, Y.M.; Hwang, I.K.; Kim, D.W.; et al. Rufinamide, an antiepileptic drug, improves cognition and increases neurogenesis in the aged gerbil hippocampal dentate gyrus via increasing expressions of IGF-1, IGF-1R and p-CREB. Chem. Biol. Interact. 2018, 286, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.C.; Wu, S.N.; Huang, C.W. Rufinamide, a Triazole-Derived Antiepileptic Drug, Stimulates Ca2+-Activated K+ Currents While Inhibiting Voltage-Gated Na+ Currents. Int. J. Mol. Sci. 2022, 23, 13677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.Y.; Zheng, C.Y.; Zou, M.M.; Zhu, J.W.; Zhang, Y.; Wang, J.; Liu, C.F.; Li, Q.F.; Xiao, Z.C.; Li, S.; et al. Lamotrigine attenuates deficits in synaptic plasticity and accumulation of amyloid plaques in APP/PS1 transgenic mice. Neurobiol. Aging 2014, 35, 2713–2725. [Google Scholar] [CrossRef]
- Rizzello, E.; Pimpinella, D.; Pignataro, A.; Titta, G.; Merenda, E.; Saviana, M.; Porcheddu, G.F.; Paolantoni, C.; Malerba, F.; Giorgi, C.; et al. Lamotrigine rescues neuronal alterations and prevents seizure-induced memory decline in an Alzheimer’s disease mouse model. Neurobiol. Dis. 2023, 181, 106106. [Google Scholar] [CrossRef]
- Fu, X.X.; Duan, R.; Wang, S.Y.; Zhang, Q.Q.; Wei, B.; Huang, T.; Gong, P.Y.; Yan, E.; Jiang, T.; Zhang, Y.D. Lamotrigine protects against cognitive deficits, synapse and nerve cell damage, and hallmark neuropathologies in a mouse model of Alzheimer’s disease. Neural Regen. Res. 2023, 18, 189–193. [Google Scholar]
- Bang, S.R.; Ambavade, S.D.; Jagdale, P.G.; Adkar, P.P.; Waghmare, A.B.; Ambavade, P.D. Lacosamide reduces HDAC levels in the brain and improves memory: Potential for treatment of Alzheimer’s disease. Pharmacol. Biochem. Behav. 2015, 134, 65–69. [Google Scholar] [CrossRef]
- Ibrahim, F.S.; Abdel-Aziz, L.F.; Elbakly, W.M.; El Gayar, N.H. Neuroprotective effect of lacosamide on cognitive dysfunction in Streptozotocin induced Alzheimer disease. QJM Int. J. Med. 2021, 114, hcab114. [Google Scholar] [CrossRef]
- Alavi, M.S.; Fanoudi, S.; Hosseini, M.; Sadeghnia, H.R. Beneficial effects of levetiracetam in streptozotocin-induced rat model of Alzheimer’s disease. Metab. Brain Dis. 2022, 37, 689–700. [Google Scholar] [CrossRef]
- Fu, C.H.; Iascone, D.M.; Petrof, I.; Hazra, A.; Zhang, X.; Pyfer, M.S.; Tosi, U.; Corbett, B.F.; Cai, J.; Lee, J.; et al. Early Seizure Activity Accelerates Depletion of Hippocampal Neural Stem Cells and Impairs Spatial Discrimination in an Alzheimer’s Disease Model. Cell Rep. 2019, 27, 3741–3751.e4. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.C.; Shen, Y.; Chan, J.; Kwan, P.; Jones, N.C. Anti-epileptogenic effects of synaptic vesicle protein 2A modulation in a mouse model of Alzheimer’s disease. Epilepsy Res. 2022, 186, 106994. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.Q.; Wang, B.R.; Tian, Y.Y.; Xu, J.; Gao, L.; Zhao, S.L.; Jiang, T.; Xie, H.G.; Zhang, Y.D. Antiepileptics Topiramate and Levetiracetam Alleviate Behavioral Deficits and Reduce Neuropathology in APPswe/PS1dE9 Transgenic Mice. CNS Neurosci. Ther. 2013, 19, 871–881. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X.L.; Li, M.K. Effect of topiramate on apoptosis-related protein expression of hippocampus in model rats with Alzheimers Disease. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 761–768. [Google Scholar] [PubMed]
- Owona, B.A.; Zug, C.; Schluesener, H.J.; Zhang, Z.Y. Amelioration of Behavioral Impairments and Neuropathology by Antiepileptic Drug Topiramate in a Transgenic Alzheimer’s Disease Model Mice, APP/PS1. Int. J. Mol. Sci. 2019, 20, 3003. [Google Scholar] [CrossRef] [Green Version]
- Loring, D.W.; Williamson, D.J.; Meador, K.J.; Wiegand, F.; Hulihan, J. Topiramate dose effects on cognition: A randomized double-blind study. Neurology 2011, 76, 131–137. [Google Scholar] [CrossRef] [Green Version]
- Meador, K.J.; Loring, D.W.; Hulihan, J.F.; Kamin, M.; Karim, R. Differential cognitive and behavioral effects of topiramate and valproate. Neurology 2003, 60, 1483–1488. [Google Scholar] [CrossRef]
- Besag, F.M.C.; Vasey, M.J. Neurocognitive Effects of Antiseizure Medications in Children and Adolescents with Epilepsy. Paediatr. Drugs 2021, 23, 253–286. [Google Scholar] [CrossRef]
- Ryan, M. Cannabidiol in epilepsy: The indications and beyond. Ment. Health Clin. 2020, 10, 317–325. [Google Scholar] [CrossRef]
- Leo, A.; Russo, E.; Elia, M. Cannabidiol and epilepsy: Rationale and therapeutic potential. Pharmacol. Res. 2016, 107, 85–92. [Google Scholar] [CrossRef]
- O’Sullivan, S.E.; Jensen, S.S.; Nikolajsen, G.N.; Bruun, H.Z.; Bhuller, R.; Hoeng, J. The therapeutic potential of purified cannabidiol. J. Cannabis Res. 2023, 5, 21. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Lim, C.S. Understanding the modulatory effects of cannabidiol on alzheimer’s disease. Brain Sci. 2021, 11, 1211. [Google Scholar] [CrossRef]
- Esposito, G.; Scuderi, C.; Savani, C.; Steardo, L.; De Filippis, D.; Cottone, P.; Iuvone, T.; Cuomo, V.; Steardo, L. Cannabidiol in vivo blunts β-amyloid induced neuroinflammation by suppressing IL-1β and iNOS expression. Br. J. Pharmacol. 2007, 151, 1272–1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Moreno, A.M.; Reigada, D.; Ramírez, B.G.; Mechoulam, R.; Innamorato, N.; Cuadrado, A.; De Ceballos, M.L. Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: Relevance to alzheimer’s disease. Mol. Pharmacol. 2011, 79, 964–973. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.; Low, J.K.; Logge, W.; Garner, B.; Karl, T. Chronic cannabidiol treatment improves social and object recognition in double transgenic APPswe/PS1ΔE9 mice. Psychopharmacology 2014, 231, 3009–3017. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.; Spiro, A.S.; Jenner, A.M.; Garner, B.; Karl, T. Long-term cannabidiol treatment prevents the development of social recognition memory deficits in alzheimer’s disease transgenic mice. J. Alzheimer’s Dis. 2014, 42, 1383–1396. [Google Scholar] [CrossRef]
- Watt, G.; Shang, K.; Zieba, J.; Olaya, J.; Li, H.; Garner, B.; Karl, T. Chronic Treatment with 50 mg/kg Cannabidiol Improves Cognition and Moderately Reduces Aβ40 Levels in 12-Month-Old Male AβPPswe/PS1ΔE9 Transgenic Mice. J. Alzheimer’s Dis. 2020, 74, 937–950. [Google Scholar] [CrossRef]
- Kim, J.; Choi, P.; Park, Y.T.; Kim, T.; Ham, J.; Kim, J.C. The Cannabinoids, CBDA and THCA, Rescue Memory Deficits and Reduce Amyloid-Beta and Tau Pathology in an Alzheimer’s Disease-like Mouse Model. Int. J. Mol. Sci. 2023, 24, 6827. [Google Scholar] [CrossRef]
- Vande Vyver, M.; Barker-Haliski, M.; Aourz, N.; Nagels, G.; Bjerke, M.; Engelborghs, S.; De Bundel, D.; Smolders, I. Higher susceptibility to 6 Hz corneal kindling and lower responsiveness to antiseizure drugs in mouse models of Alzheimer’s disease. Epilepsia 2022, 63, 2703–2715. [Google Scholar] [CrossRef]
- Reardon, S. Frustrated Alzheimer’s researchers seek better lab mice. Nature 2018, 563, 611–612. [Google Scholar] [CrossRef] [Green Version]
- LaFerla, F.M.; Green, K.N. Animal models of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2012, 2, a006320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foidl, B.; Humpel, C. Can mouse models mimic sporadic Alzheimer’s disease? Neural Regen. Res. 2020, 15, 401–406. [Google Scholar] [PubMed]
- Vitek, M.P.; Araujo, J.A.; Fosse, M.; Greenberg, B.D.; Howell, G.R.; Rizzo, S.J.S.; Seyfried, N.T.; Tenner, A.J.; Territo, P.R.; Windisch, M.; et al. Translational animal models for Alzheimer’s disease: An Alzheimer’s Association Business Consortium Think Tank. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2020, 6, e12114. [Google Scholar] [CrossRef]
- Lehmann, L.; Lo, A.; Knox, K.M.; Barker-Haliski, M. Alzheimer’s Disease and Epilepsy: A Perspective on the Opportunities for Overlapping Therapeutic Innovation. Neurochem. Res. 2021, 46, 1895–1912. [Google Scholar] [CrossRef]
- Giorgi, F.S.; Guida, M.; Vergallo, A.; Bonuccelli, U.; Zaccara, G. Treatment of epilepsy in patients with Alzheimer’s disease. Expert Rev. Neurother. 2017, 17, 309–318. [Google Scholar] [CrossRef]
- Kaur, U.; Chauhan, I.; Gambhir, I.S.; Chakrabarti, S.S. Antiepileptic drug therapy in the elderly: A clinical pharmacological review. Acta Neurol. Belg. 2019, 119, 163–173. [Google Scholar] [CrossRef]
- Devinsky, O.; Vezzani, A.; O’Brien, T.J.; Jette, N.; Scheffer, I.E.; De Curtis, M.; Perucca, P. Epilepsy. Nat. Rev. Dis. Primers 2018, 4, 18024. [Google Scholar] [CrossRef]
- Motika, P.V.; Spencer, D.C. Treatment of Epilepsy in the Elderly. Curr. Neurol. Neurosci. Rep. 2016, 16, 389–407. [Google Scholar] [CrossRef]
- Eyer, F.; Felgenhauer, N.; Gempel, K.; Steimer, W.; Gerbitz, K.D.; Zilker, T. Acute valproate poisoning: Pharmacokinetics, alteration in fatty acid metabolism, and changes during therapy. J. Clin. Psychopharmacol. 2005, 25, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Rogawski, M.A.; Löscher, W.; Rho, J.M. Mechanisms of action of Antiseizure Drugs and the Ketogenic diet. Cold Spring Harb. Perspect. Med. 2016, 6, 28. [Google Scholar] [CrossRef] [Green Version]
- Kanner, A.M.; Helmstaedter, C.; Sadat-Hossieny, Z.; Meador, K. Cognitive disorders in epilepsy I: Clinical experience, real-world evidence and recommendations. Seizure 2020, 83, 216–222. [Google Scholar] [CrossRef]
- Tallarico, M.; Pisano, M.; Leo, A.; Russo, E.; Citraro, R.; De Sarro, G. Antidepressants drugs for seizures and epilepsy: Where do we stand? Curr. Neuropharmacol. 2023, 21, 1691–1713. [Google Scholar] [CrossRef] [PubMed]
- Perucca, E.; Brodie, M.J.; Kwan, P.; Tomson, T. 30 Years of Second-Generation Antiseizure Medications: Impact and Future Perspectives. Lancet Neurol. 2020, 19, 544–556. [Google Scholar] [CrossRef] [PubMed]
- Cretin, B. Treatment of Seizures in Older Patients with Dementia. Drugs Aging 2021, 38, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Rowan, A.J.; Ramsay, R.E.; Collins, J.F.; Pryor, F.; Boardman, K.D.; Uthman, B.M.; Spitz, M.; Frederick, T.; Towne, A.; Carter, G.S.; et al. New onset geriatric epilepsy: A randomized study of gabapentin, lamotrigine, and carbamazepine. Neurology 2005, 64, 1868–1873. [Google Scholar] [CrossRef]
- Saetre, E.; Perucca, E.; Isojärvi, J.; Gjerstad, L.; Babic, T.; Hodoba, D.; Vrca, A.; Lusic, I.; Kälviäinen, R.; Keränen, T.; et al. An international multicenter randomized double-blind controlled trial of lamotrigine and sustained-release carbamazepine in the treatment of newly diagnosed epilepsy in the elderly. Epilepsia 2007, 48, 1292–1302. [Google Scholar] [CrossRef]
- Brodie, M.J.; Overstall, P.W.; Giorgi, L. Multicentre, double-blind, randomised comparison between lamotrigine and carbamazepine in elderly patients with newly diagnosed epilepsy. Epilepsy Res. 1999, 37, 81–87. [Google Scholar] [CrossRef]
- Arif, H.; Buchsbaum, R.; Pierro, J.; Whalen, M.; Sims, J.; Resor, S.R.; Bazil, C.W.; Hirsch, L.J. Comparative effectiveness of 10 antiepileptic drugs in older adults with epilepsy. Arch. Neurol. 2010, 67, 408–415. [Google Scholar] [CrossRef]
- Tariot, P.N.; Schneider, L.S.; Cummings, J.; Thomas, R.G.; Raman, R.; Jakimovich, L.J.; Loy, R.; Bartocci, B.; Fleisher, A.; Ismail, M.S.; et al. Chronic divalproex sodium to attenuate agitation and clinical progression of Alzheimer disease. Arch. Gen. Psychiatry 2011, 68, 853–861. [Google Scholar] [CrossRef] [Green Version]
- Profenno, L.; Jakimovich, L.; Holt, C.; Porsteinsson, A.; Tariot, P. A Randomized, Double-Blind, Placebo-Controlled Pilot Trial of Safety and Tolerability of Two Doses of Divalproex Sodium in Outpatients with Probable Alzheimers Disease. Curr. Alzheimer Res. 2005, 2, 553–558. [Google Scholar] [CrossRef]
- Fleisher, A.S.; Truran, D.; Mai, J.T.; Langbaum, J.B.S.; Aisen, P.S.; Cummings, J.L.; Jack, C.R.; Weiner, M.W.; Thomas, R.G.; Schneider, L.S.; et al. Chronic divalproex sodium use and brain atrophy in Alzheimer disease. Neurology 2011, 77, 1263–1271. [Google Scholar] [CrossRef] [Green Version]
- Callisto, S.P.; Illamola, S.M.; Birnbaum, A.K.; Barkley, C.M.; Bathena, S.P.R.; Leppik, I.E.; Marino, S.E. Severity of Topiramate-Related Working Memory Impairment Is Modulated by Plasma Concentration and Working Memory Capacity. J. Clin. Pharmacol. 2020, 60, 1166–1176. [Google Scholar] [CrossRef]
- Eun, S.H.; Kim, H.D.; Eun, B.L.; Lee, I.K.; Chung, H.J.; Kim, J.S.; Kang, H.C.; Lee, Y.M.; Suh, E.S.; Kim, D.W.; et al. Comparative trial of low- and high-dose zonisamide as monotherapy for childhood epilepsy. Seizure 2011, 20, 558–563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendez, M.F.; Lim, G.T.H. Seizures in elderly patients with dementia: Epidemiology and management. Drugs Aging 2003, 20, 791–803. [Google Scholar] [CrossRef] [PubMed]
- Cumbo, E.; Ligori, L.D. Levetiracetam, lamotrigine, and phenobarbital in patients with epileptic seizures and Alzheimer’s disease. Epilepsy Behav. 2010, 17, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.D.; Weaver, D.F.; Joudrey, H.R.; Carter, A.O.; Rockwood, K. Epilepsy and antiepileptic drug use in elderly people as risk factors for dementia. J. Neurol. Sci. 2007, 252, 169–172. [Google Scholar] [CrossRef]
- Rao, S.C.; Dove, G.; Cascino, G.D.; Petersen, R.C. Recurrent seizures in patients with dementia: Frequency, seizure types, and treatment outcome. Epilepsy Behav. 2009, 14, 118–120. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, L.N. Treatment of epilepsy for people with Alzheimer’s disease. Cochrane Database Syst. Rev. 2021, 2021, CD011922. [Google Scholar]
- Vossel, K.; Ranasinghe, K.G.; Beagle, A.J.; La, A.; Ah Pook, K.; Castro, M.; Mizuiri, D.; Honma, S.M.; Venkateswaran, N.; Koestler, M.; et al. Effect of Levetiracetam on Cognition in Patients with Alzheimer Disease with and without Epileptiform Activity: A Randomized Clinical Trial. JAMA Neurol. 2021, 78, 1345–1354. [Google Scholar] [CrossRef]
- Hautecloque-Raysz, G.; Sellal, F.; Bousiges, O.; Phillipi, N.; Blanc, F.; Cretin, B. Epileptic Prodromal Alzheimer’s Disease Treated with Antiseizure Medications: Medium-Term Outcome of Seizures and Cognition. J. Alzheimer’s Dis. 2023, 94, 1057–1074. [Google Scholar] [CrossRef]
- del Pozo, A.; Lehmann, L.; Knox, K.M.; Barker-Haliski, M. Can Old Animals Reveal New Targets? The Aging and Degenerating Brain as a New Precision Medicine Opportunity for Epilepsy. Front. Neurol. 2022, 13, 833624. [Google Scholar] [CrossRef] [PubMed]
ASMs | Dose/Duration | Preclinical Model | Benefits | Mechanisms of Action | References |
---|---|---|---|---|---|
VPA | VPA daily injected at 30 mg/kg, for 1 week. After a 3-week wash-out, the same animals received injections of a higher dose of VPA at 300 mg/kg. | Male APdE9 mice (15 weeks old) and APP/PS1 transgenic mice. | Reduced epileptiform discharges for at least 1 week after treatment discontinuation, but there were no consistent long-term effects on epileptiform activity after treatment withdrawal. | Increased Histone3, Histone4, and H4K12 acetylation at promoters of genes implicated in memory formation and synaptic plasticity. | [37] |
VPA | VPA daily injected at 30 mg/kg, for 4 weeks. | APP23 transgenic mice (6–7 weeks old). | Improved learning and memory deficits; reduced Aβ production. | Inhibited GSK-3β-mediated γ-secretase cleavage of APP in vivo and in vitro. | [39] |
PHT; CBZ and VPA | PHT: 100 nM–1 μM, for 6–10 days; CBZ: 100 nM–10 μM, for 6–10 days; VPA: 100 nM–100 μM for, 6–10 days. | Cultured rat hippocampal neurons. | Protected against Aβ- and glutamate-induced neurotoxicity. | Reduced intracellular free calcium levels and Tau protein levels. | [41] |
PER | Dentate gyrus granule cells in control condition and in presence of 0.1 nM PER. PER at 1 mg/kg/os in mice. | Aβ1–42-induced neurotoxicity in vitro. C57BL/6 male mice injected with Aβ1–42 into the right dorsal hippocampus. | Counteracted Aβ-induced hippocampal LTP impairment and hippocampal-based cognitive deficits in Aβ oligomer-injected mice while retaining antiseizure efficacy. | AMPAR antagonism. Reduced pro-inflammatory cytokine levels. | [30] |
PER | PER daily injected at 1 and 5 mg/kg, for 7 weeks. | Rat transient middle cerebral artery occlusion model. | Improved spatial working memory. | Inhibited microglial activation, pro-inflammatory cytokine expression, and oxidative stress. Downregulation of Bcl-2 with activation of Akt. | [46] |
CBZ | CBZ orally administered at 100 mg/kg, for 2 months. | 3×Tg mouse model of AD (6 months old). | Decreased spatial learning and memory deficits in 3×Tg-AD mice. | Increased autophagic flux. | [47] |
PHT | PHT daily injected at 10–40 mg/kg (t.i.d.), for 21 days. | APdE9 transgenic mouse model. | Decreased epileptiform activity, with responder rates comprising between 25% and 80%, although side effects were detected. | Blocking of sodium channels. | [38] |
PHT | PHT daily injected at 10–40 mg/kg (t.i.d.), for 42 days. | APP/PS1 or 3×Tg old mice. | Reduced the number of spontaneous electrographic epileptiform discharges. | Blocking of sodium channels. | [38] |
ZNS | ZNS intragastrically administrated at 40 mg/kg/, for 16 weeks. | Mouse model of type 2 diabetes mellitus with high-fat diet/STZ-induced C57BL/6J mice (4 weeks old) | Improved cognitive impairment. | Enhanced PSD95 and CREB expression in type 2 diabetes mellitus mice, diminished Aβ load, and rescued Tau hyperphosphorylation by decreasing the activity of JNK. | [51] |
RUF | RUF daily injected at 3 mg/kg, for 4 weeks. | Aged gerbils (24 months old) | Reduced learning and memory deficits. | Increased neurogenesis in the dentate gyrus, and enhanced expression of IGF-1, IGF-1R, and p-CREB. | [53] |
LTG | Mice received standard laboratory chow supplemented with LTG at 30 mg/kg, for 6–8 months. | APP/PS1 transgenic mice (3 months old) | Reduced learning and memory impairment. | Suppressed abnormal cortical hyperexcitability, enhanced levels of neurotrophic factors, and decreased Aβ generation and deposition in this mouse model. | [55] |
LTG | LTG daily injected at 10 mg/kg, for 23 days. | A transgenic model of pre-symptomatic AD Tg2576 mice (1–2 months old) | Restored electrophysiological alterations, prevented memory deficits, and increased extracellular Aβ levels. | Restored neuronal excitability, prevented aberrant modulation of extracellular Aβ, and reduced β-secretase cleavage of APP. | [56] |
LTG | LTG intragastrically administrated at 30 mg/kg, for 3 months. | APP/PS1 mice (5 months old) | Ameliorated cognitive-like deficits, reducing synapse and neuronal damage in the CNS. | Modulated the brain expression of several markers involved in neuroinflammation, Aβ production, and Tau hyperphosphorylation, such as Ptgds, Cd74, Map3k1, Fosb, and Spp1. | [57] |
LCS | LCS injected at 30 mg/kg, for 21 days. | Wistar rats | Decreased streptozotocin-induced cognitive deficits. | Decreased Aβ and Tau protein formation. | [59] |
LEV | LEV i.c.v. administered at 100 and 150 mg/kg, for 28 days. | Wistar rats weighing 200 ± 20 g | Reduced neuronal death and cognitive-like decline in STZ- induced AD. | Suppressed STZ-induced hippocampal neuronal loss, restored changes in redox status, rebalanced acetylcholinesterase activity, and suppressed expression of proinflammatory cytokines and hyperphosphorylation of Tau. | [60] |
LEV | LEV intraperitoneal injected at 5, 50, or 200 mg/kg, for 8 days. | hAPP transgenic mice | Reduced abnormal spike activity, in a dose-dependent manner | Reversed hippocampal remodeling and decreased behavioral abnormalities, synaptic dysfunction, and learning and memory impairment in this mouse model of AD. | [49] |
LEV | LEV, 75 mg/kg/i.p. administered 3 times per day, for 2 weeks. | hAPP transgenic mouse model | Improved performance in a neurogenesis-associated spatial discrimination task | Restored neurogenesis. | [48] |
BRV ETH | BRV injected at 8.5 mg/kg/day, for 28 days; ETH delivered in drinking water at a concentration of 30 mg/kg, for 28 days. | APP/PS1 and 3×Tg-AD Mouse models | Reduced spike-wave discharges (SWDs) were detected. Only BRV was able to reverse spatial memory deficits in mice | Brivaracetam interacted with SV2A. | [48] |
BRV and LEV | BRV subcutaneously injected at 10 mg/kg and LEV subcutaneously injected at 150 mg/kg, for 28 days. | Aged Tg2576 mice (13–25 months old) | Delayed the progression of seizure severity | Targeting SV2A | [62] |
TPM and LEV | TPM intraperitoneally injected at 20 mg/kg and LEV intraperitoneally injected at 50 mg/kg, for 30 days. | APP/PS1 transgenic mice (9–7 months old) | Improved behavioral impairment and reduced Aβ plaques activity in transgenic mice | TPM and LEV augmented Aβ clearance and u-regulated Aβ transport across the blood–brain barrier and autophagic digestion. Normalized the activation of AMPK/Akt/GSK3β in vivo and in vitro. TPM and LEV were also able to inhibit histone deacetylase. | [63] |
TPM | TPM intraperitoneally injected at 20 mg/kg, for 30 days. | Adult Wistar rats. | Counteracted apoptosis. | Enhanced expression of Bcl-2 and reduced expression of Fas, Bax, and Caspase-3 in hippocampal neurons. | [64] |
TPM | TPM administered at 20 mg/kg, for 21 days. | APP/PS1 transgenic mice (5 months old). | Restored the frequency of interactive behavior and nest-building activity. | Diminished deposition and aggregation of Aβ. Reduced activation of microglia in the cortex and hippocampus. | [65] |
CBD | CBD intraperitoneally injected at 2.5 or 10 mg/kg, for 7 days. | C57BL/6J mice (3–5 months old) subjected to administration of 10 ng of Aβ (1–42). | Modulated neuronal damage. | Reduced glial fibrillary acid protein (GFAP) expression in a dose-dependent manner. Decreased iNOS and interleukin-1β expression, thus attenuating Aβ-induced pro-inflammatory responses. | [73] |
CBD | CBD intraperitoneally injected at 20 mg/kg, for 3 weeks. | Aβ-injected and APP/PS1 transgenic mice (3 months old). | Rescued spatial learning deficits. | Counteracted Aβ-mediated neuroinflammation. | [74,75] |
CBD | CBD administered at 20 mg/kg, for 8 months. | APP/PS1 transgenic mice (10 weeks old). | Reduced the onset of social recognition impairment in mice. | Reduced neuroinflammation. | [76] |
CBD | CBD administered at 50 mg/kg, for 3 weeks. | AβPPxPS1 transgenic mouse model (10 weeks old). | Reversed social and object recognition memory deficits. | Decreased insoluble Aβ deposition in the hippocampus of 12-month-old transgenic mice. No effects on neuroinflammation, neurodegeneration, or PPARγ markers in the cortex. | [77] |
CBDA and THCA | CBDA (6 μmol/mouse) or THCA (12 μmol/mouse) injected into the hippocampus of mice. | Aβ1–42-injected mouse model (intrahippocampal injection). | Improved learning and memory decline in Aβ1–42-injected mice. | Decreased Aβ aggregation and p-Tau pathology in the hippocampus of Aβ1–42-injected mice. | [78] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bosco, F.; Guarnieri, L.; Rania, V.; Palma, E.; Citraro, R.; Corasaniti, M.T.; Leo, A.; De Sarro, G. Antiseizure Medications in Alzheimer’s Disease from Preclinical to Clinical Evidence. Int. J. Mol. Sci. 2023, 24, 12639. https://doi.org/10.3390/ijms241612639
Bosco F, Guarnieri L, Rania V, Palma E, Citraro R, Corasaniti MT, Leo A, De Sarro G. Antiseizure Medications in Alzheimer’s Disease from Preclinical to Clinical Evidence. International Journal of Molecular Sciences. 2023; 24(16):12639. https://doi.org/10.3390/ijms241612639
Chicago/Turabian StyleBosco, Francesca, Lorenza Guarnieri, Vincenzo Rania, Ernesto Palma, Rita Citraro, Maria Tiziana Corasaniti, Antonio Leo, and Giovambattista De Sarro. 2023. "Antiseizure Medications in Alzheimer’s Disease from Preclinical to Clinical Evidence" International Journal of Molecular Sciences 24, no. 16: 12639. https://doi.org/10.3390/ijms241612639
APA StyleBosco, F., Guarnieri, L., Rania, V., Palma, E., Citraro, R., Corasaniti, M. T., Leo, A., & De Sarro, G. (2023). Antiseizure Medications in Alzheimer’s Disease from Preclinical to Clinical Evidence. International Journal of Molecular Sciences, 24(16), 12639. https://doi.org/10.3390/ijms241612639