Analysis of Predicted Amino Acid Sequences of Diatom Microtubule Center Components
Abstract
:1. Introduction
2. Results and Discussion
2.1. Gamma-Tubulin Complex Proteins—GCP
2.2. Aurora A
2.3. Centrins
3. Materials and Methods
3.1. Search of Sequences
3.2. Alignment and Comparative Amino Acid Sequence Analysis
3.3. Phylogenetic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cavalier-Smith, T. Kingdom Chromista and its eight phyla: A new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. Protoplasma 2018, 255, 297–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medlin, L.; Kaczmarska, I. Evolution in diatoms. V. Morphological and cytological support of the major clades and taxonomic revision. Phycologia 2004, 43, 245–273. [Google Scholar] [CrossRef] [Green Version]
- Alverson, A.J. Molecular systematics and the diatom species. Protist 2008, 159, 339–353. [Google Scholar] [CrossRef] [Green Version]
- Theriot, E.C.; Ashworth, M.; Ruck, E.; Nakov, T.; Jansen, R.K. A preliminary multigene phylogeny of the diatoms (Bacillariophyta): Challenges for future research. Plant Ecol. Evol. 2010, 143, 278–296. [Google Scholar] [CrossRef] [Green Version]
- Round, F.E.; Crawford, R.M.; Mann, D.G. The Diatoms; Cambridge University Press: Bristol, UK, 1990. [Google Scholar]
- Guiry, M.D.; Guiry, G.M. AlgaeBase World-Wide Electronic Publication, National University of Ireland, Galway. Available online: http://www.algaebase.org (accessed on 15 July 2023).
- Tesson, B.; Hildebrand, M. Extensive and intimate association of the cytoskeleton with forming silica in diatoms: Control over patterning on the meso- and micro-scale. PLoS ONE 2010, 5, e14300. [Google Scholar] [CrossRef] [Green Version]
- Bedoshvili, Y.D.; Likhoshway, Y.V. Cellular Mechanisms of Diatom Valve Morphogenesis. In Diatoms: Fundamentals & Applications; Gordon, R., Seckbach, J., Eds.; Wiley-Scrivener: Beverly, MA, USA, 2019; pp. 99–114. [Google Scholar]
- Bedoshvili, Y.D.; Likhoshway, Y.V. The effects of cytoskeletal inhibitors in diatoms. In Diatom Morphogenesis; Annenkov, V., Seckbach, J., Gordon, R., Eds.; Wiley-Scrivener: Beverly, MA, USA, 2021; pp. 349–364. [Google Scholar]
- Oey, J.L.; Schnepf, E. Uber die AuslSsung der Valvenbildung bei der Diatomee Cyclotella cryptica. Arch. Mikrobiol. 1970, 71, 199–213. [Google Scholar] [CrossRef]
- Blank, G.; Sullivan, C. Diatom mineralization of silicon acid. VI. The effects of microtubule inhibitors on silicic acid metabolism in Navicula saprophila. J. Phycol. 1983, 19, 39–44. [Google Scholar] [CrossRef]
- Cohn, S.; Nash, J.; Pickett-Heaps, J. The effects of drugs on diatom valve morphogenesis. Protoplasma 1989, 149, 130–143. [Google Scholar] [CrossRef]
- Van de Meene, A.; Pickett-Heaps, J. Valve morphogenesis in the centric diatom Proboscia alata Sundström. J. Phycol. 2002, 38, 351–363. [Google Scholar] [CrossRef]
- Van de Meene, A.; Pickett-Heaps, J. Valve morphogenesis in the centric diatom Rhizosolenia setigera (Bacillariophyceae, Centrales) and its taxonomic implications. Eur. J. Phycol. 2004, 39, 93–104. [Google Scholar] [CrossRef]
- Kharitonenko, K.V.; Bedoshvili, Y.D.; Likhoshway, Y.V. Changes in the micro-and nanostructure of siliceous valves in the diatom Synedra acus under the effect of colchicine treatment at different stages of the cell cycle. J. Struct. Biol. 2015, 190, 73–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedoshvili, Y.; Gneusheva, K.; Popova, M.; Morozov, A.; Likhoshway, Y. Anomalies in the valve morphogenesis of the centric diatom alga Aulacoseira islandica caused by microtubule inhibitors. Biol. Open 2018, 7, bio035519. [Google Scholar] [PubMed] [Green Version]
- Pickett-Heaps, J.; Wetherbee, R.; Hill, D. Cell division and morphogenesis of the labiate process in the centric diatom Ditylum brightwellii. Protoplasma 1988, 143, 139–149. [Google Scholar] [CrossRef]
- Schmid, A.-M.; Eberwein, R.; Hesse, M. Pattern morphogenesis in cell walls of diatoms and pollen grains: A comparison. Protoplasma 1996, 193, 144–173. [Google Scholar] [CrossRef]
- Pickett-Heaps, J.; Schmid, A.-M.; Edgar, L. The cell biology of diatom valve formation. In Progress in Phycological Research; Round, F.E., Chapman, D.J., Eds.; Biopress: Bristol, UK, 1990. [Google Scholar]
- Teixidó-Travesa, N.; Roig, J.; Lüders, J. The where, when and how of microtubule nucleation—One ring to rule them all. J. Cell Sci. 2012, 125, 4445–4456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chumová, J.; Kourová, H.; Trögelová, L.; Daniel, G.; Binarová, P. γ-Tubulin complexes and fibrillar arrays: Two conserved high molecular forms with many cellular functions. Cells 2021, 10, 776. [Google Scholar] [CrossRef]
- Sulimenko, V.; Hájková, Z.; Klebanovych, A.; Dráber, P. Regulation of microtubule nucleation mediated by γ-tubulin complexes. Protoplasma 2017, 254, 1187–1199. [Google Scholar] [CrossRef]
- Pickett-Heaps, J.D. The evolution of the mitotic apparatus: An attempt at comparative ultrastructural cytology in dividing plant cells. Cytobios 1969, 3, 257–280. [Google Scholar]
- Tippit, D.H.; Pickett-Heaps, J.D. Mitosis in the pennate diatom Surirella ovalis. J. Cell Biol. 1977, 73, 705–727. [Google Scholar] [CrossRef]
- Tippit, D.H.; Pickett-Heaps, J.D.; Leslie, R. Cell division in two large pennate diatoms Hantzschia and Nitzschia. III. A new proposal for kinetochore function during prometaphase. J. Cell Biol. 1980, 86, 402–416. [Google Scholar] [CrossRef]
- De Martino, A.; Amato, A.; Bowler, C. Mitosis in diatoms: Rediscovering an old model for cell division. Bioessays 2009, 31, 874–884. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wong, M.L.; Alberts, B.; Mitchison, T. Nucleation of microtubule assembly by a gamma-tubulin-containing ring complex. Nature 1995, 378, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Oegema, K.; Wiese, C.; Martin, O.C.; Milligan, R.A.; Iwamatsu, A.; Mitchison, T.J.; Zheng, Y. Characterization of two related Drosophila gamma-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell Biol. 1999, 144, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Aumeier, C. The Cytoskeleton of Diatoms Structural and Genomic Analysis. Ph.D. Thesis, Mathematisch-Naturwissenschaftlichen Fakultät Rheinischen Friedrich-Wilhelms-Universität, Bonn, Germany, 2012. [Google Scholar]
- Findeisen, P.; Mühlhausen, S.; Dempewolf, S.; Hertzog, J.; Zietlow, A.; Carlomagno, T.; Kollmar, M. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family. Genome Biol. Evol. 2014, 6, 2274–2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khabudaev, K.V.; Petrova, D.P.; Bedoshvili, Y.D.; Likhoshway, Y.V.; Grachev, M.A. Molecular evolution of tubulins in diatoms. Int. J. Mol. Sci. 2022, 23, 618. [Google Scholar] [CrossRef]
- Tovey, C.A.; Conduit, P.T. Microtubule nucleation by γ-tubulin complexes and beyond. Essays Biochem. 2018, 62, 765–780. [Google Scholar]
- Guillet, V.; Knibiehler, M.; Gregory-Pauron, L.; Remy, M.H.; Chemin, C.; Raynaud-Messina, B.; Bon, C.; Kollman, J.M.; Agard, D.A.; Merdes, A.; et al. Crystal structure of γ-tubulin complex protein GCP4 provides insight into microtubule nucleation. Nat. Struct. Mol. Biol. 2011, 18, 915–919. [Google Scholar] [CrossRef] [Green Version]
- Boeddrich, A.; Gaumer, S.; Haacke, A.; Tzvetkov, N.; Albrecht, M.; Evert, B.O.; Müller, E.C.; Lurz, R.; Breuer, P.; Schugardt, N.; et al. An arginine/lysine-rich motif is crucial for VCP/p97-mediated modulation of ataxin-3 fibrillogenesis. EMBO J. 2006, 25, 1547–1558. [Google Scholar] [CrossRef] [Green Version]
- Yao, K.; Wu, Y.; Chen, Q.; Zhang, Z.; Chen, X.; Zhang, Y. The Arginine/Lysine-rich element within the DNA-binding domain is essential for nuclear localization and function of the intracellular pathogen resistance 1. PLoS ONE 2016, 11, e0162832. [Google Scholar] [CrossRef] [Green Version]
- Gunawardane, R.N.; Lizarraga, S.B.; Wiese, C.; Wilde, A.; Zheng, Y. γ-Tubulin complexes and their role in microtubule nucleation. Curr. Top. Dev. Biol. 2000, 49, 55–73. [Google Scholar]
- Lieser, S.A.; Aubol, B.E.; Wong, L.; Jennings, P.A.; Adams, J.A. Coupling phosphoryl transfer and substrate interactions in protein kinases. Biochim. Biophys. Acta 2005, 1754, 191–199. [Google Scholar] [CrossRef]
- Klumpp, S.; Krieglstein, J. Phosphorylation and dephosphorylation of histidine residues in proteins. Eur. J. Biochem. 2002, 269, 1067–1071. [Google Scholar] [CrossRef]
- Petrova, D.P.; Khabudaev, K.V.; Bedoshvili, E.D.; Likhoshway, Y.V. Phylogeny and structuralpeculiarities of the end-binding proteins of diatoms. J. Struct. Biol. 2021, 213, 107775. [Google Scholar] [CrossRef] [PubMed]
- Lukasiewicz, K.B.; Greenwood, T.M.; Negron, V.C.; Bruzek, A.K.; Salisbury, J.L.; Lingle, W.L. Control of centrin stability by Aurora A. PLoS ONE 2011, 6, e21291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sardon, T.; Pache, R.A.; Stein, A.; Molina, H.; Vernos, I.; Aloy, P. Uncovering new substrates for Aurora A kinase. EMBO Rep. 2010, 11, 977–984. [Google Scholar] [CrossRef] [Green Version]
- Bayliss, R.; Fry, A.; Haq, T.; Yeoh, S. On the molecular mechanisms of mitotic kinase activation. Open Biol. 2012, 2, 120136. [Google Scholar] [CrossRef] [Green Version]
- Dodson, C.A.; Kosmopoulou, M.; Richards, M.W.; Atrash, B.; Bavetsias, V.; Blagg, J.; Bayliss, R. Crystal structure of an Aurora-A mutant that mimics Aurora-B bound to MLN8054: Insights into selectivity and drug design. Biochem. J. 2010, 427, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Tang, A.; Gao, K.; Chu, L.; Zhang, R.; Yang, J.; Zheng, J. Aurora kinases: Novel therapy targets in cancers. Oncotarget 2017, 8, 23937–23954. [Google Scholar] [CrossRef] [Green Version]
- Pitsawong, W.; Buosi, V.; Otten, R.; Agafonov, R.V.; Zorba, A.; Kern, N.; Kutter, S.; Kern, G.; Pádua, R.A.; Meniche, X.; et al. Dynamics of human protein kinase Aurora A linked to drug selectivity. Elife 2018, 7, e36656. [Google Scholar] [CrossRef]
- Eyers, P.A.; Erikson, E.; Chen, L.G.; Maller, J.L. A novel mechanism for activation of the protein kinase Aurora A. Curr. Biol. 2003, 13, 691–697. [Google Scholar] [CrossRef]
- Dodson, C.A.; Bayliss, R. Activation of Aurora-A kinase by protein partner binding and phosphorylation are independent and synergistic. J. Biol. Chem. 2012, 287, 1150–1157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrari, S.; Marin, O.; Pagano, M.A.; Meggio, F.; Hess, D.; El-Shemerly, M.; Krystyniak, A.; Pinna, L.A. Aurora-A site specificity: A study with synthetic peptide substrates. Biochem. J. 2005, 390, 293–302. [Google Scholar] [CrossRef] [Green Version]
- Cheeseman, I.M.; Anderson, S.; Jwa, M.; Green, E.M.; Kang, J.; Yates, J.R., 3rd; Chan, C.S.; Drubin, D.G.; Barnes, G. Phosphoregulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 2002, 111, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Baum, P.; Furlong, C.; Byers, B. Yeast gene required for spindle pole body duplication: Homology of its product with Ca2+-binding proteins. Proc. Natl. Acad. Sci. USA 1986, 83, 5512–5516. [Google Scholar] [CrossRef]
- Geimer, S.; Melkonian, M. Centrin scaffold in Chlamydomonas reinhardtii revealed by immunoelectron microscopy. Eukaryot. Cell 2005, 4, 1253–1263. [Google Scholar] [CrossRef] [Green Version]
- Aubusson-Fleury, A.; Balavoine, G.; Lemullois, M.; Bouhouche, K.; Beisson, J.; Koll, F. Centrin diversity and basal body patterning across evolution: New insights from Paramecium. Biol. Open. 2017, 6, 765–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, P.E.; Glantz, J.N.; Orth, J.D.; Poynter, G.M.; Salisbury, J.L. Testis-specific murine centrin, Cetn1: Genomic characterization and evidence for retroposition of a gene encoding a centrosome protein. Genomics 1999, 60, 111–120. [Google Scholar] [CrossRef]
- Levy, Y.Y.; Lai, E.Y.; Remillard, S.P.; Heintzelman, M.B.; Fulton, C. Centrin is a conserved protein that forms diverse associations with centrioles and MTOCs in Naegleria and other organisms. Cell Motil. Cytoskeleton 1996, 33, 298–323. [Google Scholar] [CrossRef]
- Kilian, O.; Kroth, P.G. Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J. 2005, 41, 175–183. [Google Scholar] [CrossRef]
- Armbrust, E.V.; Berges, J.A.; Bowler, C.; Green, B.R.; Martinez, D.; Putnam, N.H.; Zhou, S.; Allen, A.E.; Apt, K.E.; Bechner, M.; et al. The genome of the diatom Thalassiosira pseudonana: Ecology, evolution, and metabolism. Science 2004, 306, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Wiech, H.; Geier, B.M.; Paschke, T.; Spang, A.; Grein, K.; Steinkotter, J.; Melkonian, M.; Schiebel, E. Characterization of green alga, yeast, and human centrins. Specific subdomain features determine functional diversity. J. Biol. Chem. 1996, 271, 22453–22461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedretti, M.; Bombardi, L.; Conter, C.; Favretto, F.; Dominici, P.; Astegno, A. Structural basis for the functional diversity of centrins: A focus on calcium sensing properties and target recognition. Int. J. Mol. Sci. 2021, 22, 12173. [Google Scholar] [CrossRef] [PubMed]
- Gifford, J.L.; Walsh, M.P.; Vogel, H.J. Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem. J. 2007, 405, 199–221. [Google Scholar] [CrossRef] [PubMed]
- Trande, M.; Pedretti, M.; Bonza, M.C.; Di Matteo, A.; D’Onofrio, M.; Dominici, P.; Astegno, A. Cation and peptide binding properties of CML7, a calmodulin-like protein from Arabidopsis thaliana. J. Inorg. Biochem. 2019, 199, 110796. [Google Scholar] [CrossRef]
- Galachyants, Y.P.; Zakharova, Y.R.; Petrova, D.P.; Morozov, A.A.; Sidorov, I.A.; Marchenkov, A.M.; Logacheva, M.D.; Markelov, M.L.; Khabudaev, K.V.; Likhoshway, Y.V.; et al. Sequencing of the complete genome of an araphid pennate diatom Synedra acus subsp. radians from Lake Baikal. Dokl. Biochem. Biophys. 2015, 461, 84–88. [Google Scholar] [CrossRef]
- Bowler, C.; Allen, A.E.; Badger, J.H.; Grimwood, J.; Jabbari, K.; Kuo, A.; Maheswari, U.; Martens, C.; Maumus, F.; Otillar, R.P.; et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 2008, 456, 239–244. [Google Scholar] [CrossRef] [Green Version]
- Lommer, M.; Roy, A.S.; Schilhabel, M.; Schreiber, S.; Rosenstiel, P.; LaRoche, J. Recent transfer of an iron-regulated gene from the plastid to the nuclear genome in an oceanic diatom adapted to chronic iron limitation. BMC Genom. 2010, 11, 718. [Google Scholar] [CrossRef] [Green Version]
- Mock, T.; Otillar, R.P.; Strauss, J.; McMullan, M.; Paajanen, P.; Schmutz, J.; Salamov, A.; Sanges, R.; Toseland, A.; Ward, B.J.; et al. Evolutionary genomics of the cold-adapted diatom Fragilariopsis cylindrus. Nature 2017, 541, 536–540. [Google Scholar] [CrossRef] [Green Version]
- Keeling, P.J.; Burki, F.; Wilcox, H.M.; Allam, B.; Allen, E.E.; Amaral-Zettler, L.A.; Armbrust, E.V.; Archibald, J.M.; Bharti, A.K.; Bell, C.J.; et al. The marine microbial eukaryote transcriptome sequencing project (MMETSP): Illuminating the functional diversity of eukaryotic life in the oceans through transcriptome sequencing. PLoS Biol. 2014, 12, e1001889. [Google Scholar] [CrossRef] [Green Version]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018, 46, D8–D13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef] [PubMed]
- Larsson, A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 2014, 30, 3276–3278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulder, N.J.; Apweiler, R.; Attwood, T.K.; Bairoch, A.; Bateman, A.; Binns, D.; Biswas, M.; Bradley, P.; Bork, P.; Bucher, P.; et al. InterPro Consortium. InterPro: An integrated documentation resource for protein families, domains and functional sites. Brief. Bioinform. 2002, 3, 225–235. [Google Scholar] [PubMed] [Green Version]
- Willems, E.; Dedobbeleer, M.; Digregorio, M.; Lombard, A.; Lumapat, P.N.; Rogister, B. The functional diversity of Aurora kinases: A comprehensive review. Cell Div. 2018, 13, 7. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [Green Version]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef] [Green Version]
- Okonechnikov, K.; Golosova, O.; Fursov, M. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Schmidt, H.A.; von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoang, D.T.; Chernomor, O.; von Haeseler, A.; Minh, B.Q.; Vinh, L.S. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol. Biol. Evol. 2018, 35, 518–522. [Google Scholar] [CrossRef] [PubMed]
MTOC Components | Homo sapiens | Arabidopsis thaliana | Saccharomyces cerevisiae | Phytophthora nicotianae | Diatoms |
---|---|---|---|---|---|
GCP2 | + | + | + | + | + |
GCP3 | + | + | + | + | + |
GCP4 (TUBGCP4) | + | + | – | + | + |
GCP5 (TUBGCP5) | + | + | – | – | +/− |
GCP6 (TUBGCP6) | + | + | – | – | +/− |
GCP8A (MZT2A) | + | + | – | – | − |
GCP8B (MZT2B) | + | + | – | – | − |
GCP9 (MZT1) | + | + | – | + | − |
GCP-WD (NEDD1) | + | + | – | + | − |
Protein kinase Aurora A | + | + | + | + | |
Centrins | + | + | + | – | + |
Nucleolins | + | + | + | – | + |
Augmin complex proteins | + | + | – | – | − |
CKAP5 | + | + | – | – | +/− |
TPX2 | + | + | – | – | +/− |
Species | GCP2 | GCP3 | GCP4 | GCP5 | GCP6 | |
---|---|---|---|---|---|---|
Coscinodiscophyceae | 6 | 5 | 6 | 1 | 1 | 1 |
Mediophyceae | 35 | 32 | 31 | 6 | - | - |
Bacillariophyceae, Urneidophycidae | 1 | 1 | 1 | - | - | - |
Bacillariophyceae, Fragilariophycidae | 7 | 4 | 5 | - | - | - |
Bacillariophyceae, Bacillariophycidae | 18 | 17 | 16 | - | - | - |
Bacillariophyta | 59 | 59 | 7 | 1 | 1 |
EF-Hand Domain Pair 1 | EF-Hand Domain Pair 2 | |||
---|---|---|---|---|
EF-Hand 1 | EF-Hand 2 | EF-Hand 3 | EF-Hand 4 | |
Bacillariophyta | DxDxDG | DxDxDG | DxDxDG | DxDxDG |
Coscinodiscophyceae | DXDGXG | DKDGSG | DDDETG | DXDGDG |
Clas Mediophyceae | DTDGSG | DKDGXG | DDDETG | DXDGDG |
Bacillariophyceae Urneidophycidae | – | – | – | – |
Bacillariophyceae Fragilariophycidae | DTDGSG | DDDGXG | DDDETG | DXDGDG |
Bacillariophyceae Bacillariophycidae | DTDGSG | DDDGSG | DDDETG | DXDGDG |
Homo sapiens | Arabidopsis thaliana | Saccharomyces cerevisiae | Phytophthora nicotianae | Ectocarpus siliculosus | Naegleria gruberi | |
---|---|---|---|---|---|---|
GCP 2 | NP_001243546 | AED92422 | QHB09163 | KUF64340 | ||
GCP 3 | NP_006313 | Q9FG37 | AJT23326 | KUF76510 | ||
GCP 4 | NP_001273343 | OAP01290 | KUF76976 | |||
GCP 5 | AAK77662 | |||||
GCP 6 | NP_065194 | KUG00998 | ||||
Protein kinase Aurora A | A—NP_001310232.1 B—AAH00442 C—KAI4045108.1 | 1—OAP01184.1 2—OAP10838.1 3—OAP01290 | PJP07804.1 | A—KUF82775.1 A-A—KUF81362.1 A-B—KUF80014.1 | CBN77021.1 | CtnNg—XP_002671077.1 |
centrin | Ctn1Hs—NP_004057.1 Ctn2Hs—CAA51467.1 Ctn3Hs—KAI4021980.1 | Ctn1Hs—sp|082659.1 Ctn2Hs—NP_190605.1 | CtnSc—PJP11597.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrova, D.P.; Morozov, A.A.; Potapova, N.A.; Bedoshvili, Y.D. Analysis of Predicted Amino Acid Sequences of Diatom Microtubule Center Components. Int. J. Mol. Sci. 2023, 24, 12781. https://doi.org/10.3390/ijms241612781
Petrova DP, Morozov AA, Potapova NA, Bedoshvili YD. Analysis of Predicted Amino Acid Sequences of Diatom Microtubule Center Components. International Journal of Molecular Sciences. 2023; 24(16):12781. https://doi.org/10.3390/ijms241612781
Chicago/Turabian StylePetrova, Darya P., Alexey A. Morozov, Nadezhda A. Potapova, and Yekaterina D. Bedoshvili. 2023. "Analysis of Predicted Amino Acid Sequences of Diatom Microtubule Center Components" International Journal of Molecular Sciences 24, no. 16: 12781. https://doi.org/10.3390/ijms241612781
APA StylePetrova, D. P., Morozov, A. A., Potapova, N. A., & Bedoshvili, Y. D. (2023). Analysis of Predicted Amino Acid Sequences of Diatom Microtubule Center Components. International Journal of Molecular Sciences, 24(16), 12781. https://doi.org/10.3390/ijms241612781