Phenotypic Analysis and Molecular Characterization of Enlarged Cell Size Mutant in Nannochloropsis oceanica
Abstract
:1. Introduction
2. Results
2.1. Cell Density and Cell Size in ECS
2.2. Chlorophyll Fluorescence and Chlorophyll Content in ECS
2.3. Dry Biomass, Protein, Total Carbohydrate, and Lipid Contents in ECS
2.4. Insertion Is Identified to Be in Locus NO14G02130, Encoding a Cyclin Protein
2.5. Identification of Cyclin Gene Family in Nannochloropsis oceanica
2.6. Motif Analysis and Light/Dark Transcriptomic Analysis of Cyclin Genes
2.7. Failure of ECS to Fully Complete Cell Division in the Dark Phase
2.8. RT-qPCR Analysis of Cell-Cycle-Related Genes
3. Discussion
3.1. Cell Size Affects Photosynthetic Characteristics and Nutrient Storage
3.2. Cyclins Respond to Environmental Signals
3.3. Cyclins Play a Role in Cell Division
4. Materials and Methods
4.1. Microalgal Strain and Culture Conditions
4.2. Measurement of Growth and Cell Size
4.3. Determination of Chlorophyll Content and Chlorophyll Fluorescence
4.4. Dry Biomass Measurement and Analysis of Protein, Total Carbohydrate, and Lipid Content
4.5. Whole-Genome Sequencing and Analysis of Insertion Sites
4.6. Confirmation of Insertion Sites
4.7. Identification and Characterization of Cyclin Genes in Nannochloropsis oceanica
4.8. Motif Analysis, Multiple Alignment, and Phylogenetic Analysis
4.9. Transcriptomic Data Analysis
4.10. Cell Cycle Analysis Using Flow Cytometry
4.11. RT–qPCR Analysis of N. oceanica IMET1 Cell-Cycle-Related Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Umen, J.G. Sizing up the cell cycle: Systems and quantitative approaches in Chlamydomonas. Curr. Opin. Plant Biol. 2018, 46, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Cross, F.R.; Umen, J.G. The Chlamydomonas cell cycle. Plant J. 2015, 82, 370–392. [Google Scholar] [CrossRef] [PubMed]
- Huysman, M.J.; Vyverman, W.; De Veylder, L. Molecular regulation of the diatom cell cycle. J. Exp. Bot. 2014, 65, 2573–2584. [Google Scholar] [CrossRef] [PubMed]
- Harashima, H.; Dissmeyer, N.; Schnittger, A. Cell cycle control across the eukaryotic kingdom. Trends Cell Biol. 2013, 23, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.Z.; Ouyang, L.L.; Shen, A.L.; Wang, Y.L. The cell cycle of phytoplankton: A review. J. World Aquac. Soc. 2022, 53, 799–815. [Google Scholar] [CrossRef]
- He, C.; Liang, J.; Wu, Z.; Zhuge, X.; Xu, N.; Yang, H. Study on the interaction preference between CYCD subclass and CDK family members at the poplar genome level. Sci. Rep. 2022, 12, 16805. [Google Scholar] [CrossRef]
- Bisova, K.; Krylov, D.M.; Umen, J.G. Genome-wide annotation and expression profiling of cell cycle regulatory genes in Chlamydomonas reinhardtii. Plant Physiol. 2005, 137, 475–491. [Google Scholar] [CrossRef]
- Cross, F.R. Regulation of Multiple Fission and Cell-Cycle-Dependent Gene Expression by CDKA1 and the Rb-E2F Pathway in Chlamydomonas. Curr. Biol. 2020, 30, 1855–1865.e4. [Google Scholar] [CrossRef]
- Li, Y.; Liu, D.; Lopez-Paz, C.; Olson, B.J.; Umen, J.G. A new class of cyclin dependent kinase in Chlamydomonas is required for coupling cell size to cell division. eLife 2016, 5, e10767. [Google Scholar] [CrossRef]
- Atkins, K.C.; Cross, F.R. Interregulation of CDKA/CDK1 and the Plant-Specific Cyclin-Dependent Kinase CDKB in Control of the Chlamydomonas Cell Cycle. Plant Cell 2018, 30, 429–446. [Google Scholar] [CrossRef]
- Huysman, M.J.; Tanaka, A.; Bowler, C.; Vyverman, W.; De Veylder, L. Functional characterization of the diatom cyclin-dependent kinase A2 as a mitotic regulator reveals plant-like properties in a non-green lineage. BMC Plant Biol. 2015, 15, 86. [Google Scholar] [CrossRef] [PubMed]
- Huysman, M.J.; Martens, C.; Vandepoele, K.; Gillard, J.; Rayko, E.; Heijde, M.; Bowler, C.; Inze, D.; Van de Peer, Y.; De Veylder, L.; et al. Genome-wide analysis of the diatom cell cycle unveils a novel type of cyclins involved in environmental signaling. Genome Biol. 2010, 11, R17. [Google Scholar] [CrossRef] [PubMed]
- Huysman, M.J.; Fortunato, A.E.; Matthijs, M.; Costa, B.S.; Vanderhaeghen, R.; Van den Daele, H.; Sachse, M.; Inze, D.; Bowler, C.; Kroth, P.G.; et al. AUREOCHROME1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms (Phaeodactylum tricornutum). Plant Cell 2013, 25, 215–228. [Google Scholar] [CrossRef]
- Poliner, E.; Farre, E.M.; Benning, C. Advanced genetic tools enable synthetic biology in the oleaginous microalgae Nannochloropsis sp. Plant Cell Rep. 2018, 37, 1383–1399. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Liang, S.; Zhang, Z.; Liu, H.; Wang, S.; Pan, K.; Xu, J.; Ren, X.; Pei, S.; Yang, G. Genome assembly of Nannochloropsis oceanica provides evidence of host nucleus overthrow by the symbiont nucleus during speciation. Commun. Biol. 2019, 2, 249. [Google Scholar] [CrossRef] [PubMed]
- Poliner, E.; Panchy, N.; Newton, L.; Wu, G.; Lapinsky, A.; Bullard, B.; Zienkiewicz, A.; Benning, C.; Shiu, S.H.; Farre, E.M. Transcriptional coordination of physiological responses in Nannochloropsis oceanica CCMP1779 under light/dark cycles. Plant J. 2015, 83, 1097–1113. [Google Scholar] [CrossRef]
- Carino, J.D.; Vital, P.G. Characterization of isolated UV-C-irradiated mutants of microalga Chlorella vulgaris for future biofuel application. Environ. Dev. Sustain. 2023, 25, 1258–1275. [Google Scholar] [CrossRef]
- Kim, Z.H.; Kim, K.; Park, H.; Lee, C.S.; Nam, S.W.; Yim, K.J.; Jung, J.Y.; Hong, S.-J.; Lee, C.-G. Enhanced Fatty Acid Productivity by Parachlorella sp. a Freshwater Microalga, via Adaptive Laboratory Evolution Under Salt Stress. Biotechnol. Bioprocess Eng. 2021, 26, 223–231. [Google Scholar] [CrossRef]
- Shin, S.E.; Koh, H.G.; Kang, N.K.; Suh, W.I.; Jeong, B.R.; Lee, B.; Chang, Y.K. Isolation, phenotypic characterization and genome wide analysis of a Chlamydomonas reinhardtii strain naturally modified under laboratory conditions: Towards enhanced microalgal biomass and lipid production for biofuels. Biotechnol. Biofuels 2017, 10, 308. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Fu, L.; Wang, Y.; Zhou, D.; Rittmann, B.E. Excessive phosphorus caused inhibition and cell damage during heterotrophic growth of Chlorella regularis. Bioresour. Technol. 2018, 268, 266–270. [Google Scholar] [CrossRef]
- Arora, N.; Patel, A.; Pruthi, P.A.; Pruthi, V. Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production. Bioresour. Technol. 2016, 213, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Manuel, J.; Slavens, S.; Crunkleton, D.W.; Johannes, T.W. Interactive effects of light quality and culturing temperature on algal cell size, biomass doubling time, protein content, and carbohydrate content. Appl. Microbiol. Biotechnol. 2021, 105, 587–597. [Google Scholar] [CrossRef]
- Wagner, I.; Steinweg, C.; Posten, C. Mono- and dichromatic LED illumination leads to enhanced growth and energy conversion for high-efficiency cultivation of microalgae for application in space. Biotechnol. J. 2016, 11, 1060–1071. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.G.; Lee, C.; Park, S.M.; Choi, Y.E. Manipulation of light wavelength at appropriate growth stage to enhance biomass productivity and fatty acid methyl ester yield using Chlorella vulgaris. Bioresour. Technol. 2014, 159, 240–248. [Google Scholar] [CrossRef]
- Oldenhof, H.; Bisova, K.; van den Ende, H.; Zachleder, V. Effect of red and blue light on the timing of cyclin-dependent kinase activity and the timing of cell division in Chlamydomonas reinhardtii. Plant Physiol. Biochem. 2004, 42, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Malerba, M.E.; Palacios, M.M.; Palacios Delgado, Y.M.; Beardall, J.; Marshall, D.J. Cell size, photosynthesis and the package effect: An artificial selection approach. New Phytol. 2018, 219, 449–461. [Google Scholar] [CrossRef]
- Li, J.; Zhang, K.; Li, L.; Wang, Y.; Lin, S. Unsuspected functions of alkaline phosphatase PhoD in the diatom Phaeodactylum tricornutum. Algal Res. 2022, 68, 102873. [Google Scholar] [CrossRef]
- Xu, L.; Wang, F.; Li, R.; Deng, M.; Fu, M.; Teng, H.; Yi, K. OsCYCP4s coordinate phosphate starvation signaling with cell cycle progression in rice. J. Integr. Plant Biol. 2020, 62, 1017–1033. [Google Scholar] [CrossRef]
- Deng, M.; Hu, B.; Xu, L.; Liu, Y.; Wang, F.; Zhao, H.; Wei, X.; Wang, J.; Yi, K. OsCYCP1;1, a PHO80 homologous protein, negatively regulates phosphate starvation signaling in the roots of rice (Oryza sativa L.). Plant Mol. Biol. 2014, 86, 655–669. [Google Scholar] [CrossRef]
- Bjorklund, M. Cell size homeostasis: Metabolic control of growth and cell division. Biochim. Biophys. Acta Mol. Cell Res. 2019, 1866, 409–417. [Google Scholar] [CrossRef]
- Wilhelm, C.; Jungandreas, A.; Jakob, T.; Goss, R. Light acclimation in diatoms: From phenomenology to mechanisms. Mar. Genom. 2014, 16, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Malerba, M.E.; Marshall, D.J.; Palacios, M.M.; Raven, J.A.; Beardall, J. Cell size influences inorganic carbon acquisition in artificially selected phytoplankton. New Phytol. 2021, 229, 2647–2659. [Google Scholar] [CrossRef]
- Yan, D.; Beardall, J.; Gao, K. Variation in cell size of the diatom Coscinodiscus granii influences photosynthetic performance and growth. Photosynth. Res. 2018, 137, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Slocombe, S.P.; Huete-Ortega, M.; Kapoore, R.V.; Okurowska, K.; Mair, A.; Day, J.G.; Stanley, M.S.; Vaidyanathan, S. Enabling large-scale production of algal oil in continuous output mode. iScience 2021, 24, 102743. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.R.; Gillard, J.T.; Kustka, A.B.; McCrow, J.P.; Badger, J.H.; Zheng, H.; New, A.M.; Dupont, C.L.; Obata, T.; Fernie, A.R.; et al. Transcriptional Orchestration of the Global Cellular Response of a Model Pennate Diatom to Diel Light Cycling under Iron Limitation. PLoS Genet. 2016, 12, e1006490. [Google Scholar] [CrossRef]
- Obando-Montoya, E.J.; Zapata-Ocampo, P.A.; Cuesta-Astroz, Y.; Atehortua, L. Impact of light wavelength on the transcriptome of Porphyridium cruentum and culture yield. Algal Res. 2022, 67, 102856. [Google Scholar] [CrossRef]
- Montsant, A.; Allen, A.E.; Coesel, S.; Martino, A.D.; Falciatore, A.; Mangogna, M.; Siaut, M.; Heijde, M.; Jabbari, K.; Maheswari, U.; et al. Identification and Comparative Genomic Analysis of Signaling and Regulatory Components in the Diatomthalassiosira pseudonana. J. Phycol. 2007, 43, 585–604. [Google Scholar] [CrossRef]
- Persson, B.L.; Lagerstedt, J.O.; Pratt, J.R.; Pattison-Granberg, J.; Lundh, K.; Shokrollahzadeh, S.; Lundh, F. Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr. Genet. 2003, 43, 225–244. [Google Scholar] [CrossRef]
- Loha, A.; Kashyap, A.K.; Sharma, P. A putative cyclin, SiPHO80 from root endophytic fungus Serendipita indica regulates phosphate homeostasis, salinity and heavy metal toxicity tolerance. Biochem. Biophys. Res. Commun. 2018, 507, 414–419. [Google Scholar] [CrossRef]
- Cato, M.L.; Jester, H.D.; Lavertu, A.; Lyman, A.; Tallent, L.M.; Mitchell, G.C. Genome-Wide Analysis of Cell Cycle-Regulating Genes in the Symbiotic Dinoflagellate Breviolum minutum. G3 2019, 9, 3843–3853. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, S.; Wang, X. The epidermis-specific cyclin CYCP3;1 is involved in the excess brassinosteroid signaling-inhibited root meristem cell division. J. Integr. Plant Biol. 2020, 62, 1674–1687. [Google Scholar] [CrossRef] [PubMed]
- Torres Acosta, J.A.; de Almeida Engler, J.; Raes, J.; Magyar, Z.; De Groodt, R.; Inze, D.; De Veylder, L. Molecular characterization of Arabidopsis PHO80-like proteins, a novel class of CDKA;1-interacting cyclins. Cell. Mol. Life Sci. 2004, 61, 1485–1497. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Skylar, A.; Chang, P.L.; Bisova, K.; Wu, X. CYCP2;1 integrates genetic and nutritional information to promote meristem cell division in Arabidopsis. Dev. Biol. 2014, 393, 160–170. [Google Scholar] [CrossRef]
- Pecani, K.; Lieberman, K.; Tajima-Shirasaki, N.; Onishi, M.; Cross, F.R. Control of division in Chlamydomonas by cyclin B/CDKB1 and the anaphase-promoting complex. PLoS Genet. 2022, 18, e1009997. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Dai, L.; Liu, Y.; Li, S.; Zheng, M.; Zhao, Z.; Qu, G.Z. Overexpression Populus d-Type Cyclin Gene PsnCYCD1;1 Influences Cell Division and Produces Curved Leaf in Arabidopsis thaliana. Int. J. Mol. Sci. 2021, 22, 5837. [Google Scholar] [CrossRef]
- Zheng, T.; Dai, L.; Li, S.; Liu, Y.; Zhao, Z.; Yang, C.; Qu, G. Populus D-type cyclin gene PsnCYCD1;1 accelerates cell division and participates in secondary growth of vascular bundles. J. Exp. Bot. 2023, 74, 4077–4092. [Google Scholar] [CrossRef]
- Guan, C.; Xue, Y.; Jiang, P.; He, C.; Zhuge, X.; Lan, T.; Yang, H. Overexpression of PtoCYCD3;3 Promotes Growth and Causes Leaf Wrinkle and Branch Appearance in Populus. Int. J. Mol. Sci. 2021, 22, 1288. [Google Scholar] [CrossRef]
- Peramuna, A.; Lopez, C.Q.; Rios, F.J.A.; Bae, H.; Fangel, J.U.; Batth, R.; Harholt, J.; Simonsen, H.T. Overexpression of Physcomitrium patens cell cycle regulators leads to larger gametophytes. Sci. Rep. 2023, 13, 4301. [Google Scholar] [CrossRef]
- Kono, A.; Ohno, R.; Umeda-Hara, C.; Uchimiya, H.; Umeda, M. A distinct type of cyclin D, CYCD4;2, involved in the activation of cell division in Arabidopsis. Plant Cell Rep. 2006, 25, 540–545. [Google Scholar] [CrossRef]
- Jong, L.W.; Fujiwara, T.; Nozaki, H.; Miyagishima, S.Y. Cell size for commitment to cell division and number of successive cell divisions in multicellular volvocine green algae Tetrabaena socialis and Gonium pectorale. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 832–840. [Google Scholar] [CrossRef]
- Jong, L.W.; Fujiwara, T.; Hirooka, S.; Miyagishima, S.Y. Cell size for commitment to cell division and number of successive cell divisions in cyanidialean red algae. Protoplasma 2021, 258, 1103–1118. [Google Scholar] [CrossRef] [PubMed]
- Jones, A.R.; Band, L.R.; Murray, J.A.H. Double or Nothing? Cell Division and Cell Size Control. Trends Plant Sci. 2019, 24, 1083–1093. [Google Scholar] [CrossRef] [PubMed]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Schreiber, U.; Klughammer, C.; Kolbowski, J. High-end chlorophyll fluorescence analysis with the MULTI-COLOR-PAM. I. Various light qualities and their applications. PAM Appl. Notes 2011, 1, 1–21. [Google Scholar]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Thorvaldsdottir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief Bioinform. 2013, 14, 178–192. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Finn, R.D.; Clements, J.; Eddy, S.R. HMMER web server: Interactive sequence similarity searching. Nucleic Acids Res. 2011, 39, W29–W37. [Google Scholar] [CrossRef]
- Jones, P.; Binns, D.; Chang, H.Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, B.; Gao, S.; Lercher, M.J.; Hu, S.; Chen, W.H. Evolview v3: A webserver for visualization, annotation, and management of phylogenetic trees. Nucleic Acids Res. 2019, 47, W270–W275. [Google Scholar] [CrossRef]
- Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14, R36. [Google Scholar] [CrossRef]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef] [PubMed]
Gene Name | Gene ID in N.o IMET1 | Locus in Genome | Gene Features | Protein Features | Pfam (Position) | SMART (Position) | CDD (Position) | Prosite (Position) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CDS Length | No. of Introns | Protein Length | pI | MW | Instability Index | GRAVY | |||||||
CYCL;1 | NO01G01210 | chr1:315,224-316,537 | 1314 | 0 | 437 | 9.48 | 48,434.27 | 60.81 | −0.516 | PF00134 (135-204) | SM00385 (138-246) | cd00043 (137-192) | |
CYCH;1 | NO02G04130 | chr2:1,126,722-1,128,367 | 1185 | 1 | 394 | 6 | 43,296.16 | 51.85 | −0.378 | PF00134 (142-214) PF16899 (218-308) | SM00385 (115-208) | cd00043 (141-207) | |
CYCT;1 | NO02G05390 | chr2:1,437,666-1,439,100 | 1050 | 1 | 349 | 7.03 | 39,336.56 | 54.86 | −0.445 | PF00134 (26-106) | SM00385 (29-181, 194-336) | cd00043 (31-110) | |
CYCP;1 | NO03G03610 | chr3:1,070,086-1,072,470 | 2199 | 0 | 732 | 5.18 | 82,325.05 | 74.32 | −0.839 | PF00134 (401-446) | cd00043 (398-445) | ||
CYCL;2 | NO03G03880 | chr3:1,139,762-1,141,883 | 1779 | 0 | 592 | 6.03 | 64,464.14 | 68.61 | −0.65 | PF00134 (71-206) | SM00385 (80-198, 217-299) | cd00043 (74-169, 214-298) | |
CYCP;2 | NO03G05460 | chr3:1,562,402-1,566,971 | 2340 | 4 | 779 | 5.94 | 86,517.33 | 69.46 | −1.086 | PF08613 (371-677) | SM00385 (576-672) | cd20540 (572-675) | |
CYCD;2 | NO05G01050 | chr5:313,215-314,347 | 960 | 1 | 319 | 9.22 | 34,130.23 | 57.4 | −0.086 | PF00134 (52-145) PF02984 (154-231) | SM00385 (59-145) SM01332 (98-248) | cd00043 (54-143) | PS00292 (54-85) |
CYCD;1 | NO07G04620 | chr7:1,302,238-1,305,696 | 2487 | 2 | 828 | 9.25 | 86,631.02 | 66.54 | −0.358 | PF00134 (474-592) PF02984 (603-739) | SM00385 (505-590, 607-705) SM01332 (603-740) | cd00043 (499-589, 603-662) | |
CYCP;3 | NO10G00130 | chr10:40,340-43,308 | 1539 | 10 | 512 | 7.75 | 58,056.13 | 74.76 | −0.77 | PF00134 (328-433) | SM00385 (341-426) | cd00043 (339-424) | |
CYCB;1 | NO12G01680 | chr12:502,593-504,248 | 1416 | 2 | 471 | 5.61 | 51,922.13 | 62.33 | −0.29 | PF00134 (227-350) PF02984 (354-465) | SM00385 (260-344, 357-438) SM01332 (353-468) | cd00043 (254-343, 351-436) | PS00292 (255-286) |
CYCP;4 | NO12G03480 | chr12:951,333-954,950 | 1953 | 1 | 650 | 6.3 | 71,251.35 | 72.85 | −0.641 | PF00134 (333-439) | SM00385 (349-434) | cd00043 (347-433) | |
CYCA;1 | NO13G01690 | chr13:499,826-502,404 | 1650 | 1 | 549 | 7.57 | 60,194.35 | 67.26 | −0.412 | PF00134 (274-402) PF02984 (405-534) PF08613 (371-677) | SM00385 (312-396, 409-506) SM01332 (405-537) | cd00043 (306-395, 406-504) | |
CYCU;1 | NO14G02130 | chr14:640,825-642,525 | 1701 | 0 | 566 | 8.23 | 61,891.97 | 67.84 | −0.483 | PF08613 (47-159) | SM00385 (69-153) | cd20558 (63-162) | |
CYCL;3 | NO15G01200 | chr15:342,170-343,339 | 939 | 2 | 312 | 9.31 | 34,799.32 | 46.11 | −0.265 | PF00134 (16-139) | SM00385 (33-132) | cd00043 (28-105) | |
CYCA;2 | NO19G00890 | chr19:301,869-304,149 | 2211 | 1 | 736 | 4.72 | 82,335.81 | 60.24 | −0.593 | PF00134 (145-268) | SM00385 (175-261) | cd00043 (169-260) | |
CYCL;4 | NO22G00250 | chr22:89,639-94,300 | 1677 | 9 | 558 | 8.74 | 60,996.24 | 73.95 | −0.673 | PF00134 (150-269) | SM00385 (163-263) | ||
CYCB;2 | NO23G01320 | chr23:476,595-480,938 | 2532 | 6 | 843 | 5.59 | 89,728.7 | 90.25 | −0.666 | PF00134 (524-630) | SM00385 (537-625, 652-743) SM01332 (634-778) | cd00043 (531-563 | PS00292 (532-563) |
CYCB;3 | NO25G01730 | chr25:508,155-511,392 | 1662 | 6 | 553 | 5.78 | 59,436.75 | 56.39 | −0.45 | PF00134 (301-422) PF02984 (425-541) | SM00385 (332-416, 429-510) SM01332 (425-545) | cd00043 (326-415, 425-508) | PS00292 (327-358) |
CYCU;2 | NO28G01340 | chr28:421,745-424,038 | 933 | 3 | 310 | 9.31 | 34,082.29 | 72.84 | −0.352 | PF08613 (173-282) | SM00385 (190-276) | PS00292 (185-216) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Lin, Y.; Wang, Y.; Li, Y.; Zhu, H.; Zhou, H. Phenotypic Analysis and Molecular Characterization of Enlarged Cell Size Mutant in Nannochloropsis oceanica. Int. J. Mol. Sci. 2023, 24, 13595. https://doi.org/10.3390/ijms241713595
Xu W, Lin Y, Wang Y, Li Y, Zhu H, Zhou H. Phenotypic Analysis and Molecular Characterization of Enlarged Cell Size Mutant in Nannochloropsis oceanica. International Journal of Molecular Sciences. 2023; 24(17):13595. https://doi.org/10.3390/ijms241713595
Chicago/Turabian StyleXu, Weinan, Yihua Lin, Yu Wang, Yanyan Li, Hongmei Zhu, and Hantao Zhou. 2023. "Phenotypic Analysis and Molecular Characterization of Enlarged Cell Size Mutant in Nannochloropsis oceanica" International Journal of Molecular Sciences 24, no. 17: 13595. https://doi.org/10.3390/ijms241713595
APA StyleXu, W., Lin, Y., Wang, Y., Li, Y., Zhu, H., & Zhou, H. (2023). Phenotypic Analysis and Molecular Characterization of Enlarged Cell Size Mutant in Nannochloropsis oceanica. International Journal of Molecular Sciences, 24(17), 13595. https://doi.org/10.3390/ijms241713595