SET Domain Group 703 Regulates Planthopper Resistance by Suppressing the Expression of Defense-Related Genes
Abstract
:1. Introduction
2. Results
2.1. Identification of Planthopper Susceptible Mutant phs1
2.2. SDG703 Negatively Regulates SBPH Resistance in Rice
2.3. SDG703 Is Widely Expressed in Various Plant Tissues
2.4. SDG703 Contributes to Histone H3K9 Modification
2.5. SDG703 Is Required for Proper Expression of a Set of Defense Response Genes
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Planthopper Maintenance and Planthopper Resistance Evaluation
4.3. Antixenosis to Nymphs of SBPH in Rice Seedling
4.4. Vector Construction
4.5. Plant Transformation
4.6. Cellular Observation of Sclerenchyma
4.7. Tissue-Specific Expression Test Using GUS Staining
4.8. Transient Expression in Nicotiana benthamiana
4.9. Subcellular Localization Analysis
4.10. RNA Extraction and RT-qPCR Analysis
4.11. Plant Histone Protein Extraction and Western Blot Analysis
4.12. RNA-Seq and Data Analysis
4.13. Chromatin Immunoprecipitation Assays
4.14. Statistical Analysis
4.15. Accession Numbers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.; Baldwin, I.T. New Insights into Plant Responses to the Attack from Insect Herbivores. Annu. Rev. Genet. 2010, 44, 1–24. [Google Scholar] [CrossRef]
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An Overview of Global Rice Production, Supply, Trade, and Consumption: Global Rice Production, Consumption, and Trade. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L. Development of Hybrid Rice to Ensure Food Security. Rice Sci. 2014, 21, 1–2. [Google Scholar] [CrossRef]
- Otuka, A. Migration of Rice Planthoppers and Their Vectored Re-Emerging and Novel Rice Viruses in East Asia. Front. Microbiol. 2013, 4, 309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-L.; Dong, Y.; Yang, L.; Ma, B.-J.; Ma, R.-R.; Huang, F.; Wang, C.; Hu, H.; Li, C.; Yan, C.; et al. Small Brown Planthopper Resistance Loci in Wild Rice (Oryza officinalis). Mol. Genet. Genom. 2014, 289, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, W.-L. Genetic and Biochemical Mechanisms of Rice Resistance to Planthopper. Plant Cell Rep. 2016, 35, 1559–1572. [Google Scholar] [CrossRef]
- Zhao, Y.; Huang, J.; Wang, Z.; Jing, S.; Wang, Y.; Ouyang, Y.; Cai, B.; Xin, X.-F.; Liu, X.; Zhang, C.; et al. Allelic Diversity in an NLR Gene BPH9 Enables Rice to Combat Planthopper Variation. Proc. Natl. Acad. Sci. USA 2016, 113, 12850–12855. [Google Scholar] [CrossRef]
- Tamura, Y.; Hattori, M.; Yoshioka, H.; Yoshioka, M.; Takahashi, A.; Wu, J.; Sentoku, N.; Yasui, H. Map-Based Cloning and Characterization of a Brown Planthopper Resistance Gene BPH26 from Oryza sativa L. ssp. Indica Cultivar ADR52. Sci. Rep. 2015, 4, 5872. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, H.; Chen, H.; Liu, Y.; He, J.; Kang, H.; Sun, Z.; Pan, G.; Wang, Q.; Hu, J.; et al. A Gene Cluster Encoding Lectin Receptor Kinases Confers Broad-Spectrum and Durable Insect Resistance in Rice. Nat. Biotechnol. 2015, 33, 301–305. [Google Scholar] [CrossRef]
- Guo, J.; Xu, C.; Wu, D.; Zhao, Y.; Qiu, Y.; Wang, X.; Ouyang, Y.; Cai, B.; Liu, X.; Jing, S.; et al. Bph6 Encodes an Exocyst-Localized Protein and Confers Broad Resistance to Planthoppers in Rice. Nat. Genet. 2018, 50, 297–306. [Google Scholar] [CrossRef]
- Du, B.; Zhang, W.; Liu, B.; Hu, J.; Wei, Z.; Shi, Z.; He, R.; Zhu, L.; Chen, R.; Han, B.; et al. Identification and Characterization of Bph14, a Gene Conferring Resistance to Brown Planthopper in Rice. Proc. Natl. Acad. Sci. USA 2009, 106, 22163–22168. [Google Scholar] [CrossRef]
- Cheng, X.; Wu, Y.; Guo, J.; Du, B.; Chen, R.; Zhu, L.; He, G. A Rice Lectin Receptor-like Kinase That Is Involved in Innate Immune Responses Also Contributes to Seed Germination. Plant J. 2013, 76, 687–698. [Google Scholar] [CrossRef]
- Ji, H.; Kim, S.-R.; Kim, Y.-H.; Suh, J.-P.; Park, H.-M.; Sreenivasulu, N.; Misra, G.; Kim, S.-M.; Hechanova, S.L.; Kim, H.; et al. Map-Based Cloning and Characterization of the BPH18 Gene from Wild Rice Conferring Resistance to Brown Planthopper (BPH) Insect Pest. Sci. Rep. 2016, 6, 34376. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cao, L.; Zhang, Y.; Cao, C.; Liu, F.; Huang, F.; Qiu, Y.; Li, R.; Lou, X. Map-Based Cloning and Characterization of BPH29, a B3 Domain-Containing Recessive Gene Conferring Brown Planthopper Resistance in Rice. J. Exp. Bot. 2015, 66, 6035–6045. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Gao, F.; Wu, X.; Lu, X.; Zeng, L.; Lv, J.; Su, X.; Luo, H.; Ren, G. Bph32, a Novel Gene Encoding an Unknown SCR Domain-Containing Protein, Confers Resistance against the Brown Planthopper in Rice. Sci. Rep. 2016, 6, 37645. [Google Scholar] [CrossRef] [PubMed]
- Du, B.; Chen, R.; Chen, J.; He, G. Current Understanding of the Genomic, Genetic, and Molecular Control of Insect Resistance in Rice. Mol. Breed. 2020, 40, 24. [Google Scholar] [CrossRef]
- Hu, L.; Wu, Y.; Wu, D.; Rao, W.; Guo, J.; Ma, Y.; Wang, Z.; Shangguan, X.; Wang, H.; Xu, C.; et al. The Coiled-Coil and Nucleotide Binding Domains of BROWN PLANTHOPPER RESISTANCE14 Function in Signaling and Resistance against Planthopper in Rice. Plant Cell 2017, 29, 3157–3185. [Google Scholar] [CrossRef]
- Jones, J.D.G.; Dangl, J.L. The Plant Immune System. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Liu, Y.; He, J.; Zheng, X.; Hu, J.; Liu, Y.; Dai, H.; Zhang, Y.; Wang, B.; Wu, W.; et al. STV11 Encodes a Sulphotransferase and Confers Durable Resistance to Rice Stripe Virus. Nat. Commun. 2014, 5, 4768. [Google Scholar] [CrossRef]
- Zhou, T.; Du, L.; Wang, L.; Wang, Y.; Gao, C.; Lan, Y.; Sun, F.; Fan, Y.; Wang, G.; Zhou, Y. Genetic Analysis and Molecular Mapping of QTLs for Resistance to Rice Black-Streaked Dwarf Disease in Rice. Sci. Rep. 2015, 5, 10509. [Google Scholar] [CrossRef]
- Strahl, B.D.; Allis, C.D. The Language of Covalent Histone Modifications. Nature 2000, 403, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Jenuwein, T. Translating the Histone Code. Science 2001, 293, 1074–1080. [Google Scholar] [CrossRef] [PubMed]
- Loidl, P. A Plant Dialect of the Histone Language. Trends Plant Sci. 2004, 9, 84–90. [Google Scholar] [CrossRef]
- Sims, R.J.; Nishioka, K.; Reinberg, D. Histone Lysine Methylation: A Signature for Chromatin Function. Trends Genet. 2003, 19, 629–639. [Google Scholar] [CrossRef]
- Rea, S.; Eisenhaber, F.; O’Carroll, D.; Strahl, B.D.; Sun, Z.-W.; Schmid, M.; Opravil, S.; Mechtler, K.; Ponting, C.P.; Allis, C.D.; et al. Regulation of Chromatin Structure by Site-Specific Histone H3 Methyltransferases. Nature 2000, 406, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Liu, Y.; Liang, Y.; Zhou, D.; Li, S.; Lin, S.; Dong, H.; Huang, L. The Function of Histone Lysine Methylation Related SET Domain Group Proteins in Plants. Protein Sci. 2020, 29, 1120–1137. [Google Scholar] [CrossRef] [PubMed]
- Baumbusch, L.O. The Arabidopsis thaliana Genome Contains at Least 29 Active Genes Encoding SET Domain Proteins That Can Be Assigned to Four Evolutionarily Conserved Classes. Nucleic Acids Res. 2001, 29, 4319–4333. [Google Scholar] [CrossRef]
- Qin, F.-J.; Sun, Q.-W.; Huang, L.-M.; Chen, X.-S.; Zhou, D.-X. Rice SUVH Histone Methyltransferase Genes Display Specific Functions in Chromatin Modification and Retrotransposon Repression. Mol. Plant 2010, 3, 773–782. [Google Scholar] [CrossRef]
- Ebbs, M.L.; Bartee, L.; Bender, J. H3 Lysine 9 Methylation Is Maintained on a Transcribed Inverted Repeat by Combined Action of SUVH6 and SUVH4 Methyltransferases. Mol. Cell. Biol. 2005, 25, 10507–10515. [Google Scholar] [CrossRef]
- Ebbs, M.L. Judith Bender Locus-Specific Control of DNA Methylation by the Arabidopsis SUVH5 Histone Methyltransferase. Plant Cell 2006, 18, 1166–1176. [Google Scholar] [CrossRef]
- Johnson, L.; Mollah, S.; Benjamin, A. Garcia Mass Spectrometry Analysis of Arabidopsis Histone H3 Reveals Distinct Combinations of Post-Translational Modifications. Nucleic Acids Res. 2004, 32, 6511–6518. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Harris, C.J.; Zhong, Z.; Chen, W.; Liu, R.; Jia, B.; Wang, Z.; Li, S.; Jacobsen, S.E.; Du, J. Mechanistic Insights into Plant SUVH Family H3K9 Methyltransferases and Their Binding to Context-Biased Non-CG DNA Methylation. Proc. Natl. Acad. Sci. USA 2018, 115, E8793–E8802. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Wang, X.; Su, L.; Zhai, J.; Cao, S.; Zhang, D.; Liu, C.; Bi, Y.; Qian, Q.; Cheng, Z.; et al. SDG714, a Histone H3K9 Methyltransferase, Is Involved in Tos17 DNA Methylation and Transposition in Rice. Plant Cell 2007, 19, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Zhu, Y.; Bu, Z.-Y.; Shen, W.-H.; Yu, Y.; Dong, A.-W. SDG714 Regulates Specific Gene Expression and Consequently Affects Plant Growth via H3K9 Dimethylation. J. Integr. Plant Biol. 2010, 52, 420–430. [Google Scholar] [CrossRef]
- He, K.; Cao, X.; Deng, X. Histone Methylation in Epigenetic Regulation and Temperature Responses. Curr. Opin. Plant Biol. 2021, 61, 102001. [Google Scholar] [CrossRef] [PubMed]
- Hannan Parker, A.; Wilkinson, S.W.; Ton, J. Epigenetics: A Catalyst of Plant Immunity against Pathogens. New Phytol. 2022, 233, 66–83. [Google Scholar] [CrossRef]
- Palma, K.; Thorgrimsen, S.; Malinovsky, F.G.; Fiil, B.K.; Nielsen, H.B.; Brodersen, P.; Hofius, D.; Petersen, M.; Mundy, J. Autoimmunity in Arabidopsis Acd11 Is Mediated by Epigenetic Regulation of an Immune Receptor. PLoS Pathog. 2010, 6, e1001137. [Google Scholar] [CrossRef]
- Lee, S.; Fu, F.; Xu, S.; Lee, S.Y.; Yun, D.-J.; Mengiste, T. Global Regulation of Plant Immunity by Histone Lysine Methyl Transferases. Plant Cell 2016, 28, 1640–1661. [Google Scholar] [CrossRef]
- Xia, S.; Cheng, Y.T.; Huang, S.; Win, J.; Soards, A.; Jinn, T.-L.; Jones, J.D.G.; Kamoun, S.; Chen, S.; Zhang, Y.; et al. Regulation of Transcription of Nucleotide-Binding Leucine-Rich Repeat-Encoding Genes SNC1 and RPP4 via H3K4 Trimethylation. Plant Physiol. 2013, 162, 1694–1705. [Google Scholar] [CrossRef]
- Jeon, J.-S.; Lee, S.; Jung, K.-H.; Jun, S.-H.; Jeong, D.-H.; Lee, J.; Kim, C.; Jang, S.; Lee, S.; Yang, K.; et al. T-DNA Insertional Mutagenesis for Functional Genomics in Rice. Plant J. 2000, 22, 561–570. [Google Scholar] [CrossRef]
- Shi, S.; Wang, H.; Nie, L.; Tan, D.; Zhou, C.; Zhang, Q.; Li, Y.; Du, B.; Guo, J.; Huang, J.; et al. Bph30 Confers Resistance to Brown Planthopper by Fortifying Sclerenchyma in Rice Leaf Sheaths. Mol. Plant 2021, 14, 1714–1732. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, H. Writing and Reading Histone H3 Lysine 9 Methylation in Arabidopsis. Front. Plant Sci. 2020, 11, 452. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lu, F.; Cui, X.; Cao, X. Histone Methylation in Higher Plants. Annu. Rev. Plant Biol. 2010, 61, 395–420. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.E.; Nota, F.; Cambiagno, D.A. Epigenetic Control of Plant Immunity. Mol. Plant Pathol. 2010, 11, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Ngou, B.P.M.; Ding, P.; Jones, J.D.G. Thirty Years of Resistance: Zig-Zag through the Plant Immune System. Plant Cell 2022, 34, 1447–1478. [Google Scholar] [CrossRef]
- Wang, A.; Shu, X.; Jing, X.; Jiao, C.; Chen, L.; Zhang, J.; Ma, L.; Jiang, Y.; Yamamoto, N.; Li, S.; et al. Identification of Rice (Oryza sativa L.) Genes Involved in Sheath Blight Resistance via a Genome-wide Association Study. Plant Biotechnol. J. 2021, 19, 1553–1566. [Google Scholar] [CrossRef]
- Han, Y.; Zhong, Z.; Song, L.; Stefan, O.; Wang, Z.; Lu, G. Evolutionary Analysis of Plant Jacalin-Related Lectins (JRLs) Family and Expression of Rice JRLs in Response to Magnaporthe Oryzae. J. Integr. Agric. 2018, 17, 1252–1266. [Google Scholar] [CrossRef]
- Jackson, J.P.; Lindroth, A.M.; Cao, X.; Jacobsen, S.E. Control of CpNpG DNA Methylation by the Kryptonite Histone H3 Methyltransferase. Nature 2002, 416, 556–560. [Google Scholar] [CrossRef]
- Du, J.; Johnson, L.M.; Jacobsen, S.E.; Patel, D.J. DNA Methylation Pathways and Their Crosstalk with Histone Methylation. Nat. Rev. Mol. Cell Biol. 2015, 16, 519–532. [Google Scholar] [CrossRef]
- Lehnertz, B.; Ueda, Y.; Derijck, A.A.H.A.; Braunschweig, U.; Perez-Burgos, L.; Kubicek, S.; Chen, T.; Li, E.; Jenuwein, T.; Peters, A.H.F.M. Suv39h-Mediated Histone H3 Lysine 9 Methylation Directs DNA Methylation to Major Satellite Repeats at Pericentric Heterochromatin. Curr. Biol. 2003, 13, 1192–1200. [Google Scholar] [CrossRef]
- Liu, Z.-W.; Shao, C.-R.; Zhang, C.-J.; Zhou, J.-X.; Zhang, S.-W.; Li, L.; Chen, S.; Huang, H.-W.; Cai, T.; He, X.-J. The SET Domain Proteins SUVH2 and SUVH9 Are Required for Pol V Occupancy at RNA-Directed DNA Methylation Loci. PLoS Genet. 2014, 10, e1003948. [Google Scholar] [CrossRef]
- Duan, C.; Zhang, S.; Lei, C.; Cheng, Z.; Chen, Q.; Zhai, H.; Wan, J. Evaluation of Rice Germplasm for Resistance to the Small Brown Planthopper (Laodelphax Striatellus) and Analysis of Resistance Mechanism. Rice Sci. 2008, 15, 36–42. [Google Scholar] [CrossRef]
- Xu, T.-T.; Liu, Y.-Q.; Zhang, L.; Liu, L.-L.; Wang, C.; Hu, J.; Sun, Z.; Pan, G.; Xiao, S.; He, J.; et al. Mapping of Quantitative Trait Loci Associated with Rice Black-Streaked Dwarf Virus Disease and Its Insect Vector in Rice (Oryza sativa L.). Plant Breed. 2018, 137, 698–705. [Google Scholar] [CrossRef]
- Duan, C.-X.; Wan, J.-M.; Zhai, H.-Q.; Chen, Q.; Wang, J.-K.; Su, N.; Lei, C.-L. Quantitative Trait Loci Mapping of Resistance to Laodelphax striatellus (Homoptera: Delphacidae) in Rice Using Recombinant Inbred Lines. J. Econ. Entomol. 2007, 100, 1450–1455. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Guo, D.; Zhang, J.; Huang, Q.; Qin, G.; Zhang, X.; Wan, J.; Gu, H.; Qu, L.-J. Targeted Mutagenesis in Rice Using CRISPR-Cas System. Cell Res. 2013, 23, 1233–1236. [Google Scholar] [CrossRef]
- Lei, Y.; Lu, L.; Liu, H.-Y.; Li, S.; Xing, F.; Chen, L.-L. CRISPR-P: A Web Tool for Synthetic Single-Guide RNA Design of CRISPR-System in Plants. Mol. Plant 2014, 7, 1494–1496. [Google Scholar] [CrossRef]
- Lam, P.Y.; Tobimatsu, Y.; Takeda, Y.; Suzuki, S.; Yamamura, M.; Umezawa, T.; Lo, C. Disrupting Flavone Synthase II Alters Lignin and Improves Biomass Digestibility. Plant Physiol. 2017, 174, 972–985. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.; Chowrira, G.; Rowland, O.; Blacklock, B.J.; Smith, M.A.; Kunst, L. A Root-Specific Condensing Enzyme from Lesquerella Fendleri That Elongates Very-Long-Chain Saturated Fatty Acids. Plant Mol. Biol. 2004, 56, 917–927. [Google Scholar] [CrossRef]
- Manfield, I.W.; Orfila, C.; McCartney, L.; Harholt, J.; Bernal, A.J.; Scheller, H.V.; Gilmartin, P.M.; Mikkelsen, J.D.; Paul Knox, J.; Willats, W.G.T. Novel Cell Wall Architecture of Isoxaben-Habituated Arabidopsis Suspension-Cultured Cells: Global Transcript Profiling and Cellular Analysis: Global Transcript Profiling of Isoxaben Habituation. Plant J. 2004, 40, 260–275. [Google Scholar] [CrossRef] [PubMed]
- Jefferson, R.A.; Kavanagh, T.A.; Bevan, M.W. GUS Fusions: Beta-Glucuronidase as a Sensitive and Versatile Gene Fusion Marker in Higher Plants. EMBO J. 1987, 6, 3901–3907. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Su, J.; Duan, S.; Ao, Y.; Dai, J.; Liu, J.; Wang, P.; Li, Y.; Liu, B.; Feng, D.; et al. A Highly Efficient Rice Green Tissue Protoplast System for Transient Gene Expression and Studying Light/Chloroplast-Related Processes. Plant Methods 2011, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Lin, Q.; Zhu, L.; Ren, Y.; Zhou, K.; Shabek, N.; Wu, F.; Mao, H.; Dong, W.; Gan, L.; et al. D14–SCFD3-Dependent Degradation of D53 Regulates Strigolactone Signalling. Nature 2013, 504, 406–410. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Kim, B.-R.; Nam, H.-Y.; Kim, S.-U.; Kim, S.-I.; Chang, Y.-J. Normalization of Reverse Transcription Quantitative-PCR with Housekeeping Genes in Rice. Biotechnol. Lett. 2003, 25, 1869–1872. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Pan, Q.; Lin, Y.; Gu, T.; Li, Y. A Native Chromatin Immunoprecipitation (ChIP) Protocol for Studying Histone Modifications in Strawberry Fruits. Plant Methods 2020, 16, 10. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, P.; He, J.; Zhang, Q.; Qi, H.; Zhang, A.; Liu, D.; Sun, Q.; Wang, Y.; Li, Q.; Wang, W.; et al. SET Domain Group 703 Regulates Planthopper Resistance by Suppressing the Expression of Defense-Related Genes. Int. J. Mol. Sci. 2023, 24, 13003. https://doi.org/10.3390/ijms241613003
Wen P, He J, Zhang Q, Qi H, Zhang A, Liu D, Sun Q, Wang Y, Li Q, Wang W, et al. SET Domain Group 703 Regulates Planthopper Resistance by Suppressing the Expression of Defense-Related Genes. International Journal of Molecular Sciences. 2023; 24(16):13003. https://doi.org/10.3390/ijms241613003
Chicago/Turabian StyleWen, Peizheng, Jun He, Qiong Zhang, Hongzhi Qi, Aoran Zhang, Daoming Liu, Quanguang Sun, Yongsheng Wang, Qi Li, Wenhui Wang, and et al. 2023. "SET Domain Group 703 Regulates Planthopper Resistance by Suppressing the Expression of Defense-Related Genes" International Journal of Molecular Sciences 24, no. 16: 13003. https://doi.org/10.3390/ijms241613003
APA StyleWen, P., He, J., Zhang, Q., Qi, H., Zhang, A., Liu, D., Sun, Q., Wang, Y., Li, Q., Wang, W., Chen, Z., Wang, Y., Liu, Y., & Wan, J. (2023). SET Domain Group 703 Regulates Planthopper Resistance by Suppressing the Expression of Defense-Related Genes. International Journal of Molecular Sciences, 24(16), 13003. https://doi.org/10.3390/ijms241613003