Adenosine Receptors as Potential Therapeutic Analgesic Targets
Abstract
:1. Introduction
1.1. Pain
1.2. Role of Adenosine in Inflammation and Pain
1.3. Adenosine Metabolism
2. Adenosine Receptors
2.1. Adenosine A1 Receptors
2.2. Adenosine A2A and A2B Receptors
2.3. Adenosine A3 Receptors
3. Allosteric Modulators
4. Clinical Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luongo, L.; Guida, F.; Maione, S.; Jacobson, K.A.; Salvemini, D. Adenosine Metabotropic Receptors in Chronic Pain Management. Front. Pharmacol. 2021, 12, 651038. [Google Scholar] [CrossRef]
- Vincenzi, F.; Pasquini, S.; Borea, P.A.; Varani, K. Targeting Adenosine Receptors: A Potential Pharmacological Avenue for Acute and Chronic Pain. Int. J. Mol. Sci. 2020, 21, 8710. [Google Scholar] [CrossRef]
- Nahin, R.L.; Feinberg, T.; Kapos, F.P.; Terman, G.W. Estimated Rates of Incident and Persistent Chronic Pain among US Adults, 2019–2020. JAMA Netw. Open 2023, 6, e2313563. [Google Scholar] [CrossRef]
- Chen, Z.; Janes, K.; Chen, C.; Doyle, T.; Bryant, L.; Tosh, D.K.; Jacobson, K.A.; Salvemini, D. Controlling murine and rat chronic pain through A3 adenosine receptor activation. FASEB J. 2012, 26, 1855–1865. [Google Scholar] [CrossRef]
- Ford, A.; Castonguay, A.; Cottet, M.; Little, J.W.; Chen, Z.; Symons-Liguori, A.M.; Doyle, T.; Egan, T.M.; Vanderah, T.W.; De Koninck, Y.; et al. Engagement of the GABA to KCC2 signaling pathway contributes to the analgesic effects of A3AR agonists in neuropathic pain. J. Neurosci. 2015, 35, 6057–6067. [Google Scholar] [CrossRef]
- Little, J.W.; Ford, A.; Symons-Liguori, A.M.; Chen, Z.; Janes, K.; Doyle, T.; Xie, J.; Luongo, L.; Tosh, D.K.; Maione, S.; et al. Endogenous adenosine A3 receptor activation selectively alleviates persistent pain states. Brain 2015, 138 Pt 1, 28–35. [Google Scholar] [CrossRef]
- Janes, K.; Symons-Liguori, A.M.; Jacobson, K.A.; Salvemini, D. Identification of A3 adenosine receptor agonists as novel non-narcotic analgesics. Br. J. Pharmacol. 2016, 173, 1253–1267. [Google Scholar] [CrossRef]
- Jacobson, K.A.; Giancotti, L.A.; Lauro, F.; Mufti, F.; Salvemini, D. Treatment of chronic neuropathic pain: Purine receptor modulation. Pain 2020, 161, 1425–1441. [Google Scholar] [CrossRef]
- Haddad, M.; Alsalem, M.; Saleh, T.; Jaffal, S.M.; Barakat, N.A.; El-Salem, K. Interaction of the synthetic cannabinoid WIN55212 with tramadol on nociceptive thresholds and core body temperature in a chemotherapy-induced peripheral neuropathy pain model. Neuroreport 2023, 34, 441–448. [Google Scholar] [CrossRef]
- Haddad, M. The Impact of CB1 Receptor on Inflammation in Skeletal Muscle Cells. J. Inflamm. Res. 2021, 14, 3959–3967. [Google Scholar] [CrossRef]
- Kotańska, M.; Szafarz, M.; Mika, K.; Dziubina, A.; Bednarski, M.; Müller, C.E.; Sapa, J.; Kieć-Kononowicz, K. PSB 603—A known selective adenosine A2B receptor antagonist—Has anti-inflammatory activity in mice. Biomed. Pharmacother. 2021, 135, 111164. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.P.; Hao, J.X.; Halldner, L.; Lövdahl, C.; DeLander, G.E.; Wiesenfeld-Hallin, Z.; Fredholm, B.B.; Xu, X.J. Increased nociceptive response in mice lacking the adenosine A1 receptor. Pain 2005, 113, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Haddad, M.; Alsalem, M.; Aldossary, S.A.; Kalbouneh, H.; Jaffal, S.M.; Alshawabkeh, Q.; Al Hayek, S.; Abdelhai, O.; Barakat, N.A.; El-Salem, K. The role of adenosine receptor ligands on inflammatory pain: Possible modulation of TRPV1 receptor function. Inflammopharmacology 2023, 31, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.P.; Hao, J.X.; Halldner-Henriksson, L.; Xu, X.J.; Jacobson, M.A.; Wiesenfeld-Hallin, Z.; Fredholm, B.B. Decreased inflammatory pain due to reduced carrageenan-induced inflammation in mice lacking adenosine A3 receptors. Neuroscience 2002, 114, 523–527. [Google Scholar] [CrossRef]
- Sawynok, J.; Liu, X.J. Adenosine in the spinal cord and periphery: Release and regulation of pain. Prog. Neurobiol. 2003, 69, 313–340. [Google Scholar] [CrossRef]
- Goadsby, P.J.; Hoskin, K.L.; Storer, R.J.; Edvinsson, L.; Connor, H.E. Adenosine A1 receptor agonists inhibit trigeminovascular nociceptive transmission. Brain 2002, 125 Pt 6, 1392–1401. [Google Scholar] [CrossRef]
- Sawynok, J. Adenosine receptor activation and nociception. Eur. J. Pharmacol. 1998, 347, 1–11. [Google Scholar] [CrossRef]
- Antonioli, L.; Colucci, R.; La Motta, C.; Tuccori, M.; Awwad, O.; Da Settimo, F.; Blandizzi, C.; Fornai, M. Adenosine deaminase in the modulation of immune system and its potential as a novel target for treatment of inflammatory disorders. Curr. Drug Targets 2012, 13, 842–862. [Google Scholar] [CrossRef]
- Pasquini, S.; Contri, C.; Borea, P.A.; Vincenzi, F.; Varani, K. Adenosine and Inflammation: Here, There and Everywhere. Int. J. Mol. Sci. 2021, 22, 7685. [Google Scholar] [CrossRef]
- Jacobson, K.A.; Reitman, M.L. Adenosine-Related Mechanisms in Non-Adenosine Receptor Drugs. Cells 2020, 9, 956. [Google Scholar] [CrossRef]
- Gomes, J.A.; Li, X.; Pan, H.L.; Eisenach, J.C. Intrathecal adenosine interacts with a spinal noradrenergic system to produce antinociception in nerve-injured rats. Anesthesiology 1999, 91, 1072–1079. [Google Scholar] [CrossRef]
- Karlsten, R.; Gordh, T.; Hartvig, P.; Post, C. Effects of intrathecal injection of the adenosine receptor agonists R-phenylisopropyl-adenosine and N-ethylcarboxamide-adenosine on nociception and motor function in the rat. Anesth. Analg. 1990, 71, 60–64. [Google Scholar] [CrossRef]
- Keil, G.J.; DeLander, G.E. Spinally-mediated antinociception is induced in mice by an adenosine kinase-, but not by an adenosine deaminase-, inhibitor. Life Sci. 1992, 51, PL171–PL176. [Google Scholar] [CrossRef] [PubMed]
- Sawynok, J.; Reid, A.; Poon, A. Peripheral antinociceptive effect of an adenosine kinase inhibitor, with augmentation by an adenosine deaminase inhibitor, in the rat formalin test. Pain 1998, 74, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.J.; Salter, M.W. Purines and pain mechanisms: Recent developments. Curr. Opin. Investig. Drugs 2005, 6, 65–75. [Google Scholar] [PubMed]
- Lee, Y.W.; Yaksh, T.L. Pharmacology of the spinal adenosine receptor which mediates the antiallodynic action of intrathecal adenosine agonists. J. Pharmacol. Exp. Ther. 1996, 277, 1642–1648. [Google Scholar] [PubMed]
- Belfrage, M.; Segerdahl, M.; Arnér, S.; Sollevi, A. The safety and efficacy of intrathecal adenosine in patients with chronic neuropathic pain. Anesth. Analg. 1999, 89, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Karlsten, R.; Gordh, T. An A1-selective adenosine agonist abolishes allodynia elicited by vibration and touch after intrathecal injection. Anesth. Analg. 1995, 80, 844–847. [Google Scholar] [CrossRef]
- Yang, J.; Hsieh, C.L.; Lin, Y.W. Role of Transient Receptor Potential Vanilloid 1 in Electroacupuncture Analgesia on Chronic Inflammatory Pain in Mice. Biomed Res. Int. 2017, 2017, 5068347. [Google Scholar] [CrossRef]
- Poon, A.; Sawynok, J. Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain 1998, 74, 235–245. [Google Scholar] [CrossRef]
- Kowaluk, E.A.; Jarvis, M.F. Therapeutic potential of adenosine kinase inhibitors. Expert Opin. Investig. Drugs 2000, 9, 551–564. [Google Scholar] [CrossRef]
- Sosnowski, M.; Stevens, C.W.; Yaksh, T.L. Assessment of the role of A1/A2 adenosine receptors mediating the purine antinociception, motor and autonomic function in the rat spinal cord. J. Pharmacol. Exp. Ther. 1989, 250, 915–922. [Google Scholar] [PubMed]
- Lavand’homme, P.M.; Eisenach, J.C. Exogenous and endogenous adenosine enhance the spinal antiallodynic effects of morphine in a rat model of neuropathic pain. Pain 1999, 80, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Cronstein, B.N.; Levin, R.I.; Philips, M.; Hirschhorn, R.; Abramson, S.B.; Weissmann, G. Neutrophil adherence to endothelium is enhanced via adenosine A1 receptors and inhibited via adenosine A2 receptors. J. Immunol. 1992, 148, 2201–2206. [Google Scholar] [CrossRef]
- Lima, F.O.; Souza, G.R.; Verri, W.A.; Parada, C.A.; Ferreira, S.H.; Cunha, F.Q.; Cunha, T.M. Direct blockade of inflammatory hypernociception by peripheral A1 adenosine receptors: Involvement of the NO/cGMP/PKG/KATP signaling pathway. Pain 2010, 151, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Metzner, K.; Gross, T.; Balzulat, A.; Wack, G.; Lu, R.; Schmidtko, A. Lack of efficacy of a partial adenosine A1 receptor agonist in neuropathic pain models in mice. Purinergic Signal. 2021, 17, 503–514. [Google Scholar] [CrossRef] [PubMed]
- Schulte, G.; Robertson, B.; Fredholm, B.B.; DeLander, G.E.; Shortland, P.; Molander, C. Distribution of antinociceptive adenosine A1 receptors in the spinal cord dorsal horn, and relationship to primary afferents and neuronal subpopulations. Neuroscience 2003, 121, 907–916. [Google Scholar] [CrossRef]
- Choca, J.I.; Green, R.D.; Proudfit, H.K. Adenosine A1 and A2 receptors of the substantia gelatinosa are located predominantly on intrinsic neurons: An autoradiography study. J. Pharmacol. Exp. Ther. 1988, 247, 757–764. [Google Scholar]
- Ackley, M.A.; Governo, R.J.; Cass, C.E.; Young, J.D.; Baldwin, S.A.; King, A.E. Control of glutamatergic neurotransmission in the rat spinal dorsal horn by the nucleoside transporter ENT1. J. Physiol. 2003, 548 Pt 2, 507–517. [Google Scholar] [CrossRef]
- Bantel, C.; Tobin, J.R.; Li, X.; Childers, S.R.; Chen, S.R.; Eisenach, J.C. Intrathecal adenosine following spinal nerve ligation in rat: Short residence time in cerebrospinal fluid and no change in A(1) receptor binding. Anesthesiology 2002, 96, 103–108. [Google Scholar] [CrossRef]
- Bantel, C.; Childers, S.R.; Eisenach, J.C. Role of adenosine receptors in spinal G-protein activation after peripheral nerve injury. Anesthesiology 2002, 96, 1443–1449. [Google Scholar] [CrossRef] [PubMed]
- Deuchars, S.A.; Brooke, R.E.; Deuchars, J. Adenosine A1 receptors reduce release from excitatory but not inhibitory synaptic inputs onto lateral horn neurons. J. Neurosci. 2001, 21, 6308–6320. [Google Scholar] [CrossRef] [PubMed]
- Reeve, A.J.; Dickenson, A.H. Electrophysiological study on spinal antinociceptive interactions between adenosine and morphine in the dorsal horn of the rat. Neurosci. Lett. 1995, 194, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Taiwo, Y.O.; Levine, J.D. Direct cutaneous hyperalgesia induced by adenosine. Neuroscience 1990, 38, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Karlsten, R.; Gordh, T.; Post, C. Local antinociceptive and hyperalgesic effects in the formalin test after peripheral administration of adenosine analogues in mice. Pharmacol. Toxicol. 1992, 70 Pt 1, 434–438. [Google Scholar] [CrossRef]
- Curros-Criado, M.M.; Herrero, J.F. The antinociceptive effects of the systemic adenosine A1 receptor agonist CPA in the absence and in the presence of spinal cord sensitization. Pharmacol. Biochem. Behav. 2005, 82, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B.B.; IJzerman, A.P.; Jacobson, K.A.; Linden, J.; Müller, C.E. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—An update. Pharmacol. Rev. 2011, 63, 1–34. [Google Scholar] [CrossRef]
- Kaelin-Lang, A.; Lauterburg, T.; Burgunder, J.M. Expression of adenosine A2a receptor gene in rat dorsal root and autonomic ganglia. Neurosci. Lett. 1998, 246, 21–24. [Google Scholar] [CrossRef]
- Jacobson, K.A.; Gao, Z.G. Adenosine receptors as therapeutic targets. Nat. Rev. Drug Discov. 2006, 5, 247–264. [Google Scholar] [CrossRef]
- Regaya, I.; Pham, T.; Andreotti, N.; Sauze, N.; Carrega, L.; Martin-Eauclaire, M.F.; Jouirou, B.; Peragut, J.C.; Vacher, H.; Rochat, H.; et al. Small conductance calcium-activated K+ channels, SkCa, but not voltage-gated K+ (Kv) channels, are implicated in the antinociception induced by CGS21680, a A2A adenosine receptor agonist. Life Sci. 2004, 76, 367–377. [Google Scholar] [CrossRef]
- Boison, D.; Chen, J.F.; Fredholm, B.B. Adenosine signaling and function in glial cells. Cell Death Differ. 2010, 17, 1071–1082. [Google Scholar] [CrossRef] [PubMed]
- Doak, G.J.; Sawynok, J. Complex role of peripheral adenosine in the genesis of the response to subcutaneous formalin in the rat. Eur. J. Pharmacol. 1995, 281, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Khasar, S.G.; Wang, J.F.; Taiwo, Y.O.; Heller, P.H.; Green, P.G.; Levine, J.D. Mu-opioid agonist enhancement of prostaglandin-induced hyperalgesia in the rat: A G-protein beta gamma subunit-mediated effect? Neuroscience 1995, 67, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Mediero, A.; Frenkel, S.R.; Wilder, T.; He, W.; Mazumder, A.; Cronstein, B.N. Adenosine A2A receptor activation prevents wear particle-induced osteolysis. Sci. Transl. Med. 2012, 4, 135ra65. [Google Scholar] [CrossRef]
- Montes, G.C.; Hammes, N.; da Rocha, M.D.; Montagnoli, T.L.; Fraga, C.A.; Barreiro, E.J.; Sudo, R.T.; Zapata-Sudo, G. Treatment with Adenosine Receptor Agonist Ameliorates Pain Induced by Acute and Chronic Inflammation. J. Pharmacol. Exp. Ther. 2016, 358, 315–323. [Google Scholar] [CrossRef]
- Hussey, M.J.; Clarke, G.D.; Ledent, C.; Hourani, S.M.O.; Kitchen, I. Reduced response to the formalin test and lowered spinal NMDA glutamate receptor binding in adenosine A2A receptor knockout mice. Pain 2007, 129, 287–294. [Google Scholar] [CrossRef]
- Li, W.; Dai, D.; Chen, A.; Gao, X.F.; Xiong, L. Characteristics of Zusanli Dorsal Root Ganglion Neurons in Rats and Their Receptor Mechanisms in Response to Adenosine. J. Pain 2022, 23, 1564–1580. [Google Scholar] [CrossRef]
- Antonioli, L.; Csóka, B.; Fornai, M.; Colucci, R.; Kókai, E.; Blandizzi, C.; Haskó, G. Adenosine and inflammation: What’s new on the horizon? Drug Discov. Today 2014, 19, 1051–1068. [Google Scholar] [CrossRef]
- Borea, P.A.; Gessi, S.; Merighi, S.; Vincenzi, F.; Varani, K. Pharmacology of Adenosine Receptors: The State of the Art. Physiol. Rev. 2018, 98, 1591–1625. [Google Scholar] [CrossRef]
- Popoli, P.; Pepponi, R. Potential therapeutic relevance of adenosine A2B and A2A receptors in the central nervous system. CNS Neurol. Disord. Drug Targets 2012, 11, 664–674. [Google Scholar] [CrossRef]
- Ryzhov, S.; Zaynagetdinov, R.; Goldstein, A.E.; Novitskiy, S.V.; Blackburn, M.R.; Biaggioni, I.; Feoktistov, I. Effect of A2B adenosine receptor gene ablation on adenosine-dependent regulation of proinflammatory cytokines. J. Pharmacol. Exp. Ther. 2008, 324, 694–700. [Google Scholar] [CrossRef]
- Zhong, H.; Wu, Y.; Belardinelli, L.; Zeng, D. A2B adenosine receptors induce IL-19 from bronchial epithelial cells, resulting in TNF-alpha increase. Am. J. Respir. Cell Mol. Biol. 2006, 35, 587–592. [Google Scholar] [CrossRef]
- Godfrey, L.; Yan, L.; Clarke, G.D.; Ledent, C.; Kitchen, I.; Hourani, S.M. Modulation of paracetamol antinociception by caffeine and by selective adenosine A2 receptor antagonists in mice. Eur. J. Pharmacol. 2006, 531, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Abo-Salem, O.M.; Hayallah, A.M.; Bilkei-Gorzo, A.; Filipek, B.; Zimmer, A.; Müller, C.E. Antinociceptive effects of novel A2B adenosine receptor antagonists. J. Pharmacol. Exp. Ther. 2004, 308, 358–366. [Google Scholar] [CrossRef]
- Bilkei-Gorzo, A.; Abo-Salem, O.M.; Hayallah, A.M.; Michel, K.; Müller, C.E.; Zimmer, A. Adenosine receptor subtype-selective antagonists in inflammation and hyperalgesia. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2008, 377, 65–76. [Google Scholar] [CrossRef]
- Coppi, E.; Cherchi, F.; Lucarini, E.; Ghelardini, C.; Pedata, F.; Jacobson, K.A.; Di Cesare Mannelli, L.; Pugliese, A.M.; Salvemini, D. Uncovering the Mechanisms of Adenosine Receptor-Mediated Pain Control: Focus on the A. Int. J. Mol. Sci. 2021, 22, 7952. [Google Scholar] [CrossRef] [PubMed]
- Cherchi, F.; Venturini, M.; Magni, G.; Scortichini, M.; Jacobson, K.A.; Pugliese, A.M.; Coppi, E. Covalently Binding Adenosine A. Purinergic Signal. 2023. [Google Scholar] [CrossRef]
- Coppi, E.; Cherchi, F.; Fusco, I.; Failli, P.; Vona, A.; Dettori, I.; Gaviano, L.; Lucarini, E.; Jacobson, K.A.; Tosh, D.K.; et al. Adenosine A3 receptor activation inhibits pronociceptive N-type Ca2+ currents and cell excitability in dorsal root ganglion neurons. Pain 2019, 160, 1103–1118. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Li, B.S.; Day, Y.J.; Linden, J. A3 adenosine receptor activation triggers phosphorylation of protein kinase B and protects rat basophilic leukemia 2H3 mast cells from apoptosis. Mol. Pharmacol. 2001, 59, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Durante, M.; Squillace, S.; Lauro, F.; Giancotti, L.A.; Coppi, E.; Cherchi, F.; Di Cesare Mannelli, L.; Ghelardini, C.; Kolar, G.; Wahlman, C.; et al. Adenosine A3 agonists reverse neuropathic pain via T cell-mediated production of IL-10. J. Clin. Investig. 2021, 131, e139299. [Google Scholar] [CrossRef]
- Janes, K.; Wahlman, C.; Little, J.W.; Doyle, T.; Tosh, D.K.; Jacobson, K.A.; Salvemini, D. Spinal neuroimmune activation is independent of T-cell infiltration and attenuated by A3 adenosine receptor agonists in a model of oxaliplatin-induced peripheral neuropathy. Brain Behav. Immun. 2015, 44, 91–99. [Google Scholar] [CrossRef]
- Lucarini, E.; Coppi, E.; Micheli, L.; Parisio, C.; Vona, A.; Cherchi, F.; Pugliese, A.M.; Pedata, F.; Failli, P.; Palomino, S.; et al. Acute visceral pain relief mediated by A3AR agonists in rats: Involvement of N-type voltage-gated calcium channels. Pain 2020, 161, 2179–2190. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B.B.; IJzerman, A.P.; Jacobson, K.A.; Klotz, K.N.; Linden, J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol. Rev. 2001, 53, 527–552. [Google Scholar]
- Antonioli, L.; Blandizzi, C.; Pacher, P.; Haskó, G. The Purinergic System as a Pharmacological Target for the Treatment of Immune-Mediated Inflammatory Diseases. Pharmacol. Rev. 2019, 71, 345–382. [Google Scholar] [CrossRef] [PubMed]
- Antonioli, L.; Pacher, P.; Vizi, E.S.; Haskó, G. CD39 and CD73 in immunity and inflammation. Trends Mol. Med. 2013, 19, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Boison, D. Adenosine kinase: Exploitation for therapeutic gain. Pharmacol. Rev. 2013, 65, 906–943. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, S.A.; Beal, P.R.; Yao, S.Y.; King, A.E.; Cass, C.E.; Young, J.D. The equilibrative nucleoside transporter family, SLC29. Pflugers Arch. 2004, 447, 735–743. [Google Scholar] [CrossRef]
- Pedata, F.; Corsi, C.; Melani, A.; Bordoni, F.; Latini, S. Adenosine extracellular brain concentrations and role of A2A receptors in ischemia. Ann. N. Y Acad. Sci. 2001, 939, 74–84. [Google Scholar] [CrossRef]
- Dunwiddie, T.V.; Diao, L. Extracellular adenosine concentrations in hippocampal brain slices and the tonic inhibitory modulation of evoked excitatory responses. J. Pharmacol. Exp. Ther. 1994, 268, 537–545. [Google Scholar]
- Fredholm, B.B.; Dunwiddie, T.V.; Bergman, B.; Lindström, K. Levels of adenosine and adenine nucleotides in slices of rat hippocampus. Brain Res. 1984, 295, 127–136. [Google Scholar] [CrossRef]
- Gold, M.S.; Reichling, D.B.; Shuster, M.J.; Levine, J.D. Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc. Natl. Acad. Sci. USA 1996, 93, 1108–1112. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.F.; Lee, C.F.; Chern, Y. Adenosine receptor neurobiology: Overview. Int. Rev. Neurobiol. 2014, 119, 1–49. [Google Scholar] [CrossRef] [PubMed]
- Liou, J.T.; Liu, F.C.; Hsin, S.T.; Yang, C.Y.; Lui, P.W. Inhibition of the cyclic adenosine monophosphate pathway attenuates neuropathic pain and reduces phosphorylation of cyclic adenosine monophosphate response element-binding in the spinal cord after partial sciatic nerve ligation in rats. Anesth. Analg. 2007, 105, 1830–1837. [Google Scholar] [CrossRef]
- Burnstock, G. Purine and pyrimidine receptors. Cell. Mol. Life Sci. 2007, 64, 1471–1483. [Google Scholar] [CrossRef]
- Burnstock, G. Physiology and pathophysiology of purinergic neurotransmission. Physiol. Rev. 2007, 87, 659–797. [Google Scholar] [CrossRef]
- Chuang, H.H.; Prescott, E.D.; Kong, H.; Shields, S.; Jordt, S.E.; Basbaum, A.I.; Chao, M.V.; Julius, D. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 2001, 411, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Morales-Lázaro, S.L.; Simon, S.A.; Rosenbaum, T. The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1). J. Physiol. 2013, 591, 3109–3121. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B.B.; Assender, J.W.; Irenius, E.; Kodama, N.; Saito, N. Synergistic effects of adenosine A1 and P2Y receptor stimulation on calcium mobilization and PKC translocation in DDT1 MF-2 cells. Cell. Mol. Neurobiol. 2003, 23, 379–400. [Google Scholar] [CrossRef]
- Fredholm, B.B. Adenosine receptors as targets for drug development. Drug News Perspect. 2003, 16, 283–289. [Google Scholar] [CrossRef]
- Keil, G.J.; DeLander, G.E. Adenosine kinase and adenosine deaminase inhibition modulate spinal adenosine- and opioid agonist-induced antinociception in mice. Eur. J. Pharmacol. 1994, 271, 37–46. [Google Scholar] [CrossRef]
- McGaraughty, S.; Cowart, M.; Jarvis, M.F. Recent developments in the discovery of novel adenosine kinase inhibitors: Mechanism of action and therapeutic potential. CNS Drug Rev. 2001, 7, 415–432. [Google Scholar] [CrossRef] [PubMed]
- Jarvis, M.F.; Burgard, E.C.; McGaraughty, S.; Honore, P.; Lynch, K.; Brennan, T.J.; Subieta, A.; Van Biesen, T.; Cartmell, J.; Bianchi, B.; et al. A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc. Natl. Acad. Sci. USA 2002, 99, 17179–17184. [Google Scholar] [CrossRef]
- Zhu, C.Z.; Mikusa, J.; Chu, K.L.; Cowart, M.; Kowaluk, E.A.; Jarvis, M.F.; McGaraughty, S. A-134974: A novel adenosine kinase inhibitor, relieves tactile allodynia via spinal sites of action in peripheral nerve injured rats. Brain Res. 2001, 905, 104–110. [Google Scholar] [CrossRef] [PubMed]
- McGaraughty, S.; Cowart, M.; Jarvis, M.F.; Berman, R.F. Anticonvulsant and antinociceptive actions of novel adenosine kinase inhibitors. Curr. Top. Med. Chem. 2005, 5, 43–58. [Google Scholar] [CrossRef]
- Golembiowska, K.; White, T.D.; Sawynok, J. Adenosine kinase inhibitors augment release of adenosine from spinal cord slices. Eur. J. Pharmacol. 1996, 307, 157–162. [Google Scholar] [CrossRef]
- DeLander, G.E.; Wahl, J.J. Morphine (intracerebroventricular) activates spinal systems to inhibit behavior induced by putative pain neurotransmitters. J. Pharmacol. Exp. Ther. 1989, 251, 1090–1095. [Google Scholar]
- Hugel, S.; Schlichter, R. Convergent control of synaptic GABA release from rat dorsal horn neurones by adenosine and GABA autoreceptors. J. Physiol. 2003, 551 Pt 2, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Geiger, J.D.; Nagy, J.I. Heterogeneous distribution of adenosine transport sites labelled by [3H]nitrobenzylthioinosine in rat brain: An autoradiographic and membrane binding study. Brain Res. Bull. 1984, 13, 657–666. [Google Scholar] [CrossRef] [PubMed]
- Dolphin, A.C.; Forda, S.R.; Scott, R.H. Calcium-dependent currents in cultured rat dorsal root ganglion neurones are inhibited by an adenosine analogue. J. Physiol. 1986, 373, 47–61. [Google Scholar] [CrossRef]
- Lao, L.J.; Kumamoto, E.; Luo, C.; Furue, H.; Yoshimura, M. Adenosine inhibits excitatory transmission to substantia gelatinosa neurons of the adult rat spinal cord through the activation of presynaptic Aadenosine receptor. Pain 2001, 94, 315–324. [Google Scholar] [CrossRef]
- DeLander, G.E.; Wahl, J.J. Behavior induced by putative nociceptive neurotransmitters is inhibited by adenosine or adenosine analogs coadministered intrathecally. J. Pharmacol. Exp. Ther. 1988, 246, 565–570. [Google Scholar] [PubMed]
- Nakamura, I.; Ohta, Y.; Kemmotsu, O. Characterization of adenosine receptors mediating spinal sensory transmission related to nociceptive information in the rat. Anesthesiology 1997, 87, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Burnstock, G. Introductory overview of purinergic signalling. Front. Biosci. -Elite 2011, 3, 896–900. [Google Scholar] [CrossRef]
- Song, J.G.; Hahm, K.D.; Kim, Y.K.; Leem, J.G.; Lee, C.; Jeong, S.M.; Park, P.H.; Shin, J.W. Adenosine triphosphate-sensitive potassium channel blockers attenuate the antiallodynic effect of R-PIA in neuropathic rats. Anesth. Analg. 2011, 112, 1494–1499. [Google Scholar] [CrossRef] [PubMed]
- Horiuchi, H.; Ogata, T.; Morino, T.; Yamamoto, H. Adenosine A1 receptor agonists reduce hyperalgesia after spinal cord injury in rats. Spinal Cord. 2010, 48, 685–690. [Google Scholar] [CrossRef]
- Carruthers, A.M.; Sellers, L.A.; Jenkins, D.W.; Jarvie, E.M.; Feniuk, W.; Humphrey, P.P. Adenosine A1 receptor-mediated inhibition of protein kinase A-induced calcitonin gene-related peptide release from rat trigeminal neurons. Mol. Pharmacol. 2001, 59, 1533–1541. [Google Scholar] [CrossRef]
- Haas, H.L.; Selbach, O. Functions of neuronal adenosine receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2000, 362, 375–381. [Google Scholar] [CrossRef]
- Nascimento, F.P.; Figueredo, S.M.; Marcon, R.; Martins, D.F.; Macedo, S.J.; Lima, D.A.; Almeida, R.C.; Ostroski, R.M.; Rodrigues, A.L.; Santos, A.R. Inosine reduces pain-related behavior in mice: Involvement of adenosine A1 and A2A receptor subtypes and protein kinase C pathways. J. Pharmacol. Exp. Ther. 2010, 334, 590–598. [Google Scholar] [CrossRef]
- Zahn, P.K.; Straub, H.; Wenk, M.; Pogatzki-Zahn, E.M. Adenosine A1 but not A2a receptor agonist reduces hyperalgesia caused by a surgical incision in rats: A pertussis toxin-sensitive G protein-dependent process. Anesthesiology 2007, 107, 797–806. [Google Scholar] [CrossRef]
- Johansson, B.; Halldner, L.; Dunwiddie, T.V.; Masino, S.A.; Poelchen, W.; Giménez-Llort, L.; Escorihuela, R.M.; Fernández-Teruel, A.; Wiesenfeld-Hallin, Z.; Xu, X.J.; et al. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc. Natl. Acad. Sci. USA 2001, 98, 9407–9412. [Google Scholar] [CrossRef]
- Taiwo, Y.O.; Levine, J.D. Further confirmation of the role of adenyl cyclase and of cAMP-dependent protein kinase in primary afferent hyperalgesia. Neuroscience 1991, 44, 131–135. [Google Scholar] [CrossRef]
- Patel, M.K.; Pinnock, R.D.; Lee, K. Adenosine exerts multiple effects in dorsal horn neurones of the adult rat spinal cord. Brain Res. 2001, 920, 19–26. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nakanishi, O.; Matsui, T.; Shinohara, N.; Kinoshita, H.; Lambert, C.; Ishikawa, T. Intrathecal adenosine A1 receptor agonist attenuates hyperalgesia without inhibiting spinal glutamate release in the rat. Cell. Mol. Neurobiol. 2003, 23, 175–185. [Google Scholar] [CrossRef]
- Liu, X.J.; White, T.D.; Sawynok, J. Involvement of primary sensory afferents, postganglionic sympathetic nerves and mast cells in the formalin-evoked peripheral release of adenosine. Eur. J. Pharmacol. 2001, 429, 147–155. [Google Scholar] [CrossRef]
- Liu, X.J.; White, T.D.; Sawynok, J. Potentiation of formalin-evoked adenosine release by an adenosine kinase inhibitor and an adenosine deaminase inhibitor in the rat hind paw: A microdialysis study. Eur. J. Pharmacol. 2000, 408, 143–152. [Google Scholar] [CrossRef]
- Liu, X.J.; White, T.D.; Sawynok, J. Intraplantar injection of glutamate evokes peripheral adenosine release in the rat hind paw: Involvement of peripheral ionotropic glutamate receptors and capsaicin-sensitive sensory afferents. J. Neurochem. 2002, 80, 562–570. [Google Scholar] [CrossRef]
- Ledent, C.; Vaugeois, J.M.; Schiffmann, S.N.; Pedrazzini, T.; El Yacoubi, M.; Vanderhaeghen, J.J.; Costentin, J.; Heath, J.K.; Vassart, G.; Parmentier, M. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2a receptor. Nature 1997, 388, 674–678. [Google Scholar] [CrossRef]
- Berrendero, F.; Castañé, A.; Ledent, C.; Parmentier, M.; Maldonado, R.; Valverde, O. Increase of morphine withdrawal in mice lacking A2a receptors and no changes in CB1/A2a double knockout mice. Eur. J. Neurosci. 2003, 17, 315–324. [Google Scholar] [CrossRef]
- Xie, K.; Masuho, I.; Shih, C.C.; Cao, Y.; Sasaki, K.; Lai, C.W.; Han, P.L.; Ueda, H.; Dessauer, C.W.; Ehrlich, M.E.; et al. Stable G protein-effector complexes in striatal neurons: Mechanism of assembly and role in neurotransmitter signaling. Elife 2015, 4, e10451. [Google Scholar] [CrossRef]
- Parada, C.A.; Reichling, D.B.; Levine, J.D. Chronic hyperalgesic priming in the rat involves a novel interaction between cAMP and PKCepsilon second messenger pathways. Pain 2005, 113, 185–190. [Google Scholar] [CrossRef]
- Feoktistov, I.; Biaggioni, I. Role of adenosine A2B receptors in inflammation. Adv. Pharmacol. 2011, 61, 115–144. [Google Scholar] [CrossRef]
- Haskó, G.; Pacher, P. A2A receptors in inflammation and injury: Lessons learned from transgenic animals. J. Leukoc. Biol. 2008, 83, 447–455. [Google Scholar] [CrossRef]
- Bastia, E.; Varani, K.; Monopoli, A.; Bertorelli, R. Effects of A1 and A2A adenosine receptor ligands in mouse acute models of pain. Neurosci. Lett. 2002, 328, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Hao, J.X.; Fredholm, B.B.; Schulte, G.; Wiesenfeld-Hallin, Z.; Xu, X.J. Peripheral adenosine A2A receptors are involved in carrageenan-induced mechanical hyperalgesia in mice. Neuroscience 2010, 170, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Yoon, M.H.; Bae, H.B.; Choi, J.I. Antinociception of intrathecal adenosine receptor subtype agonists in rat formalin test. Anesth. Analg. 2005, 101, 1417–1421. [Google Scholar] [CrossRef] [PubMed]
- Borghi, V.; Przewlocka, B.; Labuz, D.; Maj, M.; Ilona, O.; Pavone, F. Formalin-induced pain and mu-opioid receptor density in brain and spinal cord are modulated by A1 and A2a adenosine agonists in mice. Brain Res. 2002, 956, 339–348. [Google Scholar] [CrossRef] [PubMed]
- By, Y.; Condo, J.; Durand-Gorde, J.M.; Lejeune, P.J.; Mallet, B.; Guieu, R.; Ruf, J. Intracerebroventricular injection of an agonist-like monoclonal antibody to adenosine A2A receptor has antinociceptive effects in mice. J. Neuroimmunol. 2011, 230, 178–182. [Google Scholar] [CrossRef]
- Mizumura, K.; Koda, H.; Kumazawa, T. Opposite effects of increased intracellular cyclic AMP on the heat and bradykinin responses of canine visceral polymodal receptors in vitro. Neurosci. Res. 1996, 25, 335–341. [Google Scholar] [CrossRef]
- Bailey, A.; Ledent, C.; Kelly, M.; Hourani, S.M.; Kitchen, I. Changes in spinal delta and kappa opioid systems in mice deficient in the A2A receptor gene. J. Neurosci. 2002, 22, 9210–9220. [Google Scholar] [CrossRef]
- Ohta, A.; Sitkovsky, M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 2001, 414, 916–920. [Google Scholar] [CrossRef]
- Watkins, L.R.; Maier, S.F. Beyond neurons: Evidence that immune and glial cells contribute to pathological pain states. Physiol. Rev. 2002, 82, 981–1011. [Google Scholar] [CrossRef] [PubMed]
- Antonioli, L.; Blandizzi, C.; Csóka, B.; Pacher, P.; Haskó, G. Adenosine signalling in diabetes mellitus--pathophysiology and therapeutic considerations. Nat. Rev. Endocrinol. 2015, 11, 228–241. [Google Scholar] [CrossRef] [PubMed]
- Borea, P.A.; Gessi, S.; Merighi, S.; Vincenzi, F.; Varani, K. Pathological overproduction: The bad side of adenosine. Br. J. Pharmacol. 2017, 174, 1945–1960. [Google Scholar] [CrossRef] [PubMed]
- Poon, A.; Sawynok, J. Antinociceptive and anti-inflammatory properties of an adenosine kinase inhibitor and an adenosine deaminase inhibitor. Eur. J. Pharmacol. 1999, 384, 123–138. [Google Scholar] [CrossRef]
- Schiedel, A.C.; Hinz, S.; Thimm, D.; Sherbiny, F.; Borrmann, T.; Maass, A.; Müller, C.E. The four cysteine residues in the second extracellular loop of the human adenosine A2B receptor: Role in ligand binding and receptor function. Biochem. Pharmacol. 2011, 82, 389–399. [Google Scholar] [CrossRef]
- Alnouri, M.W.; Jepards, S.; Casari, A.; Schiedel, A.C.; Hinz, S.; Müller, C.E. Selectivity is species-dependent: Characterization of standard agonists and antagonists at human, rat, and mouse adenosine receptors. Purinergic Signal. 2015, 11, 389–407. [Google Scholar] [CrossRef]
- Shakya, A.K.; Naik, R.R.; Almasri, I.M.; Kaur, A. Role and Function of Adenosine and its Receptors in Inflammation, Neuroinflammation, IBS, Autoimmune Inflammatory Disorders, Rheumatoid Arthritis and Psoriasis. Curr. Pharm. Des. 2019, 25, 2875–2891. [Google Scholar] [CrossRef]
- Coppi, E.; Dettori, I.; Cherchi, F.; Bulli, I.; Venturini, M.; Pedata, F.; Pugliese, A.M. New Insight into the Role of Adenosine in Demyelination, Stroke and Neuropathic Pain. Front. Pharmacol. 2020, 11, 625662. [Google Scholar] [CrossRef]
- Sawynok, J.; Reid, A.; Liu, X.J. Involvement of mast cells, sensory afferents and sympathetic mechanisms in paw oedema induced by adenosine A1 and A2B/3 receptor agonists. Eur. J. Pharmacol. 2000, 395, 47–50. [Google Scholar] [CrossRef]
- Green, A.; Milligan, G.; Belt, S.E. Effects of prolonged treatment of adipocytes with PGE1, N6-phenylisopropyl adenosine and nicotinic acid on G-proteins and antilipolytic sensitivity. Biochem. Soc. Trans. 1991, 19, 212S. [Google Scholar] [CrossRef]
- Esquisatto, L.C.; Costa, S.K.; Camargo, E.A.; Ribela, M.T.; Brain, S.D.; de Nucci, G.; Antunes, E. The plasma protein extravasation induced by adenosine and its analogues in the rat dorsal skin: Evidence for the involvement of capsaicin sensitive primary afferent neurones and mast cells. Br. J. Pharmacol. 2001, 134, 108–115. [Google Scholar] [CrossRef]
- Yoon, M.H.; Bae, H.B.; Choi, J.I.; Jeong, S.W.; Chung, S.S.; Yoo, K.Y.; Jeong, C.Y.; Kim, S.J.; Chung, S.T.; Kim, C.M.; et al. Evaluation of interaction between intrathecal adenosine and MK801 or NBQX in a rat formalin pain model. Pharmacology 2005, 75, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Stemmer, S.M.; Benjaminov, O.; Medalia, G.; Ciuraru, N.B.; Silverman, M.H.; Bar-Yehuda, S.; Fishman, S.; Harpaz, Z.; Farbstein, M.; Cohen, S.; et al. CF102 for the treatment of hepatocellular carcinoma: A phase I/II, open-label, dose-escalation study. Oncologist 2013, 18, 25–26. [Google Scholar] [CrossRef]
- Polosa, R.; Holgate, S.T. Adenosine receptors as promising therapeutic targets for drug development in chronic airway inflammation. Curr. Drug Targets 2006, 7, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Ramkumar, V.; Stiles, G.L.; Beaven, M.A.; Ali, H. The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J. Biol. Chem. 1993, 268, 16887–16890. [Google Scholar] [CrossRef] [PubMed]
- Spruntulis, L.M.; Broadley, K.J. A3 receptors mediate rapid inflammatory cell influx into the lungs of sensitized guinea-pigs. Clin. Exp. Allergy 2001, 31, 943–951. [Google Scholar] [CrossRef] [PubMed]
- Fossetta, J.; Jackson, J.; Deno, G.; Fan, X.; Du, X.K.; Bober, L.; Soudé-Bermejo, A.; de Bouteiller, O.; Caux, C.; Lunn, C.; et al. Pharmacological analysis of calcium responses mediated by the human A3 adenosine receptor in monocyte-derived dendritic cells and recombinant cells. Mol. Pharmacol. 2003, 63, 342–350. [Google Scholar] [CrossRef]
- Zylka, M.J. Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol. Med. 2011, 17, 188–196. [Google Scholar] [CrossRef]
- Fedorova, I.M.; Jacobson, M.A.; Basile, A.; Jacobson, K.A. Behavioral characterization of mice lacking the A3 adenosine receptor: Sensitivity to hypoxic neurodegeneration. Cell. Mol. Neurobiol. 2003, 23, 431–447. [Google Scholar] [CrossRef]
- Yaar, R.; Lamperti, E.D.; Toselli, P.A.; Ravid, K. Activity of the A3 adenosine receptor gene promoter in transgenic mice: Characterization of previously unidentified sites of expression. FEBS Lett. 2002, 532, 267–272. [Google Scholar] [CrossRef]
- Carlin, J.L.; Jain, S.; Gizewski, E.; Wan, T.C.; Tosh, D.K.; Xiao, C.; Auchampach, J.A.; Jacobson, K.A.; Gavrilova, O.; Reitman, M.L. Hypothermia in mouse is caused by adenosine A. Neuropharmacology 2017, 114, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.N.; Wang, Y.; Garcia-Roves, P.M.; Björnholm, M.; Fredholm, B.B. Adenosine A3 receptors regulate heart rate, motor activity and body temperature. Acta Physiol. 2010, 199, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Baraldi, P.G.; Iaconinoto, M.A.; Moorman, A.R.; Carrion, M.D.; Cara, C.L.; Preti, D.; López, O.C.; Fruttarolo, F.; Tabrizi, M.A.; Romagnoli, R. Allosteric enhancers for A1 adenosine receptor. Mini Rev. Med. Chem. 2007, 7, 559–569. [Google Scholar] [CrossRef] [PubMed]
- Kiesman, W.F.; Elzein, E.; Zablocki, J. A1 adenosine receptor antagonists, agonists, and allosteric enhancers. Handb. Exp. Pharmacol. 2009, 193, 25–58. [Google Scholar] [CrossRef]
- Romagnoli, R.; Baraldi, P.G.; Carrion, M.D.; Cara, C.L.; Cruz-Lopez, O.; Salvador, M.K.; Preti, D.; Tabrizi, M.A.; Moorman, A.R.; Vincenzi, F.; et al. Synthesis and biological evaluation of 2-amino-3-(4-chlorobenzoyl)-4-[(4-arylpiperazin-1-yl)methyl]-5-substituted-thiophenes. effect of the 5-modification on allosteric enhancer activity at the A1 adenosine receptor. J. Med. Chem. 2012, 55, 7719–7735. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, I.; Nieri, P. Adenosine A1 modulators: A patent update (2008 to present). Expert Opin. Ther. Pat. 2013, 23, 1109–1121. [Google Scholar] [CrossRef]
- Vincenzi, F.; Ravani, A.; Pasquini, S.; Merighi, S.; Gessi, S.; Romagnoli, R.; Baraldi, P.G.; Borea, P.A.; Varani, K. Positive allosteric modulation of A. Neuropharmacology 2016, 111, 283–292. [Google Scholar] [CrossRef]
- Vincenzi, F.; Targa, M.; Romagnoli, R.; Merighi, S.; Gessi, S.; Baraldi, P.G.; Borea, P.A.; Varani, K. TRR469, a potent A1 adenosine receptor allosteric modulator, exhibits anti-nociceptive properties in acute and neuropathic pain models in mice. Neuropharmacology 2014, 81, 6–14. [Google Scholar] [CrossRef]
- Ekblom, A.; Segerdahl, M.; Sollevi, A. Adenosine increases the cutaneous heat pain threshold in healthy volunteers. Acta Anaesthesiol. Scand. 1995, 39, 717–722. [Google Scholar] [CrossRef]
- Segerdahl, M.; Ekblom, A.; Sollevi, A. The influence of adenosine, ketamine, and morphine on experimentally induced ischemic pain in healthy volunteers. Anesth. Analg. 1994, 79, 787–791. [Google Scholar] [CrossRef]
- Rae, C.P.; Mansfield, M.D.; Dryden, C.; Kinsella, J. Analgesic effect of adenosine on ischaemic pain in human volunteers. Br. J. Anaesth. 1999, 82, 427–428. [Google Scholar] [CrossRef]
- Segerdahl, M.; Ekblom, A.; Sjölund, K.F.; Belfrage, M.; Forsberg, C.; Sollevi, A. Systemic adenosine attenuates touch evoked allodynia induced by mustard oil in humans. Neuroreport 1995, 6, 753–756. [Google Scholar] [CrossRef]
- Sjölund, K.F.; Segerdahl, M.; Sollevi, A. Adenosine reduces secondary hyperalgesia in two human models of cutaneous inflammatory pain. Anesth. Analg. 1999, 88, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Belfrage, M.; Sollevi, A.; Segerdahl, M.; Sjölund, K.F.; Hansson, P. Systemic adenosine infusion alleviates spontaneous and stimulus evoked pain in patients with peripheral neuropathic pain. Anesth. Analg. 1995, 81, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Sjölund, K.F.; Belfrage, M.; Karlsten, R.; Segerdahl, M.; Arnér, S.; Gordh, T.; Solevi, A. Systemic adenosine infusion reduces the area of tactile allodynia in neuropathic pain following peripheral nerve injury: A multi-centre, placebo-controlled study. Eur. J. Pain 2001, 5, 199–207. [Google Scholar] [CrossRef]
- Lynch, M.E.; Clark, A.J.; Sawynok, J. Intravenous adenosine alleviates neuropathic pain: A double blind placebo controlled crossover trial using an enriched enrolment design. Pain 2003, 103, 111–117. [Google Scholar] [CrossRef]
- Sollevi, A.; Belfrage, M.; Lundeberg, T.; Segerdahl, M.; Hansson, P. Systemic adenosine infusion: A new treatment modality to alleviate neuropathic pain. Pain 1995, 61, 155–158. [Google Scholar] [CrossRef]
- Hayashida, M.; Fukuda, K.; Fukunaga, A. Clinical application of adenosine and ATP for pain control. J. Anesth. 2005, 19, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, M.; Kitamura, A.; Ikezaki, H.; Nakanishi, K.; Kim, C.; Sakamoto, A.; Ogawa, R. Systemic ATP infusion improves spontaneous pain and tactile allodynia, but not tactile hypesthesia, in patients with postherpetic neuralgia. J. Anesth. 2004, 18, 177–180. [Google Scholar] [CrossRef]
- Segerdahl, M.; Ekblom, A.; Sandelin, K.; Wickman, M.; Sollevi, A. Peroperative adenosine infusion reduces the requirements for isoflurane and postoperative analgesics. Anesth. Analg. 1995, 80, 1145–1149. [Google Scholar] [CrossRef]
- Segerdahl, M.; Persson, E.; Ekblom, A.; Sollevi, A. Peroperative adenosine infusion reduces isoflurane concentrations during general anesthesia for shoulder surgery. Acta Anaesthesiol. Scand. 1996, 40, 792–797. [Google Scholar] [CrossRef]
- Segerdahl, M.; Irestedt, L.; Sollevi, A. Antinociceptive effect of perioperative adenosine infusion in abdominal hysterectomy. Acta Anaesthesiol. Scand. 1997, 41, 473–479. [Google Scholar] [CrossRef] [PubMed]
- Zárate, E.; Sá Rêgo, M.M.; White, P.F.; Duffy, L.; Shearer, V.E.; Griffin, J.D.; Whitten, C.W. Comparison of adenosine and remifentanil infusions as adjuvants to desflurane anesthesia. Anesthesiology 1999, 90, 956–963. [Google Scholar] [CrossRef] [PubMed]
- Fukunaga, A.F.; Alexander, G.E.; Stark, C.W. Characterization of the analgesic actions of adenosine: Comparison of adenosine and remifentanil infusions in patients undergoing major surgical procedures. Pain 2003, 101, 129–138. [Google Scholar] [CrossRef]
- Vincenzi, F.; Pasquini, S.; Battistello, E.; Merighi, S.; Gessi, S.; Borea, P.A.; Varani, K.A. A1 Adenosine Receptor Partial Agonists and Allosteric Modulators: Advancing Toward the Clinic? Front. Pharmacol. 2020, 11, 625134. [Google Scholar] [CrossRef]
- Rane, K.; Segerdahl, M.; Goiny, M.; Sollevi, A. Intrathecal adenosine administration: A phase 1 clinical safety study in healthy volunteers, with additional evaluation of its influence on sensory thresholds and experimental pain. Anesthesiology 1998, 89, 1108–1115; discussion 1109A. [Google Scholar] [CrossRef]
- Eisenach, J.C.; Curry, R.; Hood, D.D. Dose response of intrathecal adenosine in experimental pain and allodynia. Anesthesiology 2002, 97, 938–942. [Google Scholar] [CrossRef]
- Eisenach, J.C.; Hood, D.D.; Curry, R. Phase I safety assessment of intrathecal injection of an American formulation of adenosine in humans. Anesthesiology 2002, 96, 24–28. [Google Scholar] [CrossRef]
- Eisenach, J.C.; Hood, D.D.; Curry, R.; Sawynok, J.; Yaksh, T.L.; Li, X. Intrathecal but not intravenous opioids release adenosine from the spinal cord. J. Pain 2004, 5, 64–68. [Google Scholar] [CrossRef]
- Eisenach, J.C.; Rauck, R.L.; Curry, R. Intrathecal, but not intravenous adenosine reduces allodynia in patients with neuropathic pain. Pain 2003, 105, 65–70. [Google Scholar] [CrossRef]
- Gaspardone, A.; Crea, F.; Tomai, F.; Iamele, M.; Crossman, D.C.; Pappagallo, M.; Versaci, F.; Chiariello, L.; Gioffrè, P.A. Substance P potentiates the algogenic effects of intraarterial infusion of adenosine. J. Am. Coll. Cardiol. 1994, 24, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Sylvén, C.; Beermann, B.; Kaijser, L.; Jonzon, B. Nicotine enhances angina pectoris-like chest pain and atrioventricular blockade provoked by intravenous bolus of adenosine in healthy volunteers. J. Cardiovasc. Pharmacol. 1990, 16, 962–965. [Google Scholar] [CrossRef] [PubMed]
- Sawynok, J.; Reid, A.R.; Esser, M.J. Peripheral antinociceptive action of amitriptyline in the rat formalin test: Involvement of adenosine. Pain 1999, 80, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Ulugol, A.; Aslantas, A.; Ipci, Y.; Tuncer, A.; Hakan Karadag, C.; Dokmeci, I. Combined systemic administration of morphine and magnesium sulfate attenuates pain-related behavior in mononeuropathic rats. Brain Res. 2002, 943, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Sandner-Kiesling, A.; Li, X.; Eisenach, J.C. Morphine-induced spinal release of adenosine is reduced in neuropathic rats. Anesthesiology 2001, 95, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, R.E. Caffeine and headaches. Neurol. Sci. 2007, 28 (Suppl. S2), S179–S183. [Google Scholar] [CrossRef]
- Rao, S.S.; Mudipalli, R.S.; Remes-Troche, J.M.; Utech, C.L.; Zimmerman, B. Theophylline improves esophageal chest pain--a randomized, placebo-controlled study. Am. J. Gastroenterol. 2007, 102, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Sebastião, A.M.; Cunha, R.A.; de Mendonça, A.; Ribeiro, J.A. Modification of adenosine modulation of synaptic transmission in the hippocampus of aged rats. Br. J. Pharmacol. 2000, 131, 1629–1634. [Google Scholar] [CrossRef]
- Correia-de-Sá, P.; Ribeiro, J.A. Evidence that the presynaptic A2a-adenosine receptor of the rat motor nerve endings is positively coupled to adenylate cyclase. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1994, 350, 514–522. [Google Scholar] [CrossRef]
Localization | Cellular Mechanisms | Preclinical Studies | |
---|---|---|---|
A1AR | DRG, trigeminal ganglion spinal and supraspinal sites, laminae I and II of the dorsal horn, and descending projection within the posterior horn [17,35,36,37,38,39]. |
| Reduce:
|
A2AAR | DRG, basal ganglia, and the olfactory bulb of the CNS [47,48]. |
| Increase:
Reduce: |
A2BAR | DRG, spinal cord, astrocyte, and inflammatory cells [57,58,59,60]. | Block of A2BARs:
| |
A3AR | DRG, spinal and supraspinal locations [66,67,68]. | Reduce: |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haddad, M.; Cherchi, F.; Alsalem, M.; Al-saraireh, Y.M.; Madae’en, S. Adenosine Receptors as Potential Therapeutic Analgesic Targets. Int. J. Mol. Sci. 2023, 24, 13160. https://doi.org/10.3390/ijms241713160
Haddad M, Cherchi F, Alsalem M, Al-saraireh YM, Madae’en S. Adenosine Receptors as Potential Therapeutic Analgesic Targets. International Journal of Molecular Sciences. 2023; 24(17):13160. https://doi.org/10.3390/ijms241713160
Chicago/Turabian StyleHaddad, Mansour, Federica Cherchi, Mohammad Alsalem, Yousef M. Al-saraireh, and Saba Madae’en. 2023. "Adenosine Receptors as Potential Therapeutic Analgesic Targets" International Journal of Molecular Sciences 24, no. 17: 13160. https://doi.org/10.3390/ijms241713160
APA StyleHaddad, M., Cherchi, F., Alsalem, M., Al-saraireh, Y. M., & Madae’en, S. (2023). Adenosine Receptors as Potential Therapeutic Analgesic Targets. International Journal of Molecular Sciences, 24(17), 13160. https://doi.org/10.3390/ijms241713160