The Relationships between Cerebrospinal Fluid Glial (CXCL12, CX3CL, YKL-40) and Synaptic Biomarkers (Ng, NPTXR) in Early Alzheimer’s Disease
Abstract
:1. Introduction
2. Results
2.1. Subject Characterization—Demographics of the Study Participants
2.2. Quantitate Comparison of the CSF Levels of CXCL12, CX3CL1, YKL-40, Ng, and NPTXR across Diagnostic Groups
2.3. Correlations between Selected Chemokines, YKL-40, Biomarkers of Synaptic Degeneration, and Core CSF AD Biomarkers
2.4. Diagnostic Performance of Selected Candidate Biomarkers
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Biochemical Measurements
4.3. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Feng, X.; Sun, X.; Hou, N.; Han, F.; Liu, Y. Global, Regional, and National Burden of Alzheimer’s Disease and Other Dementias, 1990–2019. Front. Aging Neurosci. 2022, 14, 937486. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.M.; Cookson, M.R.; Van Den Bosch, L.; Zetterberg, H.; Holtzman, D.M.; Dewachter, I. Hallmarks of Neurodegenerative Diseases. Cell 2023, 186, 693–714. [Google Scholar] [CrossRef]
- Tiwari, S.; Atluri, V.; Kaushik, A.; Yndart, A.; Nair, M. Alzheimer’s Disease: Pathogenesis, Diagnostics, and Therapeutics. Int. J. Nanomed. 2019, 14, 5541–5554. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, Y.; Chen, J.C.; Qin, Y.Y.; Liu, M.; Liu, Y.; Xie, M.J.; Yu, Z.Y.; Zhu, Z.; Wang, W. Stromal Cell-Derived Factor 1α Decreases β-Amyloid Deposition in Alzheimer’s Disease Mouse Model. Brain Res. 2012, 1459, 15–26. [Google Scholar] [CrossRef]
- Gavriel, Y.; Rabinovich-Nikitin, I.; Solomon, B. Inhibition of CXCR4/CXCL12 Signaling: A Translational Perspective for Alzheimer’s Disease Treatment. Neural Regen. Res. 2022, 17, 108–109. [Google Scholar] [CrossRef] [PubMed]
- Stellos, K.; Gawaz, M. Platelets and Stromal Cell-Derived Factor-1 in Progenitor Cell Recruitment. Semin. Thromb. Hemost. 2007, 33, 159–164. [Google Scholar] [CrossRef]
- Laske, C.; Stellos, K.; Eschweiler, G.W.; Leyhe, T.; Gawaz, M. Decreased CXCL12 (SDF-1) Plasma Levels in Early Alzheimer’s Disease: A Contribution to a Deficient Hematopoietic Brain Support? J. Alzheimers Dis. 2008, 15, 83–95. [Google Scholar] [CrossRef]
- Stellos, K.; Langer, H.; Daub, K.; Schoenberger, T.; Gauss, A.; Geisler, T.; Bigalke, B.; Mueller, I.; Schumm, M.; Schaefer, I.; et al. Platelet-Derived Stromal Cell-Derived Factor-1 Regulates Adhesion and Promotes Differentiation of Human CD34+ Cells to Endothelial Progenitor Cells. Circulation 2008, 117, 206–215. [Google Scholar] [CrossRef]
- Liu, C.; Cui, G.; Zhu, M.; Kang, X.; Guo, H. Neuroinflammation in Alzheimer’s Disease: Chemokines Produced by Astrocytes and Chemokine Receptors. Int. J. Clin. Exp. Pathol. 2014, 7, 8342–8355. [Google Scholar]
- Bezzi, P.; Domercq, M.; Brambilla, L.; Galli, R.; Schols, D.; De Clercq, E.; Vescovi, A.; Bagetta, G.; Kollias, G.; Meldolesi, J.; et al. CXCR4-Activated Astrocyte Glutamate Release via TNFalpha: Amplification by Microglia Triggers Neurotoxicity. Nat. Neurosci. 2001, 4, 702–710. [Google Scholar] [CrossRef]
- Proctor, C.J.; Gray, D.A. GSK3 and P53—Is There a Link in Alzheimer’s Disease? Mol. Neurodegener. 2010, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Stumm, R.; Höllt, V. CXC Chemokine Receptor 4 Regulates Neuronal Migration and Axonal Pathfinding in the Developing Nervous System: Implications for Neuronal Regeneration in the Adult Brain. J. Mol. Endocrinol. 2007, 38, 377–382. [Google Scholar] [CrossRef]
- Puchert, M.; Pelkner, F.; Stein, G.; Angelov, D.N.; Boltze, J.; Wagner, D.C.; Odoardi, F.; Flügel, A.; Streit, W.J.; Engele, J. Astrocytic Expression of the CXCL12 Receptor, CXCR7/ACKR3 Is a Hallmark of the Diseased, but Not Developing CNS. Mol. Cell. Neurosci. 2017, 85, 105–118. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Kong, W.; Wang, S. Peripheral Blood Biomarkers CXCL12 and TNFRSF13C Associate with Cerebrospinal Fluid Biomarkers and Infiltrating Immune Cells in Alzheimer Disease. J. Mol. Neurosci. 2021, 71, 1485–1494. [Google Scholar] [CrossRef]
- Laske, C.; Stellos, K.; Stransky, E.; Seizer, P.; Akcay, Ö.; Eschweiler, G.W.; Leyhe, T.; Gawaz, M. Decreased Plasma and Cerebrospinal Fluid Levels of Stem Cell Factor in Patients with Early Alzheimer’s Disease. J. Alzheimers Dis. 2008, 15, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Azizi, G.; Khannazer, N.; Mirshafiey, A. The Potential Role of Chemokines in Alzheimer’s Disease Pathogenesis. Am. J. Alzheimer’s Dis. Other Dement. 2014, 29, 415–425. [Google Scholar] [CrossRef]
- Hellwig, K.; Kvartsberg, H.; Portelius, E.; Andreasson, U.; Oberstein, T.J.; Lewczuk, P.; Blennow, K.; Kornhuber, J.; Maler, J.M.; Zetterberg, H.; et al. Neurogranin and YKL-40: Independent Markers of Synaptic Degeneration and Neuroinflammation in Alzheimer’s Disease. Alzheimers Res. Ther. 2015, 7, 74. [Google Scholar] [CrossRef]
- Connolly, K.; Lehoux, M.; O’Rourke, R.; Assetta, B.; Erdemir, G.A.; Elias, J.A.; Lee, C.G.; Huang, Y.W.A. Potential Role of Chitinase-3-like Protein 1 (CHI3L1/YKL-40) in Neurodegeneration and Alzheimer’s Disease. Alzheimer’s Dement. 2023, 19, 9–24. [Google Scholar] [CrossRef]
- Lananna, B.V.; McKee, C.A.; King, M.W.; Del-Aguila, J.L.; Dimitry, J.M.; Farias, F.H.G.; Nadarajah, C.J.; Xiong, D.D.; Guo, C.; Cammack, A.J.; et al. Chi3l1/YKL-40 Is Controlled by the Astrocyte Circadian Clock and Regulates Neuroinflammation and Alzheimer’s Disease Pathogenesis. Sci. Transl. Med. 2020, 12, eaax3519. [Google Scholar] [CrossRef]
- Camacho-Hernández, N.P.; Peña-Ortega, F. Fractalkine/CX3CR1-Dependent Modulation of Synaptic and Network Plasticity in Health and Disease. Neural Plast. 2023, 2023, 4637073. [Google Scholar] [CrossRef]
- Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; et al. Neuroinflammation in Alzheimer’s Disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef]
- Cho, S.-H.; Sun, B.; Zhou, Y.; Kauppinen, T.M.; Halabisky, B.; Wes, P.; Ransohoff, R.M.; Gan, L. CX3CR1 Protein Signaling Modulates Microglial Activation and Protects against Plaque-Independent Cognitive Deficits in a Mouse Model of Alzheimer Disease. J. Biol. Chem. 2011, 286, 32713–32722. [Google Scholar] [CrossRef]
- Rogers, J.T.; Morganti, J.M.; Bachstetter, A.D.; Hudson, C.E.; Peters, M.M.; Grimmig, B.A.; Weeber, E.J.; Bickford, P.C.; Gemma, C. CX3CR1 Deficiency Leads to Impairment of Hippocampal Cognitive Function and Synaptic Plasticity. J. Neurosci. 2011, 31, 16241–16250. [Google Scholar] [CrossRef]
- Merino, J.J.; Muñetón-Gómez, V.; Alvárez, M.-I.; Toledano-Díaz, A. Effects of CX3CR1 and Fractalkine Chemokines in Amyloid Beta Clearance and P-Tau Accumulation in Alzheimer’s Disease (AD) Rodent Models: Is Fractalkine a Systemic Biomarker for AD? Curr. Alzheimer Res. 2016, 13, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Lim, B.; Tsolaki, M.; Soosaipillai, A.; Brown, M.; Zilakaki, M.; Tagaraki, F.; Fotiou, D.; Koutsouraki, E.; Grosi, E.; Prassas, I.; et al. Liquid Biopsy of Cerebrospinal Fluid Identifies Neuronal Pentraxin Receptor (NPTXR) as a Biomarker of Progression of Alzheimer’s Disease. Clin. Chem. Lab. Med. 2019, 57, 1875–1881. [Google Scholar] [CrossRef]
- Lista, S.; Hampel, H. Synaptic Degeneration and Neurogranin in the Pathophysiology of Alzheimer’s Disease. Expert. Rev. Neurother. 2017, 17, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Kvartsberg, H.; Portelius, E.; Andreasson, U.; Brinkmalm, G.; Hellwig, K.; Lelental, N.; Kornhuber, J.; Hansson, O.; Minthon, L.; Spitzer, P.; et al. Characterization of the Postsynaptic Protein Neurogranin in Paired Cerebrospinal Fluid and Plasma Samples from Alzheimer’s Disease Patients and Healthy Controls. Alzheimers Res. Ther. 2015, 7, 40. [Google Scholar] [CrossRef]
- Muszyski, P.; Kulczyska-Przybik, A.; Borawska, R.; Litman-Zawadzka, A.; Sowik, A.; Klimkowicz-Mrowiec, A.; Pera, J.; Dziedzic, T.; Mroczko, B. The Relationship between Markers of Inflammation and Degeneration in the Central Nervous System and the Blood-Brain Barrier Impairment in Alzheimer’s Disease. J. Alzheimers Dis. 2017, 59, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Kulczyńska-Przybik, A.; Dulewicz, M.; Doroszkiewicz, J.; Borawska, R.; Litman-Zawadzka, A.; Arslan, D.; Kułakowska, A.; Kochanowicz, J.; Mroczko, B. Comparative Analysis of Neurodegeneration and Axonal Dysfunction Biomarkers in the Cerebrospinal Fluid of Patients with Multiple Sclerosis. J. Clin. Med. 2022, 11, 4122. [Google Scholar] [CrossRef]
- Dong, Y.X.; Zhang, H.Y.; Li, H.Y.; Liu, P.H.; Sui, Y.; Sun, X.H. Association between Alzheimer’s Disease Pathogenesis and Early Demyelination and Oligodendrocyte Dysfunction. Neural Regen. Res. 2018, 13, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Kawanishi, S.; Takata, K.; Itezono, S.; Nagayama, H.; Konoya, S.; Chisaki, Y.; Toda, Y.; Nakata, S.; Yano, Y.; Kitamura, Y.; et al. Bone-Marrow-Derived Microglia-Like Cells Ameliorate Brain Amyloid Pathology and Cognitive Impairment in a Mouse Model of Alzheimer’s Disease. J. Alzheimers Dis. 2018, 64, 563–585. [Google Scholar] [CrossRef]
- Sanfilippo, C.; Castrogiovanni, P.; Imbesi, R.; Nunnari, G.; Di Rosa, M. Postsynaptic Damage and Microglial Activation in AD Patients Could Be Linked CXCR4/CXCL12 Expression Levels. Brain Res. 2020, 1749, 147127. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Benito, P.; Povedano, M.; Domínguez, R.; Marco, C.; Colomina, M.J.; López-Pérez, Ó.; Santana, I.; Baldeiras, I.; Martínez-Yelámos, S.; Zerr, I.; et al. Increased C-x-c Motif Chemokine Ligand 12 Levels in Cerebrospinal Fluid as a Candidate Biomarker in Sporadic Amyotrophic Lateral Sclerosis. Int. J. Mol. Sci. 2020, 21, 8680. [Google Scholar] [CrossRef] [PubMed]
- Guyon, A. CXCL12 Chemokine and Its Receptors as Major Players in the Interactions between Immune and Nervous Systems. Front. Cell Neurosci. 2014, 8, 65. [Google Scholar] [CrossRef] [PubMed]
- Raman, D.; Milatovic, S.Z.; Milatovic, D.; Splittgerber, R.; Fan, G.H.; Richmond, A. Chemokines, Macrophage Inflammatory Protein-2 and Stromal Cell-Derived Factor-1α, Suppress Amyloid β-Induced Neurotoxicity. Toxicol. Appl. Pharmacol. 2011, 256, 300–313. [Google Scholar] [CrossRef]
- Gavriel, Y.; Rabinovich-Nikitin, I.; Ezra, A.; Barbiro, B.; Solomon, B. Subcutaneous Administration of AMD3100 into Mice Models of Alzheimer’s Disease Ameliorated Cognitive Impairment, Reduced Neuroinflammation, and Improved Pathophysiological Markers. J. Alzheimers Dis. 2020, 78, 653–671. [Google Scholar] [CrossRef]
- Gooz, M. ADAM-17: The Enzyme That Does It All. Crit. Rev. Biochem. Mol. Biol. 2010, 45, 146–169. [Google Scholar] [CrossRef]
- Cook, A.; Hippensteel, R.; Shimizu, S.; Nicolai, J.; Fatatis, A.; Meucci, O. Interactions between Chemokines: Regulation of Fractalkine/CX 3CL1 Homeostasis by SDF/CXCL12 in Cortical Neurons. J. Biol. Chem. 2010, 285, 10563–10571. [Google Scholar] [CrossRef]
- Bolós, M.; Llorens-Martín, M.; Perea, J.R.; Jurado-Arjona, J.; Rábano, A.; Hernández, F.; Avila, J. Absence of CX3CR1 Impairs the Internalization of Tau by Microglia. Mol. Neurodegener. 2017, 12, 59. [Google Scholar] [CrossRef]
- Bhaskar, K.; Konerth, M.; Kokiko-Cochran, O.N.; Cardona, A.; Ransohoff, R.M.; Lamb, B.T. Regulation of Tau Pathology by the Microglial Fractalkine Receptor. Neuron 2010, 68, 19–31. [Google Scholar] [CrossRef]
- Lim, B.; Fowler, C.; Li, Q.X.; Rowe, C.; Dhiman, K.; Gupta, V.B.; Masters, C.L.; Doecke, J.D.; Martins, R.N.; Collins, S.; et al. Decreased Cerebrospinal Fluid Neuronal Pentraxin Receptor Is Associated with PET-Aβ Load and Cerebrospinal Fluid Aβ in a Pilot Study of Alzheimer’s Disease. Neurosci. Lett. 2020, 731, 135078. [Google Scholar] [CrossRef] [PubMed]
- Basilico, B.; Ferrucci, L.; Ratano, P.; Golia, M.T.; Grimaldi, A.; Rosito, M.; Ferretti, V.; Reverte, I.; Sanchini, C.; Marrone, M.C.; et al. Microglia Control Glutamatergic Synapses in the Adult Mouse Hippocampus. Glia 2022, 70, 173–195. [Google Scholar] [CrossRef] [PubMed]
- Sheridan, G.K.; Wdowicz, A.; Pickering, M.; Watters, O.; Halley, P.; O’Sullivan, N.C.; Mooney, C.; O’Connell, D.J.; O’Connor, J.J.; Murphy, K.J. CX3CL1 Is Up-Regulated in the Rat Hippocampus during Memory-Associated Synaptic Plasticity. Front. Cell Neurosci. 2014, 8, 233. [Google Scholar] [CrossRef] [PubMed]
- Albert, M.S.; DeKosky, S.T.; Dickson, D.; Dubois, B.; Feldman, H.H.; Fox, N.C.; Gamst, A.; Holtzman, D.M.; Jagust, W.J.; Petersen, R.C.; et al. The Diagnosis of Mild Cognitive Impairment Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers Dement. 2011, 7, 270–279. [Google Scholar] [CrossRef]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The Diagnosis of Dementia Due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef]
- Lewczuk, P.; Zimmermann, R.; Wiltfang, J.; Kornhuber, J. Neurochemical Dementia Diagnostics: A Simple Algorithm for Interpretation of the CSF Biomarkers. J. Neural Transm. 2009, 116, 1163–1167. [Google Scholar] [CrossRef]
- Mroczko, B.; Groblewska, M.; Zboch, M.; Muszyński, P.; Zajkowska, A.; Borawska, R.; Szmitkowski, M.; Kornhuber, J.; Lewczuk, P. Evaluation of Visinin-Like Protein 1 Concentrations in the Cerebrospinal Fluid of Patients with Mild Cognitive Impairment as a Dynamic Biomarker of Alzheimer’s Disease. J. Alzheimer’s Dis. 2014, 43, 1031–1037. [Google Scholar] [CrossRef]
Variables in CSF | Group | Aβ-42/40 | Tau [pg/mL] | pTau181 [pg/mL] |
---|---|---|---|---|
Median | MCI | 0.045 | 389 | 57 |
AD | 0.030 | 669 | 83 | |
CTRL | 0.066 | 222 | 37 | |
25th percentile | MCI | 0.037 | 327 | 47 |
AD | 0.028 | 572 | 69 | |
CTRL | 0.057 | 189 | 33 | |
75th percentile | MCI | 0.058 | 495 | 68 |
AD | 0.037 | 897 | 109 | |
CTRL | 0.076 | 272 | 42 | |
p-value Dwass–Steel test | AD vs. CTRL | <0.001 | <0.001 | <0.001 |
AD vs. MCI | <0.001 | <0.001 | <0.001 | |
MCI vs. CTRL | 0.007 | <0.001 | <0.001 |
Tested Variable | Median (Interquartile Range) | p (KW-Test) | p (Dwass–Steel–Critchlow–Fligner Test) | ||||
---|---|---|---|---|---|---|---|
AD | MCI | Controls | AD vs. CTRL | AD vs. MCI | MCI vs. CTRL | ||
CXCL12 [pg/mL] | 84 (73–104) | 67 (61–73) | 57 (39–67) | <0.001 | <0.001 | 0.005 | 0.147 |
CX3CL1 [pg/mL] | 135 (70–160) | 172 (150–180) | 71 (50–100) | <0.001 | 0.007 | 0.001 | <0.001 |
YKL-40 [ng/mL] | 399 (272–520) | 418 (315–513) | 292 (233–369) | 0.013 | 0.049 | 0.748 | 0.012 |
NPTXR [pg/mL] | 15 (11–18) | 14 (10–15) | 19 (17–22) | 0.001 | 0.013 | 0.536 | 0.002 |
Ng [ng/mL] | 822 (663–1166) | 695 (490–841) | 487 (435–580) | <0.001 | <0.001 | 0.072 | 0.109 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulczyńska-Przybik, A.; Dulewicz, M.; Doroszkiewicz, J.; Borawska, R.; Słowik, A.; Zetterberg, H.; Hanrieder, J.; Blennow, K.; Mroczko, B. The Relationships between Cerebrospinal Fluid Glial (CXCL12, CX3CL, YKL-40) and Synaptic Biomarkers (Ng, NPTXR) in Early Alzheimer’s Disease. Int. J. Mol. Sci. 2023, 24, 13166. https://doi.org/10.3390/ijms241713166
Kulczyńska-Przybik A, Dulewicz M, Doroszkiewicz J, Borawska R, Słowik A, Zetterberg H, Hanrieder J, Blennow K, Mroczko B. The Relationships between Cerebrospinal Fluid Glial (CXCL12, CX3CL, YKL-40) and Synaptic Biomarkers (Ng, NPTXR) in Early Alzheimer’s Disease. International Journal of Molecular Sciences. 2023; 24(17):13166. https://doi.org/10.3390/ijms241713166
Chicago/Turabian StyleKulczyńska-Przybik, Agnieszka, Maciej Dulewicz, Julia Doroszkiewicz, Renata Borawska, Agnieszka Słowik, Henrik Zetterberg, Jörg Hanrieder, Kaj Blennow, and Barbara Mroczko. 2023. "The Relationships between Cerebrospinal Fluid Glial (CXCL12, CX3CL, YKL-40) and Synaptic Biomarkers (Ng, NPTXR) in Early Alzheimer’s Disease" International Journal of Molecular Sciences 24, no. 17: 13166. https://doi.org/10.3390/ijms241713166
APA StyleKulczyńska-Przybik, A., Dulewicz, M., Doroszkiewicz, J., Borawska, R., Słowik, A., Zetterberg, H., Hanrieder, J., Blennow, K., & Mroczko, B. (2023). The Relationships between Cerebrospinal Fluid Glial (CXCL12, CX3CL, YKL-40) and Synaptic Biomarkers (Ng, NPTXR) in Early Alzheimer’s Disease. International Journal of Molecular Sciences, 24(17), 13166. https://doi.org/10.3390/ijms241713166