Synergistic Effect, Improved Cell Selectivity, and Elucidating the Action Mechanism of Antimicrobial Peptide YS12
Abstract
:1. Introduction
2. Results and Discussion
2.1. MIC of Peptide YS12 and Antibiotics against Different Bacterial Strains
2.2. Synergism Effect of Peptide YS12 with Conventional Antibiotics
2.3. Stability Assay
2.4. Cytotoxicity and Hemolytic Activity of YS12
2.5. The Potential Antimicrobial Peptide Mechanisms of Peptide YS12
2.5.1. Liposome Preparation and Aggregation
2.5.2. LPS Binding Affinity of Peptide YS12
2.5.3. Peptide YS12 Damaged the Membrane Integrity of Bacteria
2.5.4. Confocal Microscopy
2.6. The Ability of Peptide YS12 to Inhibit Pro-Inflammatory Mediators in RAW 264.7 Cells
3. Materials and Method
3.1. Materials and Reagents
3.2. Peptide YS12 Production and Purification
3.3. Antimicrobial Activity Determination in Terms of MIC
3.4. Synergistic Effect of the Peptide with Different Antibiotics
3.5. The Time-Dependent Killing of the Synergistic Group
3.6. Stability Assay
3.7. In Vitro Cytotoxicity Assay
3.8. Hemolytic Activity of YS12
3.9. The Potential Antimicrobial Mechanisms Study of Peptide YS12
3.9.1. Preparation and Aggregation of Liposomes
3.9.2. Effect of Lipopolysaccharides (LPS)
3.9.3. LPS Binding Assay Using Dansyl-Polymyxin B
3.9.4. Neutralization of LPS by Peptide
3.9.5. PI Uptake Assay
3.9.6. Inner Membrane Permeability Activity
3.9.7. Calcein Dye Leakage Assay
3.9.8. Confocal Microscopy
3.10. Inhibitory Effect of Peptide YS12 on the Production of Proinflammatory Mediators in LPS-Stimulated Raw 264.7 Cells
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ventola, C.L. The Antibiotic Resistance Crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Serwecińska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Sifri, Z.; Chokshi, A.; Cennimo, D.; Horng, H. Global contributors to antibiotic resistance. J. Glob. Infect. Dis. 2019, 11, 36–42. [Google Scholar] [CrossRef]
- Kesharwani, P.; Chopra, S.; Dasgupta, A. (Eds.) Drug Discovery Targeting Drug-Resistant Bacteria; Academic Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Jampilek, J. Design and Discovery of New Antibacterial Agents: Advances, Perspectives, Challenges. Curr. Med. Chem. 2018, 25, 4972–5006. [Google Scholar] [CrossRef] [PubMed]
- Izadpanah, A.; Gallo, R.L. Antimicrobial peptides. J. Am. Acad. Dermatol. 2005, 3, 381–390. [Google Scholar] [CrossRef]
- Portelinha, J.; Duay, S.S.; Yu, S.I.; Heilemann, K.; Libardo, M.D.J.; Juliano, S.A.; Klassen, J.L.; Angeles-Boza, A.M. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem. Rev. 2021, 121, 2648–2712. [Google Scholar] [CrossRef]
- Cruz, J.; Ortiz, C.; Guzmán, F.; Fernández-Lafuente, R.; Torres, R. Antimicrobial Peptides: Promising Compounds against Pathogenic Microorganisms. Curr. Med. Chem. 2014, 21, 2299–2321. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Haney, E.F.; Vogel, H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011, 29, 464–472. [Google Scholar] [CrossRef]
- Malanovic, N.; Lohner, K. Antimicrobial Peptides Targeting Gram-Positive Bacteria. Pharmaceuticals 2016, 9, 59. [Google Scholar] [CrossRef]
- Wang, J.; Dou, X.; Song, J.; Lyu, Y.; Zhu, X.; Xu, L.; Li, W.; Shan, A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev. 2019, 39, 831–859. [Google Scholar] [CrossRef]
- Marshall, J.C. Lipopolysaccharide: An endotoxin or an exogenous hormone? Clin. Infect. Dis. 2005, 41, S470–S480. [Google Scholar] [CrossRef]
- Haskó, G.; Szabó, C.; Németh, Z.H.; Kvetan, V.; Pastores, S.M.; Vizi, E.S. Adenosine receptor agonists differentially regulate IL-10, TNF-alpha, and nitric oxide production in RAW 264.7 macrophages and in endotoxemic mice. J. Immunol. 1996, 157, 4634–4640. [Google Scholar] [CrossRef] [PubMed]
- Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell. Infect. Microbiol. 2016, 6, 194. [Google Scholar] [CrossRef] [PubMed]
- Suchi, S.A.; Bin Nam, K.; Kim, Y.K.; Tarek, H.; Yoo, J.C. A novel antimicrobial peptide YS12 isolated from Bacillus velezensis CBSYS12 exerts anti-biofilm properties against drug-resistant bacteria. Bioprocess Biosyst. Eng. 2023, 46, 813–828. [Google Scholar] [CrossRef] [PubMed]
- Allahverdiyev, A.M.; Kon, K.V.; Abamor, E.S.; Bagirova, M.; Rafailovich, M. Coping with antibiotic resistance: Combining nanoparticles with antibiotics and other antimicrobial agents. Expert Rev. Anti-Infect. Ther. 2011, 9, 1035–1052. [Google Scholar] [CrossRef] [PubMed]
- León-Buitimea, A.; Garza-Cárdenas, C.R.; Garza-Cervantes, J.A.; Lerma-Escalera, J.A.; Morones-Ramírez, J.R. The demand for new antibiotics: Antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design. Front Microbiol. 2020, 11, 1669. [Google Scholar] [CrossRef]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990–993. [Google Scholar] [CrossRef]
- Dosler, S.; Mataraci, E. In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms. Peptides 2013, 49, 53–58. [Google Scholar] [CrossRef]
- Feng, Q.; Huang, Y.; Chen, M.; Li, G.; Chen, Y. Functional synergy of α-helical antimicrobial peptides and traditional antibiotics against Gram-negative and Gram-positive bacteria in vitro and in vivo. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 197–204. [Google Scholar] [CrossRef]
- Ong, Z.Y.; Wiradharma, N.; Yang, Y.Y. Strategies employed in the design and optimization of synthetic antimicrobial peptide amphiphiles with enhanced therapeutic potentials. Adv. Drug Deliv. Rev. 2014, 78, 28–45. [Google Scholar] [CrossRef]
- Kang, H.-K.; Kim, C.; Seo, C.H.; Park, Y. The therapeutic applications of antimicrobial peptides (AMPs): A patent review. J. Microbiol. 2017, 55, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Zhang, L.; Wang, J.; Ma, Z.; Xu, W.; Li, J.; Shan, A. Characterization of antimicrobial activity and mechanisms of low amphipathic peptides with different α-helical propensity. Acta Biomater. 2015, 18, 155–167. [Google Scholar] [CrossRef]
- Kim, E.Y.; Rajasekaran, G.; Shin, S.Y. LL-37-derived short antimicrobial peptide KR-12-a5 and its d-amino acid substituted analogs with cell selectivity, anti-biofilm activity, synergistic effect with conventional antibiotics, and anti-inflammatory activity. Eur. J. Med. Chem. 2017, 136, 428–441. [Google Scholar] [CrossRef]
- Chou, S.; Shao, C.; Wang, J.; Shan, A.; Xu, L.; Dong, N.; Li, Z. Short, multiple-stranded β-hairpin peptides have antimicrobial potency with high selectivity and salt resistance. Acta Biomater. 2016, 30, 78–93. [Google Scholar] [CrossRef]
- Matsuzaki, K. Control of cell selectivity of antimicrobial peptides. Biochim. Biophys. Acta (BBA)-Biomembr. 2009, 1788, 1687–1692. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.; Cui, Q.; Jia, B.-Y.; Pei, Z.-H.; Odah, K.A.; Wang, Y.-M.; Dong, W.-L.; Kong, L.-C.; Ma, H.-X. Design and Characterization of a Novel Hybrid Antimicrobial Peptide OM19R Based on Oncocin and MDAP-2. Int. J. Pept. Res. Ther. 2020, 26, 1839–1846. [Google Scholar] [CrossRef]
- Rahman, M.S.; Choi, Y.H.; Choi, Y.S.; Yoo, J.C. Glycin-rich antimicrobial peptide YD1 from B. amyloliquefaciens, induced morphological alteration in and showed affinity for plasmid DNA of E. coli. AMB Express 2017, 7, 8. [Google Scholar] [CrossRef]
- Chongsiriwatana, N.P.; Barron, A.E. Comparing Bacterial Membrane Interactions of Antimicrobial Peptides and Their Mimics. In Antimicrobial Peptides: Methods and Protocols; Human Press: Totowa, NJ, USA, 2010; pp. 171–182. [Google Scholar]
- Li, Y.; Liu, T.; Liu, Y.; Tan, Z.; Ju, Y.; Yang, Y.; Dong, W. Antimicrobial activity, membrane interaction and stability of the D-amino acid substituted analogs of antimicrobial peptide W3R6. J. Photochem. Photobiol. B 2019, 200, 111645. [Google Scholar] [CrossRef]
- Halder, A.; Karmakar, S. An evidence of pores in phospholipid membrane induced by an antimicrobial peptide NK-2. Biophys. Chem. 2022, 282, 106759. [Google Scholar] [CrossRef] [PubMed]
- Ebbensgaard, A.; Mordhorst, H.; Overgaard, M.T.; Nielsen, C.G.; Aarestrup, F.M.; Hansen, E.B. Comparative Evaluation of the Antimicrobial Activity of Different Antimicrobial Peptides against a Range of Pathogenic Bacteria. PLoS ONE 2015, 10, e0144611. [Google Scholar] [CrossRef]
- Lee, T.H.; Hall, K.N.; Aguilar, M.I. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure. Curr. Top. Med. Chem. 2016, 16, 25–39. [Google Scholar] [CrossRef]
- Moore, R.A.; Bates, N.C.; Hancock, R.E. Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansyl-polymyxin. Antimicrob. Agents Chemother. 1986, 29, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Espeche, J.C.; Varas, R.; Maturana, P.; Cutro, A.C.; Maffía, P.C.; Hollmann, A. Membrane permeability and antimicrobial peptides: Much more than just making a hole. Pept. Sci. 2023, e24305. [Google Scholar] [CrossRef]
- Lee, J.-K.; Seo, C.H.; Luchian, T.; Park, Y. Antimicrobial Peptide CMA3 Derived from the CA-MA Hybrid Peptide: Antibacterial and Anti-inflammatory Activities with Low Cytotoxicity and Mechanism of Action in Escherichia coli. Antimicrob. Agents Chemother. 2016, 60, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Ciumac, D.; Gong, H.; Hu, X.; Lu, J.R. Membrane targeting cationic antimicrobial peptides. Curr. Opin. Colloid Interface Sci. 2019, 537, 163–185. [Google Scholar] [CrossRef]
- Lin, L.; Chi, J.; Yan, Y.; Luo, R.; Feng, X.; Zheng, Y.; Xian, D.; Li, X.; Quan, G.; Liu, D.; et al. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm. Sin. B 2021, 11, 2609–2644. [Google Scholar] [CrossRef] [PubMed]
- Buck, A.K.; Elmore, D.E.; Darling, L.E. Using fluorescence microscopy to shed light on the mechanisms of antimicrobial peptides. Future Med. Chem. 2019, 11, 2447–2460. [Google Scholar] [CrossRef]
- Horrevoets, A.J.G.; Francke, C.; Verheij, H.M.; Haas, G.H. Activation of reconstituted Escherichia coli outer-membrane phospholipase A by membrane-perturbing peptides results in an increased reactivity towards the affinity label hexadecanesulfonyl fluoride. Eur. J. Org. Biochem. 1991, 198, 255–261. [Google Scholar] [CrossRef]
- Ko, S.J.; Park, E.; Asandei, A.; Choi, J.-Y.; Lee, S.-C.; Seo, C.H.; Luchian, T.; Park, Y. Bee venom-derived antimicrobial peptide melectin has broad-spectrum potency, cell selectivity, and salt-resistant properties. Sci. Rep. 2020, 10, 10145. [Google Scholar] [CrossRef]
- Ma, L.; Ye, X.; Sun, P.; Xu, P.; Wang, L.; Liu, Z.; Huang, X.; Bai, Z.; Zhou, C. Antimicrobial and antibiofilm activity of the EeCentrocin 1 derived peptide EC1-17KV via membrane disruption. eBioMedicine 2020, 55, 102775. [Google Scholar] [CrossRef]
- Tian, M.; Wang, K.; Liang, Y.; Chai, J.; Wu, J.; Zhang, H.; Huang, X.; Chen, X.; Xu, X. The first Brevinin-1 antimicrobial peptide with LPS-neutralizing and anti-inflammatory activities in vitro and in vivo. Front. Microbiol. 2023, 14, 1102576. [Google Scholar] [CrossRef] [PubMed]
- Regmi, S.; Choi, Y.S.; Choi, Y.H.; Kim, Y.K.; Cho, S.S.; Yoo, J.C.; Suh, J.-W. Antimicrobial peptide from Bacillus subtilis CSB138: Characterization, killing kinetics, and synergistic potency. Int. Microbiol. 2017, 20, 43–53. [Google Scholar] [PubMed]
- Ko, S.J.; Kim, M.K.; Bang, J.K.; Seo, C.H.; Luchian, T.; Park, Y. Macropis fulvipes Venom component Macropin Exerts its Antibacterial and Anti-Biofilm Properties by Damaging the Plasma Membranes of Drug Resistant Bacteria. Sci. Rep. 2017, 7, 16580. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Wei, D.; Yan, P.; Zhu, X.; Shan, A.; Bi, Z. Characterization of cell selectivity, physiological stability and endotoxin neutralization capabilities of α-helix-based peptide amphiphiles. Biomaterials 2015, 52, 517–530. [Google Scholar] [CrossRef]
- Lyu, Y.; Yang, Y.; Lyu, X.; Dong, N.; Shan, A. Antimicrobial activity, improved cell selectivity and mode of action of short PMAP-36-derived peptides against bacteria and Candida. Sci. Rep. 2016, 6, 27258. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.Y.; Kim, M.K.; Mereuta, L.; Seo, C.H.; Luchian, T.; Park, Y. Mechanism of action of antimicrobial peptide P5 truncations against Pseudomonas aeruginosa and Staphylococcus aureus. AMB Express 2019, 9, 122. [Google Scholar] [CrossRef] [PubMed]
- Mayer, L.D.; Hope, M.J.; Cullis, P.R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta (BBA)-Biomembr. 1986, 858, 161–168. [Google Scholar] [CrossRef]
- Pulido, D.; Moussaoui, M.; Andreu, D.; Nogués, M.V.; Torrent, M.; Boix, E. Antimicrobial Action and Cell Agglutination by the Eosinophil Cationic Protein Are Modulated by the Cell Wall Lipopolysaccharide Structure. Antimicrob. Agents Chemother. 2012, 56, 2378–2385. [Google Scholar] [CrossRef]
- Kong, D.; Hua, X.; Zhou, R.; Cui, J.; Wang, T.; Kong, F.; You, H.; Liu, X.; Adu-Amankwaah, J.; Guo, G.; et al. Antimicrobial and Anti-Inflammatory Activities of MAF-1-Derived Antimicrobial Peptide Mt6 and Its D-Enantiomer D-Mt6 against Acinetobacter baumannii by Targeting Cell Membranes and Lipopolysaccharide Interaction. Microbiol. Spectr. 2022, 10, e0131222. [Google Scholar] [CrossRef]
- Ried, C.; Wahl, C.; Miethke, T.; Wellnhofer, G.; Landgraf, C.; Schneider-Mergener, J.; Hoess, A. High Affinity Endotoxin-binding and Neutralizing Peptides Based on the Crystal Structure of Recombinant Limulus Anti-lipopolysaccharide Factor. J. Biol. Chem. 1996, 271, 28120–28127. [Google Scholar] [CrossRef]
- Ko, S.J.; Kang, N.H.; Kim, M.K.; Park, J.; Park, E.; Park, G.H.; Kang, T.W.; Park, J.B.; Yi, Y.E.; Jeon, S.H.; et al. Antibacterial and anti-biofilm activity, and mechanism of action of pleurocidin against drug-resistant Staphylococcus aureus. Microb. Pathog. 2019, 127, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Han, H.M.; Gopal, R.; Park, Y. Design and membrane-disruption mechanism of charge-enriched AMPs exhibiting cell selectivity, high-salt resistance, and anti-biofilm properties. Amino Acids 2015, 48, 505–522. [Google Scholar] [CrossRef]
- Amado, C.M.; Minahk, C.; Cilli, E.; Oliveira, R.G.; Dupuy, F.G. Bacteriocin enterocin CRL35 is a modular peptide that induces non-bilayer states in bacterial model membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 2020, 1862, 183135. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ledesma, B.; Hsieh, C.-C.; de Lumen, B.O. Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochem. Biophys. Res. Commun. 2009, 390, 803–808. [Google Scholar] [CrossRef] [PubMed]
Microorganisms | Peptide YS12 and Antibiotics | MIC (µg/mL) |
---|---|---|
YS12 | 6 | |
Oxacillin | 48 | |
Escherichia coli KCTC 1923 | Ciprofloxacin | 12 |
Erythromycin | 48 | |
YS12 | 12 | |
Oxacillin | 24 | |
Pseudomonas aeruginosa KCTC 1637 | Ciprofloxacin | 48 |
Erythromycin | >96 | |
YS12 | 48 | |
Oxacillin | >96 | |
Staphylococcus aureus KCTC 1928 | Ciprofloxacin | 96 |
Erythromycin | 24 |
Bacterial Strains | Peptide-YS12 Oxacillin | Peptide-YS12 Ciprofloxacin | Peptide-YS12 Erythromycin | |||
---|---|---|---|---|---|---|
ΣFIC | Interpretation | ΣFIC | Interpretation | ΣFIC | Interpretation | |
Gram-negative | ||||||
E. coli KCTC 1923 | 0.325 | Synergism | 0.157 | Synergism | 0.451 | Synergism |
P. aeruginosa KCTC 1637 | 0.501 | Synergism | 0.749 | Partial synergism | 1.00 | Partial synergism |
Gram-positive | ||||||
S. aureus KCTC 1928 | 0.931 | Partial synergism | 0.75 | Partial synergism | 0.415 | Synergism |
NaCl (mM) | MgCl2 (mM) | FeCl3 (µM) | |||||
---|---|---|---|---|---|---|---|
Control 100 | 150 | 0.5 | 1 | 2 | 4 | ||
E. coli KCTC 1923 | |||||||
peptide YS12 | 2 | 2 | 2 | 8 | 2 | 2 | 2 |
Melittin | 4 | 4 | 2 | 4 | 4 | 2 | 2 |
P. aeruginosa KCTC 1637 | |||||||
Peptide YS12 | 2 | 2 | 2 | 4 | 2 | 2 | 2 |
Melittin | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
S. aureus ATCC 1928 | |||||||
Peptide YS12 | 4 | 2 | 2 | 4 | 2 | 2 | 2 |
Melittin | 4 | 2 | 4 | 4 | 2 | 4 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suchi, S.A.; Lee, D.Y.; Kim, Y.K.; Kang, S.S.; Bilkis, T.; Yoo, J.C. Synergistic Effect, Improved Cell Selectivity, and Elucidating the Action Mechanism of Antimicrobial Peptide YS12. Int. J. Mol. Sci. 2023, 24, 13522. https://doi.org/10.3390/ijms241713522
Suchi SA, Lee DY, Kim YK, Kang SS, Bilkis T, Yoo JC. Synergistic Effect, Improved Cell Selectivity, and Elucidating the Action Mechanism of Antimicrobial Peptide YS12. International Journal of Molecular Sciences. 2023; 24(17):13522. https://doi.org/10.3390/ijms241713522
Chicago/Turabian StyleSuchi, Suzia Aktar, Dae Young Lee, Young Kyun Kim, Seong Soo Kang, Tahmina Bilkis, and Jin Cheol Yoo. 2023. "Synergistic Effect, Improved Cell Selectivity, and Elucidating the Action Mechanism of Antimicrobial Peptide YS12" International Journal of Molecular Sciences 24, no. 17: 13522. https://doi.org/10.3390/ijms241713522
APA StyleSuchi, S. A., Lee, D. Y., Kim, Y. K., Kang, S. S., Bilkis, T., & Yoo, J. C. (2023). Synergistic Effect, Improved Cell Selectivity, and Elucidating the Action Mechanism of Antimicrobial Peptide YS12. International Journal of Molecular Sciences, 24(17), 13522. https://doi.org/10.3390/ijms241713522