Efficient Recovery Strategy of Luteolin from Agricultural Waste Peanut Shells and Activity Evaluation of Its Functional Biomolecules
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of Extraction Solvent for Luteolin Recovery from Peanut Shells
2.2. Optimization of the Extraction Conditions to Derive an Efficient Luteolin Recovery Model
2.3. Bioactivity Evaluation of Peanut Shell Extracts
2.4. Carbohydrate Composition of Peanut Shells and the Residue after Luteolin Extraction
2.5. Evaluation of Overall Process for Luteolin Recovery from Peanut Shells
3. Materials and Methods
3.1. Materials
3.2. Sample Preparation and Solvent Selection
3.3. Experimental Design through Response Surface Methodology
3.4. Analytical Procedures
3.4.1. Determination of Total Polyphenol Content
3.4.2. Determination of Total Flavonoid Content
3.4.3. Determination of Ferric Reducing Antioxidant Power Activity
3.4.4. Determination of 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) Free Radical Scavenging Assay
3.4.5. Determination of 2,2-Diphenyl-1-picrylhydrazyl Free Radical Scavenging Assay
3.4.6. Determination of Elastase Inhibition Activity
3.4.7. High-Performance Liquid Chromatography Analysis
3.4.8. Morphological Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Saravanan, A.; Vo, D.V.N.; Jeevanantham, S.; Bhuvaneswari, V.; Narayanan, V.A.; Yaashikaa, P.R.; Swetha, S.; Reshma, B. A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chem. Eng. Sci. 2021, 236, 116515. [Google Scholar] [CrossRef]
- Takht Ravanchi, M.; Sahebdelfar, S. Carbon dioxide capture and utilization in petrochemical industry: Potentials and challenges. Appl. Petrochem. Res. 2014, 4, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Velvizhi, G.; Balakumar, K.; Shetti, N.P.; Ahmad, E.; Pant, K.K.; Aminabhavi, T.M. Integrated biorefinery processes for conversion of lignocellulosic biomass to value added materials: Paving a path towards circular economy. Bioresour. Technol. 2022, 343, 126151. [Google Scholar] [CrossRef]
- López-Linares, J.C.; García-Cubero, M.T.; Coca, M.; Lucas, S. A biorefinery approach for the valorization of spent coffee grounds to produce antioxidant compounds and biobutanol. Biomass Bioenergy 2021, 147, 106026. [Google Scholar] [CrossRef]
- Banu, J.R.; Kavitha, S.; Tyagi, V.K.; Gunasekaran, M.; Karthikeyan, O.P.; Kumar, G. Lignocellulosic biomass based biorefinery: A successful platform towards circular bioeconomy. Fuel 2021, 302, 121086. [Google Scholar] [CrossRef]
- Kumar, D.P.; Ramesh, D.; Vikraman, V.K.; Subramanian, P. Synthesis of carbon molecular sieves from agricultural residues: Status, challenges and prospects. Environ. Res. 2022, 214, 114022. [Google Scholar] [CrossRef]
- Tagade, A.; Kirti, N.; Sawarkar, A.N. Pyrolysis of agricultural crop residues: An overview of researches by Indian scientific community. Bioresour. Technol. Rep. 2021, 15, 100761. [Google Scholar] [CrossRef]
- Pinales-Márquez, C.D.; Rodríguez-Jasso, R.M.; Araújo, R.G.; Loredo-Treviño, A.; Nabarlatz, D.; Gullón, B.; Ruiz, H.A. Circular bioeconomy and integrated biorefinery in the production of xylooligosaccharides from lignocellulosic biomass: A review. Ind. Crops Prod. 2021, 162, 113274. [Google Scholar] [CrossRef]
- Yu, J.; Mikiashvili, N.; Bonku, R.; Smith, I.N. Allergenicity, antioxidant activity and ACE-inhibitory activity of protease hydrolyzed peanut flour. Food Chem. 2021, 360, 129992. [Google Scholar] [CrossRef]
- Picard, M.; Thakur, S.; Misra, M.; Mielewski, D.F.; Mohanty, A.K. Biocarbon from peanut hulls and their green composites with biobased poly (trimethylene terephthalate) (PTT). Sci. Rep. 2020, 10, 3310. [Google Scholar] [CrossRef] [Green Version]
- Rico, X.; Gullon, B.; Alonso, J.L.; Parajó, J.C.; Yanez, R. Valorization of peanut shells: Manufacture of bioactive oligosaccharides. Carbohydr. Polym. 2018, 183, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, Y. Turning food waste to energy and resources towards a great environmental and economic sustainability: An innovative integrated biological approach. Biotechnol. Adv. 2019, 37, 107414. [Google Scholar] [CrossRef] [PubMed]
- Meng, W.; Shi, J.; Zhang, X.; Lian, H.; Wang, Q.; Peng, Y. Effects of peanut shell and skin extracts on the antioxidant ability, physical and structure properties of starch-chitosan active packaging films. Int. J. Biol. Macromol. 2020, 152, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Li, L.; Wang, Z.; Li, L.; He, M.; Han, S.; Dong, Y.; Liu, X.; Zhao, W.; Ke, Y.; et al. Luteolin attenuates cancer cell stemness in PTX-resistant oesophageal cancer cells through mediating SOX2 protein stability. Pharmacol. Res. Commun. 2021, 174, 105939. [Google Scholar] [CrossRef]
- Yao, X.; Jiang, W.; Yu, D.; Yan, Z. Luteolin inhibits proliferation and induces apoptosis of human melanoma cells in vivo and in vitro by suppressing MMP-2 and MMP-9 through the PI3K/AKT pathway. Food Funct. 2019, 10, 703–712. [Google Scholar] [CrossRef]
- Hayasaka, N.; Shimizu, N.; Komoda, T.; Mohri, S.; Tsushida, T.; Eitsuka, T.; Miyazawa, T.; Nakagawa, K. Absorption and metabolism of luteolin in rats and humans in relation to in vitro anti-inflammatory effects. J. Agric. Food Chem. 2018, 66, 11320–11329. [Google Scholar] [CrossRef]
- Ahmed, S.; Khan, H.; Fratantonio, D.; Hasan, M.M.; Sharifi, S.; Fathi, N.; Ullah, H.; Rastrelli, L. Apoptosis induced by luteolin in breast cancer: Mechanistic and therapeutic perspectives. Phytomedicine 2019, 59, 152883. [Google Scholar] [CrossRef]
- Qiu, J.; Chen, L.; Zhu, Q.; Wang, D.; Wang, W.; Sun, X.; Liu, X.; Du, F. Screening natural antioxidants in peanut shell using DPPH–HPLC–DAD–TOF/MS methods. Food Chem. 2012, 135, 2366–2371. [Google Scholar] [CrossRef]
- Kawamura, H.; Mishima, K.; Sharmin, T.; Ito, S.; Kawakami, R.; Kato, T.; Misumi, M.; Suetsugu, T.; Orii, H.; Kawano, H.; et al. Ultrasonically enhanced extraction of luteolin and apigenin from the leaves of Perilla frutescens (L.) Britt. using liquid carbon dioxide and ethanol. Ultrason. Sonochem. 2016, 29, 19–26. [Google Scholar] [CrossRef]
- Song, R.; Ismail, M.; Baroutian, S.; Farid, M. Effect of subcritical water on the extraction of bioactive compounds from carrot leaves. Food Bioproc. Tech. 2018, 11, 1895–1903. [Google Scholar] [CrossRef]
- Rajhard, S.; Hladnik, L.; Vicente, F.A.; Srčič, S.; Grilc, M.; Likozar, B. Solubility of Luteolin and Other Polyphenolic Compounds in Water, Nonpolar, Polar Aprotic and Protic Solvents by Applying FTIR/HPLC. Processes 2021, 9, 1952. [Google Scholar] [CrossRef]
- Ramos, M.; Jiménez, A.; Garrigós, M.C. Il-based advanced techniques for the extraction of value-added compounds from natural sources and food by-products. Trends Analyt. Chem. 2019, 119, 115616. [Google Scholar] [CrossRef]
- Fan, Y.; Li, W.; Zhang, S.; Sun, S.; Yang, L. Vitamin B3-based protic ionic liquids as green solvents for the isolation of astilbin from rhizoma smilacis glabrae. Ind. Crop. Prod. 2020, 152, 112563. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, S.; Zhou, J.; Chen, J.; Tian, L.; Gao, W.; Zhang, Y.; Ma, A.; Li, L.; Zhou, Z. Luteolin cocrystals: Characterization, evaluation of solubility, oral bioavailability and theoretical calculation. J. Drug Deliv. Sci. Technol. 2019, 50, 248–254. [Google Scholar] [CrossRef]
- Rifi, S.K.; Souabi, S.; El Fels, L.; Driouich, A.; Nassri, I.; Haddaji, C.; Hafidi, M. Optimization of coagulation process for treatment of olive oil mill wastewater using Moringa oleifera as a natural coagulant, CCD combined with RSM for treatment optimization. Process. Saf. Environ. Prot. 2022, 162, 406–418. [Google Scholar] [CrossRef]
- Garrido, T.; Gizdavic-Nikolaidis, M.; Leceta, I.; Urdanpilleta, M.; Guerrero, P.; de la Caba, K.; Kilmartin, P.A. Optimizing the extraction process of natural antioxidants from chardonnay grape marc using microwave-assisted extraction. Waste Manag. 2019, 88, 110–117. [Google Scholar] [CrossRef]
- Ayan, E.; Baylan, N.; Çehreli, S. Optimization of reactive extraction of propionic acid with ionic liquids using central composite design. Chem. Eng. Res. Des. 2020, 153, 666–676. [Google Scholar] [CrossRef]
- Baylan, N.; Çehreli, S. Removal of acetic acid from aqueous solutions using bulk ionic liquid membranes: A transport and experimental design study. Sep. Purif. Technol. 2019, 224, 51–61. [Google Scholar] [CrossRef]
- Xiong, Y.; Teixeira, T.V.D.; Zhang, P.; Warner, R.D.; Shen, S.; Fang, Z. Cellular antioxidant activities of phenolic extracts from five sorghum grain genotypes. Food Biosci. 2021, 41, 101068. [Google Scholar] [CrossRef]
- Geng, Y.F.; Yang, C.; Zhang, Y.; Tao, S.N.; Mei, J.; Zhang, X.C.; Sun, Y.J.; Zhao, B.T. An innovative role for luteolin as a natural quorum sensing inhibitor in Pseudomonas aeruginosa. Life Sci. 2021, 274, 119325. [Google Scholar] [CrossRef]
- Ozturk, B.; Parkinson, C.; Gonzalez-Miquel, M. Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Sep. Purif. Technol. 2018, 206, 1–13. [Google Scholar] [CrossRef]
- Abramson, M.; Shoseyov, O.; Shani, Z. Plant cell wall reconstruction toward improved lignocellulosic production and processability. Plant Sci. 2010, 178, 61–72. [Google Scholar] [CrossRef]
- Nazir, A.; Laila, U.E.; Bareen, F.E.; Hameed, E.; Shafiq, M. Sustainable Management of Peanut Shell through Biochar and Its Application as Soil Ameliorant. Sustainability 2021, 13, 13796. [Google Scholar] [CrossRef]
- Hou, M.; Hu, W.; Wang, A.; Xiu, Z.; Shi, Y.; Hao, K.; Sun, X.; Cao, D.; Lu, R.; Sun, J. Ultrasound-assisted extraction of total flavonoids from Pteris cretica L.: Process optimization, HPLC analysis, and evaluation of antioxidant activity. Antioxidants 2019, 8, 425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Škerget, M.; Kotnik, P.; Hadolin, M.; Hraš, A.R.; Simonič, M.; Knez, Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem. 2005, 89, 191–198. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; del Mar Contreras, M.; Espínola, F.; Moya, M.; de Torres, A.; Romero, I.; Castro, E. Extraction of oleuropein and luteolin-7-O-glucoside from olive leaves: Optimization of technique and operating conditions. Food Chem. 2019, 293, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.J.; Liu, W.; Zu, Y.G.; Tong, M.H.; Li, S.M.; Yan, M.M.; Efferth, T.; Luo, H. Enzyme assisted extraction of luteolin and apigenin from pigeonpea [Cajanus cajan (L.) Millsp.] leaves. Food Chem. 2008, 111, 508–512. [Google Scholar] [CrossRef]
- Živković, J.; Šavikin, K.; Ćujić-Nikolić, N.; Janković, T. Optimization of ultrasound-assisted extraction parameters for improving content of acteoside, luteolin-7-O-glucoside, and total polyphenols in extracts of Plantago lanceolata aerial parts. J. Food Process. Preserv. 2021, 45, e15866. [Google Scholar] [CrossRef]
- Dias, A.L.B.; de Aguiar, A.C.; Rostagno, M.A. Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: Current status and trends. Ultrason. Sonochem. 2021, 74, 105584. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Ahmad, N.; Ahmed, Z.; Siddique, R.; Zeng, X.A.; Rahaman, A.; Muhammad Aadil, R.; Wahab, A. Novel extraction techniques and pharmaceutical activities of luteolin and its derivatives. J. Food Biochem. 2019, 43, e12974. [Google Scholar] [CrossRef]
- Elkelawy, M.; Bastawissi, H.A.E.; Esmaeil, K.K.; Radwan, A.M.; Panchal, H.; Sadasivuni, K.K.; Suresh, M.; Israr, M. Maximization of biodiesel production from sunflower and soybean oils and prediction of diesel engine performance and emission characteristics through response surface methodology. Fuel 2020, 266, 117072. [Google Scholar] [CrossRef]
- Lee, J.; Kim, M.; Jung, J.; Heo, J.W.; Lee, K.H.; Kim, S.; Son, H.; Chun, Y.; Yoo, H.Y. Valorization of persimmon calyx, an industrial biowaste, as a potential resource for antioxidant production. Environ. Technol. Innov. 2023, 30, 103038. [Google Scholar] [CrossRef]
- Kim, S.; Son, H.; Pang, S.Y.; Yang, J.J.; Lee, J.; Lee, K.H.; Lee, J.H.; Park, C.; Yoo, H.Y. Optimization of Major Extraction Variables to Improve Recovery of Anthocyanins from Elderberry by Response Surface Methodology. Processes 2022, 11, 72. [Google Scholar] [CrossRef]
- Nkurunziza, D.; Pendleton, P.; Sivagnanam, S.P.; Park, J.S.; Chun, B.S. Subcritical water enhances hydrolytic conversions of isoflavones and recovery of phenolic antioxidants from soybean byproducts (okara). J. Ind. Eng. Chem. 2019, 80, 696–703. [Google Scholar] [CrossRef]
- Shin, G.J.; Jeong, S.Y.; Lee, J.W. Evaluation of antioxidant activity of the residues generated from ethanol concentration of lignocellulosic biomass using pervaporation. J. Ind. Eng. Chem. 2017, 52, 51–58. [Google Scholar] [CrossRef]
- Ndayishimiye, J.; Lim, D.J.; Chun, B.S. Antioxidant and antimicrobial activity of oils obtained from a mixture of citrus by-products using a modified supercritical carbon dioxide. J. Ind. Eng. Chem. 2018, 57, 339–348. [Google Scholar] [CrossRef]
- Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Tacchini, M.; Poli, F.J.I.C. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind. Crop. Prod. 2018, 122, 498–505. [Google Scholar] [CrossRef]
- NREL. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure. 2008. Available online: https://search4.nrel.gov/texis/search/?pr=metanrel&query=TP-510-42618 (accessed on 10 June 2022).
Run | Coded Factor Levels | Response | ||
---|---|---|---|---|
X1 | X2 | X3 | Luteolin Yield (%) | |
1 | −1 | −1 | −1 | 15.0 |
2 | 1 | −1 | −1 | 28.0 |
3 | −1 | 1 | −1 | 20.7 |
4 | 1 | 1 | −1 | 26.0 |
5 | −1 | −1 | 1 | 28.9 |
6 | 1 | −1 | 1 | 92.9 |
7 | −1 | 1 | 1 | 31.7 |
8 | 1 | 1 | 1 | 92.8 |
9 | −2 | 0 | 0 | 14.4 |
10 | 2 | 0 | 0 | 86.7 |
11 | 0 | −2 | 0 | 31.5 |
12 | 0 | 2 | 0 | 33.3 |
13 | 0 | 0 | −2 | 11.5 |
14 | 0 | 0 | 2 | 79.3 |
15 | 0 | 0 | 0 | 22.1 |
16 | 0 | 0 | 0 | 23.6 |
17 | 0 | 0 | 0 | 28.1 |
18 | 0 | 0 | 0 | 28.1 |
19 | 0 | 0 | 0 | 23.8 |
20 | 0 | 0 | 0 | 23.8 |
Source | Sum of Square | Degree of Freedom | Mean Square | F-Value | p-Value | Remarks |
---|---|---|---|---|---|---|
Model | 13,540.62 | 9 | 1504.51 | 122.8 | <0.0001 | Significant |
X1 | 5183.34 | 1 | 5183.34 | 423.0 | <0.0001 | Significant |
X2 | 6.24 | 1 | 6.24 | 0.5 | 0.4917 | |
X3 | 5342.13 | 1 | 5342.13 | 436.0 | <0.0001 | Significant |
X1X2 | 13.60 | 1 | 13.60 | 1.1 | 0.3169 | |
X1X3 | 1426.99 | 1 | 1426.99 | 116.5 | <0.0001 | Significant |
X2X3 | 0.097 | 1 | 0.097 | 0.0 | 0.9309 | |
X12 | 1143.45 | 1 | 1143.45 | 93.3 | <0.0001 | Significant |
X22 | 123.06 | 1 | 123.06 | 10.0 | 0.0100 | Significant |
X32 | 749.39 | 1 | 749.39 | 61.2 | <0.0001 | Significant |
Residual | 122.53 | 10 | 12.25 | |||
Lack of fit | 89.89 | 5 | 17.98 | 2.8 | 0.1453 | Not significant |
Pure error | 32.65 | 5 | 6.53 | |||
Total | 13,663.15 | 19 |
X1: Temperature (°C) | X3: MeOH Concentration (%) | Predicted Luteolin Yield (%) | Desirability | |
---|---|---|---|---|
1 | 33.8 | 97.5 | 100 | 1.0 |
2 | 34.0 | 97.1 | 100 | 1.0 |
3 | 34.7 | 95.6 | 100 | 1.0 |
4 | 40.0 | 85.6 | 100 | 1.0 |
5 | 41.9 | 82.0 | 100 | 1.0 |
6 | 44.5 | 77.2 | 100 | 1.0 |
7 | 44.6 | 76.9 | 100 | 1.0 |
8 | 45.8 | 74.7 | 100 | 1.0 |
9 | 46.5 | 73.4 | 100 | 1.0 |
10 | 46.7 | 73.1 | 100 | 1.0 |
11 | 47.7 | 71.2 | 100 | 1.0 |
12 | 48.3 | 70.3 | 100 | 1.0 |
13 | 50.0 | 67.1 | 100 | 1.0 |
14 | 50.5 | 66.2 | 100 | 1.0 |
15 | 51.7 | 64.0 | 100 | 1.0 |
16 | 53.8 | 60.3 | 100 | 1.0 |
17 | 54.1 | 59.7 | 100 | 1.0 |
18 | 55.3 | 57.6 | 100 | 1.0 |
19 | 57.6 | 53.5 | 100 | 1.0 |
20 | 58.6 | 51.7 | 100 | 1.0 |
Run | Variables | Response | Remarks | |||
---|---|---|---|---|---|---|
Temp. (°C) | Time (h) | MeOH Conc. (%) | Luteolin Yield (%) | |||
Predicted | Experimental | |||||
1 | 37.7 | 1 | 90 | 100 | 97 | Significant |
2 | 40.4 | 1 | 85 | 100 | 96 | Significant |
3 | 43.1 | 1 | 80 | 100 | 99 | Significant |
4 | 45.8 | 1 | 75 | 100 | 98 | Significant |
5 | 48.5 | 1 | 70 | 100 | 96 | Significant |
6 | 51.2 | 1 | 65 | 100 | 81 | Not significant |
7 | 53.9 | 1 | 60 | 100 | 72 | Not significant |
Content (mg/g-Biomass) | |
---|---|
Total polyphenol | 6.6 ± 0.05 |
Total flavonoid | 4.1 ± 0.40 |
Luteolin | 1.6 ± 0.02 |
Luteolin Standard | Peanut Shell Extracts | |
---|---|---|
FRAP value (mmol/L) | 3.0 ± 0.08 | 4.3 ± 0.03 |
ABTS IC50 (µg/mL) | 17.3 ± 0.08 | 4.6 ± 0.10 |
DPPH IC50 (µg/mL) | 174.7 ± 0.34 | 11.0 ± 0.44 |
Anti-elastase (%) | 49.9 ± 0.03 | 88.3 ± 0.55 |
Untreated Peanut Shells | Extracted Peanut Shells | |
---|---|---|
Glucan (%) | 23.2 ± 0.25 | 23.6 ± 0.10 |
Xylan (%) | 9.8 ± 0.03 | 14.6 ± 0.03 |
Arabinan (%) | 2.5 ± 0.06 | 1.0 ± 0.07 |
Others (%) | 64.5 | 60.8 |
Biomass | Part | Extraction Method | Conditions | Luteolin Content (mg/g-Biomass) | Ref. | |||
---|---|---|---|---|---|---|---|---|
Solvent | Temp. (°C) | Time (h) | S/L Ratio (g/L) | |||||
Carrot | leaves | Hot water extraction | DW | 120 | 0.2 | 15 | 0.8 | [20] |
Cretan brake fern | - | Ultrasound-assisted extraction | 56.7% EtOH | 74.3 | 0.8 | 33.7 | 0.7 | [34] |
Deulkkae | leaves | Supercritical fluid extraction | 100% MeOH | 25 | 1 | 0.1 | [19] | |
Olive tree | leaves | Ultrasound-assisted extraction | 100% MeOH | 40 | 2 | 100 | 0.3 | [35] |
Olive tree | leaves | Pressurized liquid extraction | 80% MeOH | 190 | 0.1 | 2.7 | [36] | |
Peanut | shells | Ultrasound-assisted extraction | 100% MeOH | 55 | 0.7 | 33.3 | 2.4 | [18] |
Pigeon pea | leaves | Enzyme-assisted extraction | 30–35 | 18 | 0.3 | [37] | ||
Ribwort plantain | stem, fruit, leaves | Ultrasound-assisted extraction | 45% EtOH | 40 | 1.3 | 20 | 0.9 | [38] |
Peanut | shells | Maceration | 70.0–97.5% MeOH | 33.8–48.5 | 1 | 100 | 1.6 | In this study |
Variables | Unit | Symbol | Coded Factor Levels | ||||
---|---|---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | |||
Temperature | X1 | °C | 0 | 15 | 30 | 45 | 60 |
Time | X2 | h | 1 | 2 | 3 | 4 | 5 |
MeOH concentration | X3 | % | 0 | 25 | 50 | 75 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Lee, K.H.; Lee, J.; Lee, S.K.; Chun, Y.; Lee, J.H.; Yoo, H.Y. Efficient Recovery Strategy of Luteolin from Agricultural Waste Peanut Shells and Activity Evaluation of Its Functional Biomolecules. Int. J. Mol. Sci. 2023, 24, 12366. https://doi.org/10.3390/ijms241512366
Kim S, Lee KH, Lee J, Lee SK, Chun Y, Lee JH, Yoo HY. Efficient Recovery Strategy of Luteolin from Agricultural Waste Peanut Shells and Activity Evaluation of Its Functional Biomolecules. International Journal of Molecular Sciences. 2023; 24(15):12366. https://doi.org/10.3390/ijms241512366
Chicago/Turabian StyleKim, Seunghee, Kang Hyun Lee, Jeongho Lee, Soo Kweon Lee, Youngsang Chun, Ja Hyun Lee, and Hah Young Yoo. 2023. "Efficient Recovery Strategy of Luteolin from Agricultural Waste Peanut Shells and Activity Evaluation of Its Functional Biomolecules" International Journal of Molecular Sciences 24, no. 15: 12366. https://doi.org/10.3390/ijms241512366
APA StyleKim, S., Lee, K. H., Lee, J., Lee, S. K., Chun, Y., Lee, J. H., & Yoo, H. Y. (2023). Efficient Recovery Strategy of Luteolin from Agricultural Waste Peanut Shells and Activity Evaluation of Its Functional Biomolecules. International Journal of Molecular Sciences, 24(15), 12366. https://doi.org/10.3390/ijms241512366