Human Endocrine-Disrupting Effects of Phthalate Esters through Adverse Outcome Pathways: A Comprehensive Mechanism Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Calculation of the Combined Effect of the Initial and Key Events in the AOP Associated with the ED Effects of PAEs
2.1.1. Calculation of the Comprehensive Effect Value of the Initial Event in the AOP Associated with the ED Effects of PAEs
2.1.2. Calculating the Comprehensive Effect Value of the Key Events in the AOP Associated with the ED Effect of PAEs
2.2. Dimensionality Reduction on Descriptors of SMs and SMs Derivatives Using the Pearson Correlation Coefficient Method
2.3. Construction of a Machine Learning Model for the AOP Associated with the ED Effects of PAEs
2.3.1. Construction of a Machine Learning Model for the Initial Event in the AOP Associated with the ED Effects of PAEs
2.3.2. Construction of a Machine Learning Model for the Key Events in the AOP Associated with the ED Effects of PAEs
2.3.3. Construction of a Machine Learning Model for the Adverse Ending in the AOP Associated with the ED Effects of PAEs
2.4. Identification and Analysis of the Key Eigenvalues of the AOP Associated with the ED Effects of PAEs Based on the Sensitivity Analysis Method
2.5. Validation of Key Characteristic Values of the ED Effects of PAEs Associated with the AOP
2.6. Analysis of the Mechanism of the ED Effects of PAEs Associated with AOP Based on the 3D-QSAR Model
2.7. Analysis of the Mechanism by Which PAEs Cause ED Effects Associated with the AOP
2.7.1. Determining the Mechanism by Which PAEs Cause ED Effects Associated with AOP Based on the MD and Amino Acid Residue Analyses
2.7.2. Analysis of the Mechanism of the ED Effects of PAEs Associated with the AOP Based on Multiple Non-Bonding Forces
3. Methodology
3.1. Data Sources
3.2. Calculation of the BE between PAEs and Hormone Receptor Proteins Based on Molecular Docking and MD Simulation Methods
3.3. Estimation of the Comprehensive Effect Value of the Molecular Initial Events in the AOP Associated with the ED Effects of PAEs Based on the Variation Coefficient Method
- (1)
- First, the original data matrix of BE of PAEs with three hormone protein complexes was established:
- (2)
- The standard deviations of three groups of BE data were calculated as follows:
- (3)
- The CV of the three groups of BE data was calculated as follows:
- (4)
- The weights of three groups of BE data were calculated using Equation (7).
- (5)
- After calculating the weights of the three groups of data, the comprehensive effect value of the PAE hormones was calculated using Equation (8).
3.4. Estimation of the Comprehensive Effect Value of the Key Events in the AOP Associated with the ED Effects of PAEs Based on the Complex Correlation Coefficient Method
- (1)
- First, according to Equation (4), the original data matrix of PAE–protein complex docking, along with the original score for its corresponding DNA reaction, was established.
- (2)
- According to Equation (9), the correlation coefficient matrix of the scoring index of three groups of DNA response elements was established:
- (3)
- According to Equation (10), multiple correlation coefficients between the scoring data of each group of PAEs and the scoring data of the other two groups were calculated:
- (4)
- According to Equation (11), the reciprocal of the multiple correlation coefficient of the scoring data of the three groups of PAEs was calculated and normalized to obtain the weight of each group of scoring data:
- (5)
- After calculating the weights of the three groups of data, the comprehensive score of the DNA response elements of the PAE–hormone protein complexes was calculated using Equation (12).
3.5. Estimation of the Comprehensive Effect Value of Adverse Ending in the AOP Associated with the ED Effects of PAEs Based on the Forward Method and the Entropy Method
- (1)
- First, the entropy values of the two sets of data of comprehensive BE and comprehensive scoring were calculated using Equations (14) and (15):
- (2)
- The weight of the initial event and the key event of the harmful outcome path associated with the ED effects of PAEs was calculated using Equation (16):
- (3)
- The risk effect value of the harmful outcome related to the molecular ED effects of PAEs was calculated using Equation (17):
3.6. Calculation and Screening of the Molecular Characteristic Values of PAEs
3.6.1. Calculation of the Molecular Characteristic Values of PAEs Using the Gaussian, PaDEL-Descriptor, and ChemDraw Software Programs
3.6.2. Dimensionality Reduction of the Eigenvalues of PAEs Using Pearson’s Correlation Coefficient (PCC)
3.7. Construction of the Machine Learning Model for the AOP Associated with the ED Effects of PAEs
3.7.1. Construction of the Machine Learning Model for the AOP Associated with the ED Effects of PAEs Based on the MLR Algorithm
3.7.2. Construction of the Machine Learning Model for the AOP Associated with the ED Effects of PAEs Based on the RF Algorithm
3.7.3. Construction of the Machine Learning Model for the AOP Associated with the ED Effects of PAEs Based on the XGboost Algorithm
3.8. Identification of the Key Parameters of the Machine Learning Model for AOP Associated with the ED Effects of PAEs Based on the Sensitivity Analysis
3.9. Construction of the 3D-QSAR Model for the AOP Associated with the ED Effects of PAEs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Machtinger, R.; Gaskins, A.J.; Racowsky, C.; Mansur, A.; Adir, M.; Baccarelli, A.A.; Calafat, A.M.; Hauser, R. Urinary concentrations of biomarkers of phthalates and phthalate alternatives and IVF outcomes. Environ. Int. 2018, 111, 23–31. [Google Scholar] [CrossRef]
- Cao, Y.; Lin, H.; Zhang, K.; Xu, S.; Yan, M.; Leung, K.M.Y.; Lam, P.K.S. Microplastics: A major source of phthalate esters in aquatic environments. J. Hazard. Mater. 2022, 432, 128731. [Google Scholar] [CrossRef]
- Zhu, F.; Yan, Y.; Doyle, E.; Zhu, C.; Jin, X.; Chen, Z.; Wang, C.; He, H.; Zhou, D.; Gu, C. Microplastics altered soil microbiome and nitrogen cycling: The role of phthalate plasticizer. J. Hazard. Mater. 2022, 427, 127944. [Google Scholar] [CrossRef]
- Li, Q.; Qiu, Y.; Li, Y. Molecular design of environment-friendly PAE derivatives based on 3D-QSAR assisted with a comprehensive evaluation method combining toxicity and estrogen activities. Water Air Soil. Pollut. 2020, 231, 194. [Google Scholar] [CrossRef]
- Kaewlaoyoong, A.; Vu, C.T.; Lin, C.; Liao, C.S.; Chen, J.-R. Occurrence of phthalate esters around the major plastic industrial area in southern Taiwan. Environ. Earth Sci. 2018, 77, 457. [Google Scholar] [CrossRef]
- Larsson, K.; Lindh, C.H.; Jönsson, B.A.; Giovanoulis, G.; Bibi, M.; Bottai, M.; Bergström, A.; Berglund, M. Phthalates, non-phthalate plasticizers and bisphenols in Swedish preschool dust in relation to children’s exposure. Environ. Int. 2017, 102, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhao, X.; Wu, W. Biodegradation of phthalic acid esters (PAEs) in soil bioaugmented with acclimated activated sludge. Process Biochem. 2004, 39, 1837–1841. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, L.; Cui, L.; Zhang, Y. Discussion on detection methods and standards of phthalate plasticizers in plastic packaging products. Plast. Technol. 2011, 39, 80–82. [Google Scholar] [CrossRef]
- Koniecki, D.; Wang, R.; Moody, R.P.; Zhu, J. Phthalates in cosmetic and personal care products: Concentrations and possible dermal exposure. Environ. Res. 2011, 111, 329–336. [Google Scholar] [CrossRef]
- Bornehag, C.-G.; Nanberg, E. Phthalate exposure and asthma in children. Int. J. Androl. 2010, 33, 333–345. [Google Scholar] [CrossRef]
- Benjamin, S.; Masai, E.; Kamimura, N.; Takahashi, K.; Anderson, R.C.; Faisal, P.A. Phthalates impact human health: Epidemiological evidences and plausible mechanism of action. J. Hazard. Mater. 2017, 340, 360–383. [Google Scholar] [CrossRef]
- Huang, H.B.; Pan, W.H.; Chang, J.W.; Chiang, H.C.; Guo, Y.L.; Jaakkola, J.J.; Huang, P.C. Does exposure to phthalates influence thyroid function and growth hormone homeostasis? The Taiwan Environmental Survey for Toxicants (TEST) 2013. Environ. Res. 2017, 153, 63–72. [Google Scholar] [CrossRef]
- Raha, F.K.; Hasan, J.; Ali, A.; Fakayode, S.O.; Halim, M.A. Exploring the molecular level interaction of Xenoestrogen phthalate plasticisers with oestrogen receptor alpha (ERα) Y537S mutant. Mol. Simul. 2022, 48, 1513–1526. [Google Scholar] [CrossRef]
- Hashemipour, M.; Kelishadi, R.; Amin, M.M.; Ebrahim, K. Is there any association between phthalate exposure and precocious puberty in girls? Environ. Sci. Pollut. Res. Int. 2018, 25, 13589–13596. [Google Scholar] [CrossRef] [PubMed]
- Sarath Josh, M.K.; Pradeep, S.; Vijayalekshmy Amma, K.S.; Sudha Devi, R.; Balachandran, S.; Sreejith, M.N.; Benjamin, S. Human ketosteroid receptors interact with hazardous phthalate plasticizers and their metabolites: An in silico study. J. Appl. Toxicol. 2016, 36, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Mo, J.; Zhu, Q.; Ni, C.; Wang, Y.; Li, H.; Lin, Z.K.; Ge, R.S. The structure-activity relationship (SAR) for phthalate-mediated developmental and reproductive toxicity in males. Chemosphere 2019, 223, 504–513. [Google Scholar] [CrossRef]
- Sugiyama, S.; Shimada, N.; Miyoshi, H.; Yamauchi, K. Detection of thyroid system-disrupting chemicals using in vitro and in vivo screening assays in Xenopus laevis. Toxicol. Sci. 2005, 88, 367–374. [Google Scholar] [CrossRef]
- Ai, Y.; Wang, Y.; Li, J. Research progress of thyroid hormone disruptors in environmental waters. Environ. Pollut. Prev. 2016, 38, 68–74. [Google Scholar] [CrossRef]
- Santiago, L.A.; Faustino, L.C.; Pereira, G.F.; Imperio, G.E.; Pazos-Moura, C.C.; Wondisford, F.E.; Bloise, F.F.; Ortiga-Carvalho, T.M. Gene expression of T3-regulated genes in a mouse model of the human thyroid hormone resistance. Life Sci. 2017, 170, 93–99. [Google Scholar] [CrossRef]
- Ankley, G.T.; Bennett, R.S.; Erickson, R.J.; Hoff, D.J.; Hornung, M.W.; Johnson, R.D.; Mount, D.R.; Nichols, J.W.; Russom, C.L.; Schmieder, P.K.; et al. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 2010, 29, 730–741. [Google Scholar] [CrossRef]
- Holbech, H.; Matthiessen, P.; Hansen, M.; Schüürmann, G.; Knapen, D.; Reuver, M.; Flamant, F.; Sachs, L.; Kloas, W.; Hilscherova, K.; et al. ERGO: Breaking down the wall between human health and environmental testing of endocrine disrupters. Int. J. Mol. Sci. 2020, 21, 2954. [Google Scholar] [CrossRef]
- Brix, K.V.; Schlekat, C.E.; Garman, E.R. The mechanisms of nickel toxicity in aquatic environments: An adverse outcome pathway analysis. Environ. Toxicol. Chem. 2017, 36, 1128–1137. [Google Scholar] [CrossRef]
- Li, T.; Yu, Y.; Sun, Z.; Duan, J. A comprehensive understanding of ambient particulate matter and its components on the adverse health effects based from epidemiological and laboratory evidence. Part. Fibre Toxicol. 2022, 19, 67. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, X.; Pu, Q.; Fu, R.; Wang, Z.; Li, Y.; Li, X. Innovative screening for functional improved aromatic amine derivatives: Toxicokinetics, free radical oxidation pathway and carcinogenic adverse outcome pathway. J. Hazard. Mater. 2023, 454, 131541. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Yang, J.; Li, Y. A model for phthalic acid esters’ biodegradability and biotoxicity multi-effect pharmacophore and its application in molecular modification. J. Environ. Sci. Health Part. A 2021, 56, 361–378. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, T.S.; Shin, J.-H.; Moon, H.J.; Kang, I.H.; Kim, I.Y.; Oh, J.Y.; Han, S.Y. Neonatal exposure to di (n-butyl) phthalate (DBP) alters male reproductive-tract development. J. Toxicol. Environ. Health Part. A 2004, 67, 2045–2060. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Yang, H.; Pu, Q.; Li, Y. Novel control strategies for the endocrine-disrupting effect of PAEs to pregnant women in traffic system. Sci. Total Environ. 2022, 851, 158269. [Google Scholar] [CrossRef]
- Shen, O.; Du, G.; Sun, H.; Wu, W.; Jiang, Y.; Song, L.; Wang, X. Comparison of in vitro hormone activities of selected phthalates using reporter gene assays. Toxicol. Lett. 2009, 191, 9–14. [Google Scholar] [CrossRef]
- Frey, N.C.; Wang, J.; Vega Bellido, G.I.; Anasori, B.; Gogotsi, Y.; Shenoy, V.B. Prediction of synthesis of 2D metal carbides and nitrides (MXenes) and their precursors with positive and unlabeled machine learning. ACS Nano 2019, 13, 3031–3041. [Google Scholar] [CrossRef]
- Adam, N.; Mhaouty-Kodja, S. Behavioral effects of exposure to phthalates in female rodents: Evidence for endocrine disruption? Int. J. Mol. Sci. 2022, 23, 2559. [Google Scholar] [CrossRef]
- Lee, Y.K.; Lee, M.-H.; Hur, J. A new molecular weight (MW) descriptor of dissolved organic matter to represent the MW-dependent distribution of aromatic condensation: Insights from biodegradation and pyrene binding experiments. Sci. Total Environ. 2019, 660, 169–176. [Google Scholar] [CrossRef]
- Qiu, Y.; Li, Y. A theoretical method for the high-sensitivity fluorescence detection of PAEs through double-substitution modification. Environ. Sci. Pollut. Res. 2018, 25, 34684–34692. [Google Scholar] [CrossRef]
- Li, X.; Yang, H.; Zhao, Y.; Pu, Q.; Xu, T.; Li, R.; Li, Y. Synthesis of synthetic musks: A theoretical study based on the relationships between structure and properties at molecular scale. Int. J. Mol. Sci. 2023, 24, 2768. [Google Scholar] [CrossRef]
- Petitjean, M. Applications of the radius-diameter diagram to the classification of topological and geometrical shapes of chemical compounds. J. Chem. Inf. Comput. Sci. 1992, 32, 331–337. [Google Scholar] [CrossRef]
- Li, Z.; Pang, Y.; Lou, H.; Qiu, X. Influence of lignosulfonates on the properties of dimethomorph water-dispersible granules. BioResources 2009, 4, 589–601. [Google Scholar] [CrossRef]
- Gao, H.; Tong, J.; Zhu, B.; Chen, Y.; Ye, A.; Huang, K.; Liang, C.; Wu, X.; Sheng, J.; Jin, Z. Lag associations of gestational phthalate exposure with maternal serum vitamin D levels: Repeated measure analysis. Chemosphere 2022, 299, 134319. [Google Scholar] [CrossRef]
- Bitencourt-Ferreira, G.; Veit-Acosta, M.; de Azevedo, W.F. Hydrogen bonds in protein-ligand complexes. In Docking Screens for Drug Discovery; de Azevedo, W., Jr., Ed.; Humana: New York, NY, USA, 2019; pp. 93–107. [Google Scholar] [CrossRef]
- Loeffler, J.R.; Schauperl, M.; Liedl, K.R. Hydration of Aromatic Heterocycles as an Adversary of π-Stacking. J. Chem. Inf. Model. 2019, 59, 4209–4219. [Google Scholar] [CrossRef] [PubMed]
- Nimens, W.J.; Lefave, S.J.; Flannery, L.; Ogle, J.; Smilgies, D.M.; Kieber-Emmons, M.T.; Whittaker-Brooks, L. Understanding hydrogen bonding interactions in crosslinked methylammonium lead iodide crystals: Towards reducing moisture and light degradation pathways. Angew. Chem. Int. Ed. 2019, 58, 13912–13921. [Google Scholar] [CrossRef]
- Quagliariello, V.; Rossetti, S.; Cavaliere, C.; Di Palo, R.; Lamantia, E.; Castaldo, L.; Nocerino, F.; Ametrano, G.; Cappuccio, F.; Malzone, G. Metabolic syndrome, endocrine disruptors and prostate cancer associations: Biochemical and pathophysiological evidences. Oncotarget 2017, 8, 30606. [Google Scholar] [CrossRef]
- Luo, Y.; Gao, P.; Yan, L.; Zhang, X.; Yu, H.; Shi, W.; Yu, N. Research progress on endocrine disruption effect of di-n-butyl phthalate, diisobutyl phthalate and substitutes. Environ. Chem. 2021, 1, 11–27. [Google Scholar] [CrossRef]
- Li, X.; Gu, W.; Zhang, B.; Xin, X.; Kang, Q.; Yang, M.; Chen, B.; Li, Y. Insights into toxicity of polychlorinated naphthalenes to multiple human endocrine receptors: Mechanism and health risk analysis. Environ. Int. 2022, 165, 107291. [Google Scholar] [CrossRef]
- Yin, C.; Liu, S.; Yu, H.; Wang, L. QSPR analysis of phenylthio phenylsulfinyl and phenylsulfonyl esters using quantum chemical semi-empirical descriptors. J. Chin. Chem. Soc. 2002, 49, 11–18. [Google Scholar] [CrossRef]
- Karelson, M.; Lobanov, V.S.; Katritzky, A.R. Quantum-chemical descriptors in QSAR/QSPR studies. Chem. Rev. 1996, 96, 1027–1044. [Google Scholar] [CrossRef]
- Yu, X.; Yu, W.; Yi, B.; Wang, X. Prediction of the polarity parameter π for the radical derived from monomer. e-Polymers 2009, 9, 1562–1569. [Google Scholar] [CrossRef]
- Hadisaputra, S.; Purwoko, A.A.; Savalas, L.R.T.; Prasetyo, N.; Yuanita, E.; Hamdiani, S. Quantum chemical and Monte Carlo simulation studies on inhibition performance of caffeine and its derivatives against corrosion of copper. Coatings 2020, 10, 1086. [Google Scholar] [CrossRef]
- Derewenda, Z.S.; Lee, L.; Derewenda, U. The occurence of C–H···O hydrogen bonds in proteins. J. Mol. Biol. 1995, 252, 248–262. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Qin, C.; Yang, B.; Hu, X.; Waigi, M.G.; Vasilyeva, G.K.; Gao, Y. Non-covalent binding interaction between phthalic acid esters and DNA. Environ. Int. 2022, 161, 107095. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-C.; Tsai, Y.-C.; Wu, P.-Y.; Lien, Y.-H.; Chien, C.-Y.; Kuo, C.-F.; Hung, J.-F.; Chen, S.-C.; Kuo, C.-H. Predictive modeling of blood pressure during hemodialysis: A comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Comput. Methods Programs Biomed. 2020, 195, 105536. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, Y.; Zhou, Y.; Tang, H.; Fu, S. Assessment of machine learning models for the prediction of rate-dependent compressive strength of rocks. Minerals 2022, 12, 731. [Google Scholar] [CrossRef]
- Hong, W.; Zhou, X.; Jin, S.; Lu, Y.; Pan, J.; Lin, Q.; Yang, S.; Xu, T.; Basharat, Z.; Zippi, M.; et al. A comparison of XGBoost, random forest, and nomograph for the prediction of disease severity in patients with COVID-19 pneumonia: Implications of cytokine and immune cell profile. Front. Cell. Infect. Microbiol. 2022, 12, 819267. [Google Scholar] [CrossRef]
- Luo, X.; Lone, T.; Jiang, S.; Li, R.; Berends, P. A study of farmers’ flood perceptions based on the entropy method: An application from Jianghan Plain, China. Disasters 2016, 40, 573–588. [Google Scholar] [CrossRef]
- Cheng, Z.; Chen, Q.; Liu, S.; Liu, Y.; Ren, Y.; Zhang, X.; Shen, Z. The investigation of influencing factors on the degradation of sulfonamide antibiotics in iron-impregnated biochar-activated urea-hydrogen peroxide system: A QSAR study. J. Hazard. Mater. 2022, 430, 128269. [Google Scholar] [CrossRef]
- Gu, W.; Zhao, Y.; Li, Q.; Li, Y. Plant-microorganism combined remediation of polychlorinated naphthalenes contaminated soils based on molecular directed transformation and Taguchi experimental design-assisted dynamics simulation. J. Hazard. Mater. 2020, 396, 122753. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hou, Y.; Li, Q.; Gu, W.; Li, Y. Molecular design of high-efficacy and high drug safety Fluoroquinolones suitable for a variety of aerobic biodegradation bacteria. J. Environ. Manag. 2021, 299, 113628. [Google Scholar] [CrossRef]
- Du, M.; Pu, Q.; Li, X.; Yang, H.; Hao, N.; Li, Q.; Zhao, Y.; Li, Y. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) adsorbed on microplastics in drinking water: Implications for female exposure, reproductive health risk and its mitigation strategies through in silico methods. J. Cleaner Prod. 2023, 391, 136191. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, Y.; Shi, Y.; Jiang, J.; Wu, S.; Li, L.; Shao, Y.; Xin, Z. Identification and characterization of a novel phthalate-degrading hydrolase from a soil metagenomic library. Ecotoxicol. Environ. Saf. 2020, 190, 110148. [Google Scholar] [CrossRef] [PubMed]
- Keretsu, S.; Bhujbal, S.P.; Cho, S.J. Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Sci. Rep. 2020, 10, 17716. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Su, C.Y.; Ding, B. Molecular dynamics simulation of β-adrenoceptors and their coupled G proteins. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 6346–6351. [Google Scholar] [CrossRef]
- Mahajan, R.; Verma, S.; Kushwaha, M.; Singh, D.; Akhter, Y.; Chatterjee, S. Biodegradation of di-n-butyl phthalate by psychrotolerant Sphingobium yanoikuyae strain P4 and protein structural analysis of carboxylesterase involved in the pathway. Int. J. Biol. Macromol. 2019, 122, 806–816. [Google Scholar] [CrossRef]
- Diller, D.J.; Merz, K.M., Jr. High throughput docking for library design and library prioritization. Proteins 2001, 43, 113–124. [Google Scholar] [CrossRef]
- Westermaier, Y.; Ruiz-Carmona, S.; Theret, I.; Perron-Sierra, F.; Poissonnet, G.; Dacquet, C.; Boutin, J.A.; Ducrot, P.; Barril, X. Binding mode prediction and MD/MMPBSA-based free energy ranking for agonists of REV-ERBα/NCoR. J. Comput. Aided. Mol. Des. 2017, 31, 755–775. [Google Scholar] [CrossRef] [PubMed]
- Aerts, S.; Haesbroeck, G.; Ruwet, C. Distribution under elliptical symmetry of a distance-based multivariate coefficient of variation. Stat. Pap. 2018, 59, 545–579. [Google Scholar] [CrossRef]
- Liu, W.; Li, Q.; Zhao, J. Application on Floor Water Inrush Evaluation Based on AHP Variation Coefficient Method with GIS. Geotech. Geol. Eng. 2018, 36, 2799–2808. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, C.; Wen, P.; Wang, M.; Zhao, J. Comprehensive performance evaluation of low-carbon modified asphalt based on efficacy coefficient method. J. Cleaner Prod. 2018, 203, 633–644. [Google Scholar] [CrossRef]
- Zhang, T.; Tian, L.; Zhang, F. Comprehensive Evaluation of Two-side Voltage Sag based on Local State Variable Weight and Complex Correlation Coefficient Method. J. Phys. Conf. Ser. 2019, 1346, 012024. [Google Scholar] [CrossRef]
- Ratha, D.; Surendar, M.; Bhattacharya, A. Improvement of PolSAR decomposition scattering powers using a relative decorrelation measure. Remote Sens. Lett. 2017, 8, 340–349. [Google Scholar] [CrossRef]
- Rosas-Villegas, F.; Candela, J.; Ochoa, J. Eddy viscosity from bottom Ekman veering profiles. Cont. Shelf Res. 2020, 204, 104170. [Google Scholar] [CrossRef]
- Akbas, H.; Sucu, S.; Minez, S.; Dane, C.; Akankan, O.; Erdogan, I. Ground state normalized binding energy of impurity in asymmetric quantum wells under hydrostatic pressure. Superlattices Microstruct. 2016, 94, 131–137. [Google Scholar] [CrossRef]
- Cremer, D.; Kraka, E. Generalization of the Tolman electronic parameter: The metal–ligand electronic parameter and the intrinsic strength of the metal–ligand bond. Dalton Trans. 2017, 46, 8323–8338. [Google Scholar] [CrossRef]
- Zhao, D.; Siddiqui, M.K.; Cheema, I.Z.; Muhammad, M.H.; Rauf, A.; Ishtiaq, M. On molecular descriptors of polycyclic aromatic hydrocarbon. Polycyclic Aromat. Compd. 2022, 42, 3422–3433. [Google Scholar] [CrossRef]
- Guzzi, F.; Kourousias, G.; Gianoncelli, A.; Billè, F.; Carrato, S. A parameter refinement method for ptychography based on deep learning concepts. Condens. Matter 2021, 6, 36. [Google Scholar] [CrossRef]
- Tan, C.; Deng, H.; Feng, Z.; Li, B.; Peng, Z.; Feng, G. Data-driven system efficiency prediction and production parameter optimization for PW-LHM. J. Pet. Sci. Eng. 2022, 209, 109810. [Google Scholar] [CrossRef]
- Jäger, M.O.J.; Morooka, E.V.; Federici Canova, F.; Himanen, L.; Foster, A.S. Machine learning hydrogen adsorption on nanoclusters through structural descriptors. npj Comput. Mater. 2018, 4, 37. [Google Scholar] [CrossRef]
- He, Y.; Bai, X.-J.; Li, F.-X.; Fan, L.-H.; Ren, J.; Liang, Q.; Li, H.-B.; Bai, L.; Tian, H.-Y.; Fan, F.-L.; et al. Resistin may be an independent predictor of subclinical atherosclerosis formale smokers. Biomarkers 2017, 22, 291–295. [Google Scholar] [CrossRef]
- Pokhriyal, N.; Jacques, D.C. Combining disparate data sources for improved poverty prediction and mapping. Proc. Natl. Acad. Sci. USA 2017, 114, E9783–E9792. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.; Larsen, M.E.; O’Dea, B.; Phung, D.; Venkatesh, S.; Christensen, H. Estimation of the prevalence of adverse drug reactions from social media. Int. J. Med. Inf. 2017, 102, 130–137. [Google Scholar] [CrossRef]
- Ali, M.; Prasad, R.; Xiang, Y.; Deo, R.C. Near real-time significant wave height forecasting with hybridized multiple linear regression algorithms. Renew. Sustain. Energy Rev. 2020, 132, 110003. [Google Scholar] [CrossRef]
- Carrizosa, E.; Mortensen, L.H.; Morales, D.R.; Sillero-Denamiel, M.R. The tree based linear regression model for hierarchical categorical variables. Expert. Syst. Appl. 2022, 203, 117423. [Google Scholar] [CrossRef]
- Hong, J.; Wang, Z.; Chen, W.; Wang, L.-Y.; Qu, C. Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles. J. Energy Storage 2020, 30, 101459. [Google Scholar] [CrossRef]
- Ao, Y.; Li, H.; Zhu, L.; Ali, S.; Yang, Z. The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling. J. Pet. Sci. Eng. 2019, 174, 776–789. [Google Scholar] [CrossRef]
- Alotaibi, S.; Ebrahim, S.; Salman, A. Prediction of the minimum film boiling temperature of quenching vertical rods in water using random forest machine learning algorithm. Front. Energy Res. 2021, 9, 668227. [Google Scholar] [CrossRef]
- Asselman, A.; Khaldi, M.; Aammou, S. Enhancing the prediction of student performance based on the machine learning XGBoost algorithm. Interact. Learn. Environ. 2021, 31, 3360–3379. [Google Scholar] [CrossRef]
- Palša, J.; Ádám, N.; Hurtuk, J.; Chovancová, E.; Madoš, B.; Chovanec, M.; Kocan, S. Mlmd—A malware-detecting antivirus tool based on the xgboost machine learning algorithm. Appl. Sci. 2022, 12, 6672. [Google Scholar] [CrossRef]
- Liang, H.; Jiang, K.; Yan, T.-A.; Chen, G.-H. XGBoost: An optimal machine learning model with just structural features to discover MOF adsorbents of Xe/Kr. ACS Omega 2021, 6, 9066–9076. [Google Scholar] [CrossRef]
- Parsa, S.M.; Majidniya, M.; Alawee, W.H.; Dhahad, H.A.; Ali, H.M.; Afrand, M.; Amidpour, M. Thermodynamic, economic, and sensitivity analysis of salt gradient solar pond (SGSP) integrated with a low-temperature multi effect desalination (MED): Case study, Iran. Sustain. Energy Technol. Assess. 2021, 47, 101478. [Google Scholar] [CrossRef]
- Chen, Y.; Cai, X.; Jiang, L.; Li, Y. Prediction of octanol-air partition coefficients for polychlorinated biphenyls (PCBs) using 3D-QSAR models. Ecotoxicol. Environ. Saf. 2016, 124, 202–212. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y. Modified neonicotinoid insecticide with bi-directional selective toxicity and drug resistance. Ecotoxicol. Environ. Saf. 2018, 164, 467–473. [Google Scholar] [CrossRef] [PubMed]
Molecule | 3 Hormone Receptor BE (kJ/mol) | Comprehensive BE (kJ/mol) | ||
---|---|---|---|---|
Estrogen | Androgen | Thyroid Hormone | ||
BBP | −70.229 | −51.100 | −117.692 | −78.987 |
DAP | −40.462 | −23.273 | −75.020 | −45.782 |
DBP | −54.165 | −56.487 | −93.811 | −67.410 |
DEHP | −99.145 | −93.832 | −171.905 | −120.350 |
DEP | −58.338 | −24.878 | −81.192 | −54.698 |
DHP | −64.202 | −62.921 | −157.779 | −93.273 |
DIBP | −71.637 | −38.937 | −100.252 | −70.059 |
DIDP | −80.501 | −86.601 | −80.479 | −82.470 |
DIHP | −89.240 | −76.658 | −157.461 | −106.660 |
DIHXP | −118.900 | −45.311 | −127.952 | −97.909 |
DINP | −87.531 | −92.714 | −77.541 | −86.062 |
DIOP | −117.551 | −80.994 | −62.085 | −88.229 |
DIPP | −45.046 | −38.138 | −120.604 | −66.616 |
DIPRP | −68.632 | −24.088 | −102.113 | −64.750 |
DMEP | −67.439 | −16.720 | −86.559 | −57.031 |
DMP | −38.507 | −36.674 | −67.094 | −46.921 |
DNOP | −64.418 | −86.224 | −90.899 | −79.827 |
DNP | −85.702 | −63.926 | −52.928 | −68.319 |
DPP | −89.328 | −54.455 | −121.823 | −88.268 |
DPRP | −62.242 | −30.584 | −85.927 | −59.448 |
DTDP | −68.501 | −117.851 | −85.914 | −89.977 |
DUP | −104.933 | −64.944 | −100.857 | −90.692 |
Molecule | 3 Hormone DNA Response Element Scores | Comprehensive Score | ||
---|---|---|---|---|
Estrogen | Androgen | Thyroid Hormone | ||
BBP | −271.13 | −248.12 | −222.50 | −238.81 |
DAP | −282.02 | −243.98 | −214.83 | −236.05 |
DBP | −292.26 | −239.42 | −216.21 | −238.16 |
DEHP | −242.50 | −250.57 | −218.14 | −230.44 |
DEP | −278.80 | −249.15 | −216.05 | −237.10 |
DHP | −283.64 | −241.43 | −219.98 | −238.78 |
DIBP | −281.26 | −234.38 | −216.26 | −234.66 |
DIDP | −277.88 | −254.88 | −218.08 | −239.25 |
DIHP | −280.27 | −242.12 | −217.40 | −236.71 |
DIHXP | −261.42 | −249.26 | −219.13 | −234.97 |
DINP | −272.39 | −247.02 | −219.25 | −237.02 |
DIOP | −287.61 | −254.99 | −219.03 | −241.99 |
DIPP | −287.86 | −245.44 | −222.02 | −241.73 |
DIPRP | −281.06 | −250.53 | −216.22 | −238.00 |
DMEP | −272.66 | −251.07 | −214.93 | −235.50 |
DMP | −269.74 | −250.82 | −217.63 | −236.31 |
DNOP | −278.15 | −245.72 | −220.25 | −238.61 |
DNP | −282.78 | −248.24 | −212.29 | −235.68 |
DPP | −272.65 | −242.00 | −218.67 | −235.70 |
DPRP | −285.74 | −240.90 | −216.39 | −237.11 |
DTDP | −283.34 | −255.34 | −225.20 | −244.59 |
DUP | −278.80 | −246.96 | −246.92 | −254.08 |
Molecule | Normalized Value | Harmful Outcome Effect Value | |
---|---|---|---|
Comprehensive BE | Comprehensive Score | ||
BBP | 0.445 | 0.354 | 0.407 |
DAP | 0.000 | 0.237 | 0.100 |
DBP | 0.290 | 0.327 | 0.305 |
DEHP | 1.000 | 0.000 | 0.579 |
DEP | 0.120 | 0.282 | 0.188 |
DHP | 0.637 | 0.353 | 0.517 |
DIBP | 0.326 | 0.179 | 0.264 |
DIDP | 0.492 | 0.373 | 0.442 |
DIHP | 0.816 | 0.265 | 0.584 |
DIHXP | 0.699 | 0.192 | 0.485 |
DINP | 0.540 | 0.279 | 0.430 |
DIOP | 0.569 | 0.489 | 0.535 |
DIPP | 0.279 | 0.477 | 0.363 |
DIPRP | 0.254 | 0.320 | 0.282 |
DMEP | 0.151 | 0.214 | 0.177 |
DMP | 0.015 | 0.249 | 0.113 |
DNOP | 0.457 | 0.345 | 0.410 |
DNP | 0.302 | 0.222 | 0.268 |
DPP | 0.570 | 0.222 | 0.424 |
DPRP | 0.183 | 0.282 | 0.225 |
DTDP | 0.593 | 0.599 | 0.595 |
DUP | 0.602 | 1.000 | 0.770 |
Molecular Protein Complex | Combined Free Energy Composition | |||
---|---|---|---|---|
Van der Waals Energy (kJ/mol) | Electrostatic Energy (kJ/mol) | Polar Solvation Energy (kJ/mol) | SASA Energy (kJ/mol) | |
BBP and 6CHW | −135.950 | −32.393 | 115.064 | −16.951 |
BBP and 1T7T | −155.165 | −13.911 | 134.881 | −16.904 |
BBP and 1NAX | −173.957 | −4.647 | 79.874 | −18.963 |
Amino Acid Residue | Frequency of Occurrence in Hormone Proteins | ||
---|---|---|---|
Estrogen Protein | Androgen Protein | Thyroid Hormone Protein | |
Leucine | 39 | 16 | 42 |
Methionine | 18 | 2 | 16 |
Alanine | 24 | 14 | 31 |
Phenylalanine | 9 | 10 | 18 |
Arginine | 17 | 23 | 25 |
Proline | 14 | 38 | 4 |
Histidine | 11 | 1 | 3 |
Lysine | 6 | 7 | 1 |
Tyrosine | 2 | 7 | 0 |
Valine | 1 | 55 | 7 |
Glycine | 1 | 0 | 0 |
Tryptophan | 0 | 47 | 1 |
Isoleucine | 0 | 1 | 42 |
Cysteine | 0 | 0 | 4 |
ED Effects | Complex | Non-Bond Force Resultant Mode | BE (kJ/mol) | |
---|---|---|---|---|
Hydrogen Bonding Interaction | Hydrophilic Force | |||
Estrogenic effect | Dmp | 1.015028 | 0.558063 | −38.507 |
Dihxp | 0.360728 | 0.499671 | −118.900 | |
Androgenic effect | Dmep | 0.656629 | 1.443051 | −16.720 |
Dtdp | 0.414266 | 0.438832 | −117.851 | |
Thyroid hormone effect | Dnp | 0.748794 | 0.343049 | −52.928 |
Dehp | 0.399914 | 0.217793 | −171.905 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Yang, H.; He, W.; Li, Y. Human Endocrine-Disrupting Effects of Phthalate Esters through Adverse Outcome Pathways: A Comprehensive Mechanism Analysis. Int. J. Mol. Sci. 2023, 24, 13548. https://doi.org/10.3390/ijms241713548
Li Y, Yang H, He W, Li Y. Human Endocrine-Disrupting Effects of Phthalate Esters through Adverse Outcome Pathways: A Comprehensive Mechanism Analysis. International Journal of Molecular Sciences. 2023; 24(17):13548. https://doi.org/10.3390/ijms241713548
Chicago/Turabian StyleLi, Yunxiang, Hao Yang, Wei He, and Yu Li. 2023. "Human Endocrine-Disrupting Effects of Phthalate Esters through Adverse Outcome Pathways: A Comprehensive Mechanism Analysis" International Journal of Molecular Sciences 24, no. 17: 13548. https://doi.org/10.3390/ijms241713548
APA StyleLi, Y., Yang, H., He, W., & Li, Y. (2023). Human Endocrine-Disrupting Effects of Phthalate Esters through Adverse Outcome Pathways: A Comprehensive Mechanism Analysis. International Journal of Molecular Sciences, 24(17), 13548. https://doi.org/10.3390/ijms241713548