Metallic Nanowires Self-Assembled in Quasi-Circular Nanomolds Templated by DNA Origami
Abstract
:1. Introduction
2. Results and Discussions
2.1. Visualization of the 3D Nanostructures
2.2. Electrical Characterization
3. Materials and Methods
3.1. Module Design
3.2. Basic Nanostructure Design (Five-Module Assembly)
3.3. Au NP–DNA Origami Bioconjugate Design
3.4. Synthesis of Modules
3.5. Visualization of Modules and Nanomolds
3.6. Annealing of Au NP–Origami Bioconjugates
3.7. Metalization of Au NP–Origami Bioconjugates
3.8. Fabrication of Contacts and Electric Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Roadmap for Devices and Systems: 2020; Technical Report; IEEE: Manhattan, NY, USA, 2020.
- Hornyak, G.L.; Tibbals, H.F.; Dutta, J.; Moore, J.J. Introduction to Nanoscience and Nanotechnology; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Zhang, S. Building from the Bottom Up. Mater. Today 2003, 6, 20–27. [Google Scholar] [CrossRef]
- Xu, A.; Harb, J.N.; Kostiainen, M.A.; Hughes, W.L.; Woolley, A.T.; Liu, H.; Gopinath, A. DNA Origami: The Bridge from Bottom to Top. MRS Bull. 2017, 42, 943–950. [Google Scholar] [CrossRef]
- Xavier, P.L.; Chandrasekaran, A.R. DNA-based Construction at the Nanoscale: Emerging Trends and Applications. Nanotechnology 2018, 29, 062001. [Google Scholar] [CrossRef]
- Madsen, M.; Gothelf, K.V. Chemistries for DNA Nanotechnology. Chem. Rev. 2019, 119, 6384–6458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ma, X.; Wang, G.; Liang, X.; Mitomo, H.; Pike, A.; Houlton, A.; Ijiro, K. Non-Origami DNA for Functional Nanostructures: From Structural Control to Advanced Applications. Nano Today 2021, 39, 101154. [Google Scholar] [CrossRef]
- Tapio, K.; Bald, I. The Potential of DNA Origami to Build Multifunctional Materials. Multifunct. Mater. 2020, 3, 032001. [Google Scholar] [CrossRef]
- Bathe, M.; Chrisey, L.A.; Herr, D.J.C.; Lin, Q.; Rasic, D.; Woolley, A.T.; Zadegan, R.M.; Zhirnov, V.V. Roadmap on Biological Pathways for Electronic Nanofabrication and Materials. Nano Futur. 2019, 3, 012001. [Google Scholar] [CrossRef]
- Rothemund, P.W.K. Folding DNA to Create Nanoscale Shapes and Patterns. Nature 2006, 440, 297–302. [Google Scholar] [CrossRef]
- Seeman, N.C. Nanomaterials Based on DNA. Annu. Rev. Biochem. 2010, 79, 65–87. [Google Scholar] [CrossRef]
- Samanta, A.; Medintz, I.L. Nanoparticles and DNA—A Powerful and Growing Functional Combination in Bionanotechnology. Nanoscale 2016, 8, 9037–9095. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, C.; Cao, F.; Ren, J.; Qu, X. DNA Metallization: Principles, Methods, Structures, and Applications. Chem. Soc. Rev. 2018, 47, 4017–4072. [Google Scholar] [CrossRef] [PubMed]
- Bayrak, T.; Martinez-Reyes, A.; Arce, D.D.R.; Kelling, J.; Samano, E.C.; Erbe, A. Fabrication and Temperature-Dependent Electrical Characterization of a C-shape Nanowire Patterned by a DNA Origami. Sci. Rep. 2021, 11, 1922. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.V.; Yang, C.H.; Liu, C.J.; Kuo, C.H.; Wu, D.C.; Jen, C.P. An Aptamer-Based Capacitive Sensing Platform for Specific Detection of Lung Carcinoma Cells in the Microfluidic Chip. Biosensors 2018, 8, 98. [Google Scholar] [CrossRef] [PubMed]
- Rojo, M.M.; Calero, O.C.; Lopeandia, A.F.; Rodriguez-Viejo, J.; Martín-Gonzalez, M. Review on Measurement Techniques of Transport Properties of Nanowires. Nanoscale 2013, 5, 11526–11544. [Google Scholar] [CrossRef]
- Watson, S.M.D.; Pike, A.R.; Pate, J.; Houlton, A.; Horrocks, B.R. DNA-templated Nanowires: Morphology and Electrical Conductivity. Nanoscale 2014, 6, 4027–4037. [Google Scholar] [CrossRef]
- Šponer, J.; Šponer, J.E.; Mládek, A.; Jurečka, P.; Banáš, P.; Otyepka, M. Nature and Magnitude of Aromatic Base Stacking in DNA and RNA: Quantum Chemistry, Molecular Mechanics, and Experiment. Biopolymers 2013, 99, 978–988. [Google Scholar] [CrossRef]
- Bayrak, T.; Helmi, S.; Ye, J.; Kauert, D.; Nano, J.K. DNA-mold Templated Assembly of Conductive Gold Nanowires. ACS Nano Lett. 2018, 18, 2116–2123. [Google Scholar] [CrossRef]
- Pilo-Pais, M.; Goldberg, S.; Samano, E.; LaBean, T.H.; Finkelstein, G. Connecting the Nanodots: Programmable Nanofabrication of Fused Metal Shapes on DNA Templates. Nano Lett. 2011, 11, 3489–3492. [Google Scholar] [CrossRef]
- Schreiber, R.; Kempter, S.; Holler, S.; Schüller, V.; Schiffels, D.; Simmel, S.S.; Nickels, P.C.; Liedl, T. DNA Origami-Templated Growth of Arbitrarily Shaped Metal Nanoparticles. Small 2011, 7, 1795–1799. [Google Scholar] [CrossRef]
- Bayrak, T.; Jagtap, N.S.; Erbe, A. Review of the Electrical Characterization of Metallic Nanowires on DNA Templates. Int. J. Mol. Sci. 2018, 19, 3019. [Google Scholar] [CrossRef]
- Pang, C.; Aryal, B.R.; Ranasinghe, D.R.; Westover, T.R.; Ehlert, A.E.F.; Harb, J.N.; Davis, R.C.; Woolley, A.T. Bottom-Up Fabrication of DNA-Templated Electronic Nanomaterials and Their Characterization. Nanomaterials 2021, 11, 1655. [Google Scholar] [CrossRef] [PubMed]
- Aryal, B.R.; Westover, T.R.; Ranasinghe, D.R.; Calvopiña, D.G.; Uprety, B.; Harb, J.N.; Davis, R.C.; Woolley, A.T. Four-Point Probe Electrical Measurements on Templated Gold Nanowires Formed on Single DNA Origami Tiles. Langmuir 2018, 34, 15069–15077. [Google Scholar] [CrossRef] [PubMed]
- Westover, T.R.; Aryal, B.R.; Ranasinghe, D.R.; Uprety, B.; Harb, J.N.; Woolley, A.T.; Davis, R.C. Impact of Polymer-Constrained Annealing on the Properties of DNA Origami-Templated Gold Nanowires. Langmuir 2020, 36, 6661–6667. [Google Scholar] [CrossRef]
- Karim, S.; Toimil-Molares, M.E.; Balogh, A.G.; Ensinger, W.; Cornelius, T.W.; Khan, E.U.; Neumann, R. Morphological Evolution of Au Nanowires Controlled by Rayleigh Instability. Nanotechnology 2006, 17, 5954. [Google Scholar] [CrossRef]
- Helmi, S.; Ziegler, C.; Kauert, D.J.; Seidel, R. Shape-Controlled Synthesis of Gold Nanostructures Using DNA Origami Molds. Nano Lett. 2014, 14, 6693–6698. [Google Scholar] [CrossRef]
- Lienig, J.; Thiele, M. Fundamentals of Electromigration-Aware Integrated Circuit Design; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Hoffmann-Vogel, R. Electromigration and the Structure of Metallic Nanocontacts. Appl. Phys. Rev. 2017, 4, 031302. [Google Scholar] [CrossRef]
- Kilgore, S. Electromigration in Gold Interconnects. Ph.D. Thesis, Arizona State University, Tempe, AZ, USA, 2013. [Google Scholar]
- Cervantes-Salguero, K.; Kawamata, I.; Nomura, S.i.M.; Murata, S. Unzipping and Shearing DNA with Electrophoresed Nanoparticles in Hydrogels. Phys. Chem. Chem. Phys. 2017, 19, 13414–13418. [Google Scholar] [CrossRef]
- Sawtelle, S.D.; Kobos, Z.A.; Reed, M.A. Electromigration in Gold Nanowires under AC Driving. Appl. Phys. Lett. 2018, 113, 193104. [Google Scholar] [CrossRef]
- Heersche, H.B.; Lientschnig, G.; O’Neill, K.; van der Zant, H.S.J.; Zandbergen, H.W. In Situ Imaging of Electromigration-Induced Nanogap Formation by Transmission Electron Microscopy. Appl. Phys. Lett. 2007, 91, 072107. [Google Scholar] [CrossRef]
- Durkan, C.; Schneider, M.A.; Welland, M.E. Analysis of Failure Mechanisms in Electrically Stressed Au Nanowires. J. Appl. Phys. 1999, 86, 1280–1286. [Google Scholar] [CrossRef]
- Sun, W.; Boulais, E.; Hakobyan, Y.; Wang, W.L.; Guan, A.; Bathe, M.; Yin, P. Casting Inorganic Structures with DNA Molds. Science 2014, 346, 1258361. [Google Scholar] [CrossRef] [PubMed]
- Majikes, J.M.; Alexander Liddle, J. Synthesizing the Biochemical and Semiconductor Worlds: The Future of Nucleic Acid Nanotechnology. Nanoscale 2022, 14, 15586–15595. [Google Scholar] [CrossRef] [PubMed]
- Douglas, S.M.; Marblestone, A.H.; Teerapittayanon, S.; Vazquez, A.; Church, G.M.; Shih, W.M. Rapid Prototyping of 3D DNA-origami Shapes with caDNAno. Nucleic Acids Res. 2009, 37, 5001–5006. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.N.; Kilchherr, F.; Dietz, H.; Bathe, M. Quantitative Prediction of 3D Solution Shape and Flexibility of Nucleic Acid Nanostructures. Nucleic Acids Res. 2012, 40, 2862–2868. [Google Scholar] [CrossRef]
- Kuzyk, A.; Schreiber, R.; Fan, Z.; Pardatscher, G.; Roller, E.M.; Högele, A.; Simmel, F.C.; Govorov, A.O.; Liedl, T. DNA-based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response. Nature 2012, 483, 311–314. [Google Scholar] [CrossRef]
- Benson, E.; Mohammed, A.; Gardell, J.; Masich, S.; Czeizler, E.; Orponen, P.; Högberg, B. DNA Rendering of Polyhedral Meshes at the Nanoscale. Nature 2015, 523, 441–444. [Google Scholar] [CrossRef]
- Teschome, B.; Facsko, S.; Schoenherr, T.; Kerbusch, J.; Keller, A.; Erbe, A. Temperature-Dependent Charge Transport through Individually Contacted DNA Origami-Based Au Nanowires. Langmuir 2016, 32, 10159–10165. [Google Scholar] [CrossRef]
Module | Width | Length |
---|---|---|
Purple (P) | ||
Blue (B) | ||
Green (G) | ||
Yellow (Y) | ||
Orange (O) |
d | l | |||
---|---|---|---|---|
A | ||||
B | ||||
C | ||||
D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruiz Arce, D.D.; Jazavandi Ghamsari, S.; Erbe, A.; Samano, E.C. Metallic Nanowires Self-Assembled in Quasi-Circular Nanomolds Templated by DNA Origami. Int. J. Mol. Sci. 2023, 24, 13549. https://doi.org/10.3390/ijms241713549
Ruiz Arce DD, Jazavandi Ghamsari S, Erbe A, Samano EC. Metallic Nanowires Self-Assembled in Quasi-Circular Nanomolds Templated by DNA Origami. International Journal of Molecular Sciences. 2023; 24(17):13549. https://doi.org/10.3390/ijms241713549
Chicago/Turabian StyleRuiz Arce, David Daniel, Shima Jazavandi Ghamsari, Artur Erbe, and Enrique C. Samano. 2023. "Metallic Nanowires Self-Assembled in Quasi-Circular Nanomolds Templated by DNA Origami" International Journal of Molecular Sciences 24, no. 17: 13549. https://doi.org/10.3390/ijms241713549
APA StyleRuiz Arce, D. D., Jazavandi Ghamsari, S., Erbe, A., & Samano, E. C. (2023). Metallic Nanowires Self-Assembled in Quasi-Circular Nanomolds Templated by DNA Origami. International Journal of Molecular Sciences, 24(17), 13549. https://doi.org/10.3390/ijms241713549