A Comparison of the Fifth World Health Organization and the International Consensus Classifications of Mature T-Cell Lymphomas
Abstract
:1. Introduction
2. Classification of Mature T-Cell Neoplasms
3. Mature T-Cell Leukemias
3.1. T-Prolymphocytic Leukemia
3.2. T-Cell Large Granular Lymphocyte (LGL) Leukemia
3.3. NK-Cell Large Granular Lymphocyte Leukemia
3.4. Aggressive NK-Cell Leukemia
3.5. Adult T-Cell Leukemia/Lymphoma
3.6. Sezary Syndrome
4. Primary Cutaneous T-Cell Lymphomas
4.1. Mycosis Fungoides
4.2. Primary Cutaneous Acral CD8+ T-Cell Lymphoproliferative Disease
4.3. Primary Cutaneous Peripheral T-Cell Lymphoma, Not Otherwise Specified (NOS)
5. Intestinal T-Cell and NK-Cell Lymphoid Proliferations and Lymphomas
5.1. Indolent NK-Cell Lymphoproliferative Disease of the Gastrointestinal Tract
5.2. Indolent T-Cell Lymphoma of the Gastrointestinal Tract
6. Hepatosplenic T-Cell Lymphoma
7. Anaplastic Large-Cell Lymphomas (ALCLs)
8. Nodal T-Follicular Helper Cell Lymphomas
8.1. Nodal TFH-Cell Lymphoma, Angioimmunoblastic Type (nTFHL-AI)
8.2. Nodal TFH-Cell Lymphoma, Follicular Type (nTFHL-F)
8.3. Nodal TFH-Cell Lymphoma Not Otherwise Specified (NOS)
9. Other Peripheral T-Cell and NK-Cell Lymphomas
9.1. Extranodal NK/T-Cell Lymphoma
9.2. PTCL-NOS (Peripheral T-Cell Lymphoma NOS)
9.3. NK/T-Cell Intravascular Lymphoma
9.4. Nodal EBV+ T- and NK-Cell Lymphoma
9.5. EBV-Positive and T- and NK-Cell Proliferations and Lymphomas of Childhood
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaffe, E.S.; Harris, N.L.; Stein, H.; Isaacson, P.G. Classification of lymphoid neoplasms: The microscope as a tool for disease discovery. Blood J. Am. Soc. Hematol. 2008, 112, 4384–4399. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.-M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood J. Am. Soc. Hematol. 2022, 140, 1200–1228. [Google Scholar] [CrossRef]
- Campo, E.; Jaffe, E.S.; Cook, J.R.; Quintanilla-Martinez, L.; Swerdlow, S.H.; Anderson, K.C.; Brousset, P.; Cerroni, L.; de Level, L.; Dirnhofer, S.; et al. The international consensus classification of mature lymphoid neoplasms: A report from the clinical advisory committee. Blood J. Am. Soc. Hematol. 2022, 140, 1229–1253. [Google Scholar] [CrossRef]
- Alaggio, R.; Amador, C.; Anagnostopoulos, I.; Attygalle, A.D.; Araujo, I.B.d.O.; Berti, E.; Bhagat, G.; Borges, A.M.; Boyer, D.; Calaminici, M.; et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: Lymphoid neoplasms. Leukemia 2022, 36, 1720–1748. [Google Scholar] [CrossRef] [PubMed]
- Khoury, J.D.; Solary, E.; Abla, O.; Akkari, Y.; Alaggio, R.; Apperley, J.F.; Bejar, R.; Berti, E.; Busque, L.; Chan, J.K.C.; et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: Myeloid and histiocytic/dendritic neoplasms. Leukemia 2022, 36, 1703–1719. [Google Scholar] [CrossRef] [PubMed]
- Sabattini, E.; Bacci, F.; Sagramoso, C.; Pileri, S.A. WHO classification of tumours of haematopoietic and lymphoid tissues in 2008: An overview. Pathologica 2010, 102, 83–87. [Google Scholar] [PubMed]
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood J. Am. Soc. Hematol. 2016, 127, 2375–2390. [Google Scholar] [CrossRef] [PubMed]
- Piccaluga, P.P.; Agostinelli, C.; Tripodo, C.; Gazzola, A.; Bacci, F.; Sabattini, E.; Pileri, S.A.; for the European T-cell Lymphoma Study Group. Peripheral T-cell lymphoma classification: The matter of cellular derivation. Expert Rev. Hematol. 2011, 4, 415–425. [Google Scholar] [CrossRef]
- Attygalle, A.D.; Cabeçadas, J.; Gaulard, P.; Jaffe, E.S.; de Jong, D.; Ko, Y.H.; Said, J.; Klapper, W. Peripheral T-cell and NK-cell lymphomas and their mimics; taking a step forward–report on the lymphoma workshop of the XVI th meeting of the European Association for Haematopathology and the Society for Hematopathology. Histopathology 2014, 64, 171–199. [Google Scholar] [CrossRef]
- William, B.M.; Armitage, J.O. International analysis of the frequency and outcomes of NK/T-cell lymphomas. Best Pr. Res. Clin. Haematol. 2013, 26, 23–32. [Google Scholar] [CrossRef]
- Chen, X.; Cherian, S. Immunophenotypic characterization of T-cell prolymphocytic leukemia. Am. J. Clin. Pathol. 2013, 140, 727–735. [Google Scholar] [CrossRef]
- Cross, M.M.J.; Else, M.; Morilla, R.; Ethell, M.E.; Potter, M.; El-Sharkawi, D.; Iyengar, S.; Dearden, C.E. No improvement in survival for T-PLL patients over the last two decades. Blood 2019, 134, 1552. [Google Scholar] [CrossRef]
- Risitano, A.M. T-PLL: Harmonizing criteria for research. Blood J. Am. Soc. Hematol. 2019, 134, 1113–1114. [Google Scholar] [CrossRef]
- Guillaume, T.; Beguin, Y.; Leblond, V.; Blaise, D.; Milpied, N.; Deconinck, E.; Cordonnier, C.; Cornillon, J.; Contentin, N.; Guillerm, G.; et al. Allogeneic Hematopoietic Stem Cell Transplantation for T-Prolymphocytic leukemia: A Retrospective Analysis from the Societe française De Greffe De Moelle Et De Therapie Cellulaire. Blood 2012, 120, 2008. [Google Scholar] [CrossRef]
- Sugimoto, T.; Imoto, S.; Matsuo, Y.; Kojima, K.; Yasukawa, M.; Murayama, T.; Kohfuku, J.; Mizuno, I.; Yakushijin, K.; Sada, A.; et al. T-cell receptor γδ T-cell leukemia with the morphology of T-cell prolymphocytic leukemia and a postthymic immunophenotype. Ann. Hematol. 2001, 80, 749–751. [Google Scholar] [CrossRef]
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J.; Vardiman, J.W. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues; International Agency for Research on Cancer: Lyon, France, 2008. [Google Scholar]
- Sokol, L.; Loughran, T.P., Jr. Large granular lymphocyte leukemia. Oncologist 2006, 11, 263–273. [Google Scholar] [CrossRef]
- Zhang, D.; Loughran, T.P., Jr. Large granular lymphocytic leukemia: Molecular pathogenesis, clinical manifestations, and treatment. Hematol. 2010 Am. Soc. Hematol. Educ. Program Book 2012, 2012, 652–659. [Google Scholar] [CrossRef]
- Lamy, T.; Loughran, T.P., Jr. (Eds.) Clinical features of large granular lymphocyte leukemia. In Seminars in Hematology; Elsevier: Amsterdam, The Netherlands, 2003. [Google Scholar]
- Mailloux, A.W.; Zhang, L.; Moscinski, L.; Bennett, J.M.; Yang, L.; Yoder, S.J.; Bloom, G.; Wei, C.; Wei, S.; Sokol, L.; et al. Fibrosis and Subsequent Cytopenias Are Associated with Basic Fibroblast Growth Factor–Deficient Pluripotent Mesenchymal Stromal Cells in Large Granular Lymphocyte Leukemia. J. Immunol. 2013, 191, 3578–3593. [Google Scholar] [CrossRef] [PubMed]
- Sanikommu, S.R.; Clemente, M.J.; Chomczynski, P.; Afable, M.G.; Jerez, A.; Thota, S.; Patel, B.; Hirsch, C.; Nazha, A.; Desamito, J.; et al. Clinical features and treatment outcomes in large granular lymphocytic leukemia (LGLL). Leuk. Lymphoma 2018, 59, 416–422. [Google Scholar] [CrossRef]
- Sun, H.; Wei, S.; Yang, L. Dysfunction of immune system in the development of large granular lymphocyte leukemia. Hematology 2019, 24, 139–147. [Google Scholar] [CrossRef]
- Steinway, S.N.; LeBlanc, F.; Loughran, T.P., Jr. The pathogenesis and treatment of large granular lymphocyte leukemia. Blood Rev. 2014, 28, 87–94. [Google Scholar] [CrossRef]
- Nielsen, C.M.; White, M.J.; Goodier, M.R.; Riley, E.M. Functional significance of CD57 expression on human NK cells and relevance to disease. Front. Immunol. 2013, 4, 422. [Google Scholar] [CrossRef]
- Lopez-Vergès, S.; Milush, J.M.; Pandey, S.; York, V.A.; Arakawa-Hoyt, J.; Pircher, H.; Norris, P.J.; Nixon, D.F.; Lanier, L.L. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood J. Am. Soc. Hematol. 2010, 116, 3865–3874. [Google Scholar] [CrossRef]
- Morice, W.G.; Kurtin, P.J.; Leibson, P.J.; Tefferi, A.; Hanson, C.A. Demonstration of aberrant T-cell and natural killer-cell antigen expression in all cases of granular lymphocytic leukaemia. Br. J. Haematol. 2003, 120, 1026–1036. [Google Scholar] [CrossRef]
- El Hussein, S.; Patel, K.P.; Fang, H.; Thakral, B.; Loghavi, S.; Kanagal-Shamanna, R.; Konoplev, S.; Jabbour, E.J.; Medeiros, L.J.; Khoury, J.D. Genomic and immunophenotypic landscape of aggressive NK-cell leukemia. Am. J. Surg. Pathol. 2020, 44, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Liu, D.; Wang, N.; Ling, S.; Tang, Y.; Wu, J.; Hao, L.; Luo, H.; Hu, X.; Sheng, L.; et al. Integrated genomic analysis identifies deregulated JAK/STAT-MYC-biosynthesis axis in aggressive NK-cell leukemia. Cell Res. 2018, 28, 172–186. [Google Scholar] [CrossRef]
- El Hussein, S.; Medeiros, L.J.; Khoury, J.D. Aggressive NK cell leukemia: Current state of the art. Cancers 2020, 12, 2900. [Google Scholar] [CrossRef]
- Cook, L.B.; Phillips, A.A. How I treat adult T-cell leukemia/lymphoma. Blood J. Am. Soc. Hematol. 2021, 137, 459–470. [Google Scholar] [CrossRef]
- Tanase, A.D.; Colita, A.; Craciun, O.G.; Lipan, L.; Varady, Z.; Stefan, L.; Ranete, A.; Pasca, S.; Bumbea, H.; Andreescu, M.; et al. Allogeneic Stem Cell Transplantation for Adult T-Cell Leukemia/Lymphoma—Romanian Experience. J. Clin. Med. 2020, 9, 2417. [Google Scholar] [CrossRef]
- Willemze, R.; Cerroni, L.; Kempf, W.; Berti, E.; Facchetti, F.; Swerdlow, S.H.; Jaffe, E.S. The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. Blood J. Am. Soc. Hematol. 2019, 133, 1703–1714. [Google Scholar] [CrossRef] [PubMed]
- Willemze, R.; Jaffe, E.S.; Burg, G.; Cerroni, L.; Berti, E.; Swerdlow, S.H.; Ralfkiaer, E.; Chimenti, S.; Diaz-Perez, J.L.; Duncan, L.M.; et al. WHO-EORTC classification for cutaneous lymphomas. Blood 2005, 105, 3768–3785. [Google Scholar] [CrossRef] [PubMed]
- Jones, C.L.; Degasperi, A.; Grandi, V.; Amarante, T.D.; Ambrose, J.C.; Arumugam, P.; Baple, E.L.; Bleda, M.; Boardman-Pretty, F.; Boissiere, J.M.; et al. Spectrum of mutational signatures in T-cell lymphoma reveals a key role for UV radiation in cutaneous T-cell lymphoma. Sci. Rep. 2021, 11, 3962. [Google Scholar] [CrossRef] [PubMed]
- Alberti-Violetti, S.; Fanoni, D.; Provasi, M.; Corti, L.; Venegoni, L.; Berti, E. Primary cutaneous acral CD8 positive T-cell lymphoma with extra-cutaneous involvement: A long-standing case with an unexpected progression. J. Cutan. Pathol. 2017, 44, 964–968. [Google Scholar] [CrossRef] [PubMed]
- Maubec, E.; Marinho, E.; Laroche, L.; Mitchell, A.; Grange, F.; Petrella, T. Primary cutaneous acral CD8+ T-cell lymphomas relapse more frequently in younger patients. Br. J. Haematol. 2019, 185, 598–601. [Google Scholar] [CrossRef] [PubMed]
- Kluk, J.; Kai, A.; Koch, D.; Taibjee, S.M.; O’Connor, S.; Persic, M.; Morris, S.; Whittaker, S.; Cerroni, L.; Kempf, W.; et al. Indolent CD8-positive lymphoid proliferation of acral sites: Three further cases of a rare entity and an update on a unique patient. J. Cutan. Pathol. 2016, 43, 125–136. [Google Scholar] [CrossRef]
- Wobser, M.; Roth, S.; Reinartz, T.; Rosenwald, A.; Goebeler, M.; Geissinger, E. CD68 expression is a discriminative feature of indolent cutaneous CD8-positive lymphoid proliferation and distinguishes this lymphoma subtype from other CD8-positive cutaneous lymphomas. Br. J. Dermatol. 2015, 172, 1573–1580. [Google Scholar] [CrossRef]
- Toberer, F.; Christopoulos, P.; Lasitschka, F.; Enk, A.; Haenssle, H.A.; Cerroni, L. Double-positive CD8/CD4 primary cutaneous acral T-cell lymphoma. J. Cutan. Pathol. 2019, 46, 231–233. [Google Scholar] [CrossRef]
- Kempf, W.; Mitteldorf, C. Cutaneous T-cell lymphomas—An update 2021. Hematol. Oncol. 2021, 39, 46–51. [Google Scholar] [CrossRef]
- Mansoor, A.; Pittaluga, S.; Beck, P.L.; Wilson, W.H.; Ferry, J.A.; Jaffe, E.S. NK-cell enteropathy: A benign NK-cell lymphoproliferative disease mimicking intestinal lymphoma: Clinicopathologic features and follow-up in a unique case series. Blood J. Am. Soc. Hematol. 2011, 117, 1447–1452. [Google Scholar] [CrossRef]
- Takeuchi, K.; Yokoyama, M.; Ishizawa, S.; Terui, Y.; Nomura, K.; Marutsuka, K.; Nunomura, M.; Fukushima, N.; Yagyuu, T.; Nakamine, H.; et al. Lymphomatoid gastropathy: A distinct clinicopathologic entity of self-limited pseudomalignant NK-cell proliferation. Blood J. Am. Soc. Hematol. 2010, 116, 5631–5637. [Google Scholar] [CrossRef]
- Xiao, W.; Gupta, G.K.; Yao, J.; Jang, Y.J.; Xi, L.; Baik, J.; Sigler, A.; Kumar, A.; Moskowitz, A.J.; Arcila, M.E.; et al. Recurrent somatic JAK3 mutations in NK-cell enteropathy. Blood J. Am. Soc. Hematol. 2019, 134, 986–991. [Google Scholar] [CrossRef]
- Dargent, J.-L.; Tinton, N.; Trimech, M.; de Leval, L. Lymph node involvement by enteropathy-like indolent NK-cell proliferation. Virchows Arch. 2021, 478, 1197–1202. [Google Scholar] [CrossRef]
- Freiche, V.; Cordonnier, N.; Paulin, M.V.; Huet, H.; Turba, M.E.; Macintyre, E.; Malamut, G.; Cerf-Bensussan, N.; Molina, T.J.; Hermine, O.; et al. Feline low-grade intestinal T cell lymphoma: A unique natural model of human indolent T cell lymphoproliferative disorder of the gastrointestinal tract. Lab. Investig. 2021, 101, 794–804. [Google Scholar] [CrossRef]
- Perry, A.M.; Bailey, N.G.; Bonnett, M.; Jaffe, E.S.; Chan, W.C. Disease progression in a patient with indolent T-cell lymphoproliferative disease of the gastrointestinal tract. Int. J. Surg. Pathol. 2019, 27, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Soderquist, C.R.; Patel, N.; Murty, V.V.; Betman, S.; Aggarwal, N.; Young, K.H.; Xerri, L.; Leeman-Neill, R.; Lewis, S.K.; Green, P.H.; et al. Genetic and phenotypic characterization of indolent T-cell lymphoproliferative disorders of the gastrointestinal tract. Haematologica 2020, 105, 1895. [Google Scholar] [CrossRef]
- Belhadj, K.; Reyes, F.; Farcet, J.-P.; Tilly, H.; Bastard, C.; Angonin, R.; Deconinck, E.; Charlotte, F.; Leblond, V.; Labouyrie, E.; et al. Hepatosplenic γδ T-cell lymphoma is a rare clinicopathologic entity with poor outcome: Report on a series of 21 patients. Blood 2003, 102, 4261–4269. [Google Scholar] [CrossRef] [PubMed]
- Macon, W.R.; Levy, N.B.; Kurtin, P.J.; Salhany, K.E.; Elkhalifa, M.Y.; Casey, T.T.; Craig, F.E.; Vnencak-Jones, C.L.; Gulley, M.L.; Park, J.P.; et al. Hepatosplenic αβ T-cell lymphomas: A report of 14 cases and comparison with hepatosplenic γδ T-cell lymphomas. Am. J. Surg. Pathol. 2001, 25, 285–296. [Google Scholar] [CrossRef] [PubMed]
- Yabe, M.; Medeiros, L.J.; Tang, G.; Wang, S.A.; Patel, K.P.; Routbort, M.; Bhagat, G.; Bueso-Ramos, C.E.; Jorgensen, J.L.; Luthra, R.; et al. Dyspoietic changes associated with hepatosplenic T-cell lymphoma are not a manifestation of a myelodysplastic syndrome: Analysis of 25 patients. Hum. Pathol. 2016, 50, 109–117. [Google Scholar] [CrossRef]
- Yabe, M.; Medeiros, L.J.; Tang, G.; Wang, S.A.; Ahmed, S.; Nieto, Y.; Hu, S.; Bhagat, G.; Oki, Y.; Patel, K.P.; et al. Prognostic factors of hepatosplenic T-cell lymphoma. Am. J. Surg. Pathol. 2016, 40, 676–688. [Google Scholar] [CrossRef]
- Benharroch, D.; Meguerian-Bedoyan, Z.; Lamant, L.; Amin, C.; Brugières, L.; Terrier-Lacombe, M.J.; Haralambieva, E.; Pulford, K.; Pileri, S.; Morris, S.W.; et al. ALK-positive lymphoma: A single disease with a broad spectrum of morphology. Blood J. Am. Soc. Hematol. 1998, 91, 2076–2084. [Google Scholar]
- Pittaluga, S.; Wlodarska, I.; Pulford, K.; Campo, E.; Morris, S.W.; Van den Berghe, H.; De Wolf-Peeters, C. The monoclonal antibody ALK1 identifies a distinct morphological subtype of anaplastic large cell lymphoma associated with 2p23/ALK rearrangements. Am. J. Pathol. 1997, 151, 343. [Google Scholar] [PubMed]
- Piccaluga, P.P.; Cascianelli, C.; Inghirami, G. Tyrosine kinases in nodal peripheral T-cell lymphomas. Front. Oncol. 2023, 13, 1099943. [Google Scholar] [CrossRef] [PubMed]
- Piva, R.; Agnelli, L.; Pellegrino, E.; Todoerti, K.; Grosso, V.; Tamagno, I.; Fornari, A.; Martinoglio, B.; Medico, E.; Zamò, A.; et al. Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J. Clin. Oncol. 2010, 28, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Boi, M.; Rinaldi, A.; Piva, R.; Rancoita, P.M.; Bonetti, P.; Matolcsy, A.; Tousseyn, T.; Rodríguez-Pinilla, S.M.; Piris, M.; Beà, S.; et al. BLIMP1 is commonly inactivated in anaplastic large T-cell lymphomas (ALCL). Blood Am. Soc. Hematol. 2011, 118, 2634. [Google Scholar] [CrossRef]
- Piccaluga, P.P.; Fuligni, F.; De Leo, A.; Bertuzzi, C.; Rossi, M.; Bacci, F.; Sabattini, E.; Agostinelli, C.; Gazzola, A.; Laginestra, M.A.; et al. Molecular profiling improves classification and prognostication of nodal peripheral T-cell lymphomas: Results of a phase III diagnostic accuracy study. J. Clin. Oncol. 2013, 31, 3019–3025. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.B.; Hamilton-Dutoit, S.J.; Bendix, K.; Ketterling, R.P.; Bedroske, P.P.; Luoma, I.M.; Sattler, C.A.; Boddicker, R.L.; Bennani, N.N.; Nørgaard, P.; et al. DUSP22 and TP63 rearrangements predict outcome of ALK-negative anaplastic large cell lymphoma: A Danish cohort study. Blood 2017, 130, 554–557. [Google Scholar] [CrossRef] [PubMed]
- King, R.L.; Dao, L.N.; McPhail, E.D.; Jaffe, E.S.; Said, J.; Swerdlow, S.H.; Sattler, C.A.B.; Ketterling, R.P.; Sidhu, J.S.; Hsi, E.D.; et al. Morphologic features of ALK-negative anaplastic large cell lymphomas with DUSP22 rearrangements. Am. J. Surg. Pathol. 2016, 40, 36–43. [Google Scholar] [CrossRef]
- Ravindran, A.M.; Feldman, A.L.; Ketterling, R.P.; Dasari, S.; Rech, K.L.; McPhail, E.D.; Kurtin, P.J.; Shi, M. Striking association of lymphoid enhancing factor (LEF1) overexpression and DUSP22 rearrangements in anaplastic large cell lymphoma. Am. J. Surg. Pathol. 2021, 45, 550–557. [Google Scholar] [CrossRef]
- Miranda, R.N.; Aladily, T.N.; Prince, H.M.; Kanagal-Shamanna, R.; de Jong, D.; Fayad, L.E.; Amin, M.B.; Haideri, N.; Bhagat, G.; Brooks, G.S.; et al. Breast implant–associated anaplastic large-cell lymphoma: Long-term follow-up of 60 patients. J. Clin. Oncol. 2014, 32, 114–120. [Google Scholar] [CrossRef]
- Piccaluga, P.P. Introductory Chapter: Updates and New Insights from WHO 2017 Peripheral T-Cell Lymphoma Classification. Peripheral T-Cell Lymphomas; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Oishi, N.; Brody, G.S.; Ketterling, R.P.; Viswanatha, D.S.; He, R.; Dasari, S.; Mai, M.; Benson, H.K.; Sattler, C.A.; Boddicker, R.L.; et al. Genetic subtyping of breast implant–associated anaplastic large cell lymphoma. Blood J. Am. Soc. Hematol. 2018, 132, 544–547. [Google Scholar] [CrossRef]
- Laurent, C.; Nicolae, A.; Laurent, C.; Le Bras, F.; Haioun, C.; Fataccioli, V.; Amara, N.; Adélaïde, J.; Guille, A.; Schiano, J.-M.; et al. Gene alterations in epigenetic modifiers and JAK-STAT signaling are frequent in breast implant-associated ALCL. Blood 2020, 135, 360–370. [Google Scholar] [CrossRef]
- Quesada, A.E.; Zhang, Y.; Ptashkin, R.; Ho, C.; Horwitz, S.; Benayed, R.; Dogan, A.; Arcila, M.E. Next generation sequencing of breast implant-associated anaplastic large cell lymphomas reveals a novel STAT3-JAK2 fusion among other activating genetic alterations within the JAK-STAT pathway. Breast J. 2021, 27, 314–321. [Google Scholar] [CrossRef]
- Vries, G.T.L.-D.; de Boer, M.; van Dijk, E.; Stathi, P.; Hijmering, N.J.; Roemer, M.G.M.; Mendeville, M.; Miedema, D.M.; de Boer, J.P.; Rakhorst, H.A.; et al. Chromosome 20 loss is characteristic of breast implant–associated anaplastic large cell lymphoma. Blood 2020, 136, 2927–2932. [Google Scholar] [CrossRef]
- Rüdiger, T.; Geissinger, E.; Müller-Hermelink, H.K. ‘Normal counterparts’ of nodal peripheral T-cell lymphoma. Hematol. Oncol. 2006, 24, 175–180. [Google Scholar] [CrossRef]
- de Leval, L.; Rickman, D.S.; Thielen, C.; de Reynies, A.; Huang, Y.-L.; Delsol, G.; Lamant, L.; Leroy, K.; Brière, J.; Molina, T.; et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood J. Am. Soc. Hematol. 2007, 109, 4952–4963. [Google Scholar] [CrossRef]
- Piccaluga, P.P.; Agostinelli, C.; Califano, A.; Carbone, A.; Fantoni, L.; Ferrari, S.; Gazzola, A.; Gloghini, A.; Righi, S.; Rossi, M.; et al. Gene expression analysis of angioimmunoblastic lymphoma indicates derivation from T follicular helper cells and vascular endothelial growth factor deregulation. Cancer Res. 2007, 67, 10703–10710. [Google Scholar] [CrossRef]
- Iqbal, J.; Wright, G.; Wang, C.; Rosenwald, A.; Gascoyne, R.D.; Weisenburger, D.D.; Greiner, T.C.; Smith, L.; Guo, S.; Wilcox, R.A.; et al. Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood J. Am. Soc. Hematol. 2014, 123, 2915–2923. [Google Scholar] [CrossRef]
- Falchi, L.; Ma, H.; Klein, S.; Lue, J.K.; Montanari, F.; Marchi, E.; Deng, C.; Kim, H.A.; Rada, A.M.; Jacob, A.T.; et al. Combined oral 5-azacytidine and romidepsin are highly effective in patients with PTCL: A multicenter phase 2 study. Blood J. Am. Soc. Hematol. 2021, 137, 2161–2170. [Google Scholar] [CrossRef]
- Lemonnier, F.; Dupuis, J.; Sujobert, P.; Tournillhac, O.; Cheminant, M.; Sarkozy, C.; Pelletier, L.; Marçais, A.; Robe, C.; Fataccioli, V.; et al. Treatment with 5-azacytidine induces a sustained response in patients with angioimmunoblastic T-cell lymphoma. Blood J. Am. Soc. Hematol. 2018, 132, 2305–2309. [Google Scholar] [CrossRef]
- Drieux, F.; Ruminy, P.; Sater, V.; Marchand, V.; Fataccioli, V.; Lanic, M.-D.; Viennot, M.; Viailly, P.-J.; Sako, N.; Robe, C.; et al. Detection of gene fusion transcripts in peripheral T-cell lymphoma using a multiplexed targeted sequencing assay. J. Mol. Diagn. 2021, 23, 929–940. [Google Scholar] [CrossRef]
- Krug, A.; Tari, G.; Saidane, A.; Gaulard, P.; Ricci, J.-E.; Lemonnier, F.; Verhoeyen, E. Novel T Follicular Helper-like T-Cell Lymphoma Therapies: From Preclinical Evaluation to Clinical Reality. Cancers 2022, 14, 2392. [Google Scholar] [CrossRef]
- Dobay, M.P.; Lemonnier, F.; Missiaglia, E.; Bastard, C.; Vallois, D.; Jais, J.-P.; Scourzic, L.; Dupuy, A.; Fataccioli, V.; Pujals, A.; et al. Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin. Haematologica 2017, 102, e148–e151. [Google Scholar] [CrossRef]
- Steinhilber, J.; Mederake, M.; Bonzheim, I.; Serinsöz-Linke, E.; Müller, I.; Fallier-Becker, P.; Lemonnier, F.; Gaulard, P.; Fend, F.; Quintanilla-Martinez, L. The pathological features of angioimmunoblastic T-cell lymphomas with IDH2 R172 mutations. Mod. Pathol. 2019, 32, 1123–1134. [Google Scholar] [CrossRef]
- Basha, B.M.; Bryant, S.C.; Rech, K.L.; Feldman, A.L.; Vrana, J.A.; Shi, M.; Reed, K.A.; King, R.L. Application of a 5 marker panel to the routine diagnosis of peripheral T-cell lymphoma with T-follicular helper phenotype. Am. J. Surg. Pathol. 2019, 43, 1282–1290. [Google Scholar] [CrossRef]
- Vallois, D.; Dobay, M.P.D.; Morin, R.D.; Lemonnier, F.; Missiaglia, E.; Juilland, M.; Iwaszkiewicz, J.; Fataccioli, V.; Bisig, B.; Roberti, A.; et al. Activating mutations in genes related to TCR signaling in angioimmunoblastic and other follicular helper T-cell–derived lymphomas. Blood J. Am. Soc. Hematol. 2016, 128, 1490–1502. [Google Scholar] [CrossRef]
- Barnea Slonim, L.; Ma, S.; Behdad, A.; Chen, Q. Pseudo-Richter transformation of chronic lymphocytic leukaemia/small lymphocytic lymphoma following ibrutinib interruption: A diagnostic pitfall. Br. J. Haematol. 2020, 191, e22–e25. [Google Scholar] [CrossRef]
- Debackere, K.; van der Krogt, J.-A.; Tousseyn, T.; Ferreiro, J.A.F.; Van Roosbroeck, K.; Marcelis, L.; Graux, C.; Dierickx, D.; Ameye, G.; Vandenberghe, P.; et al. FER and FES tyrosine kinase fusions in follicular T-cell lymphoma. Blood J. Am. Soc. Hematol. 2020, 135, 584–588. [Google Scholar] [CrossRef]
- Ramos, J.; Ward, N. Follicular T-cell lymphoma: A short review with brief discussion of other nodal lymphomas/lymphoproliferative disorders of T-follicular helper cell origin. J. Hematop. 2021, 14, 261–268. [Google Scholar] [CrossRef]
- Heavican, T.B.; Bouska, A.; Yu, J.; Lone, W.; Amador, C.; Gong, Q.; Zhang, W.; Li, Y.; Dave, B.J.; Nairismägi, M.-L.; et al. Genetic drivers of oncogenic pathways in molecular subgroups of peripheral T-cell lymphoma. Blood J. Am. Soc. Hematol. 2019, 133, 1664–1676. [Google Scholar] [CrossRef]
- Cerroni, L.; Massone, C.; Kutzner, H.; Mentzel, T.; Umbert, P.; Kerl, H. Intravascular large T-cell or NK-cell lymphoma: A rare variant of intravascular large cell lymphoma with frequent cytotoxic phenotype and association with Epstein-Barr virus infection. Am. J. Surg. Pathol. 2008, 32, 891–898. [Google Scholar] [CrossRef]
- Klairmont, M.M.; Cheng, J.; Martin, M.G.; Gradowski, J.F. Recurrent cytogenetic abnormalities in intravascular large B-cell lymphoma. Am. J. Clin. Pathol. 2018, 150, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Fujikura, K.; Yamashita, D.; Yoshida, M.; Ishikawa, T.; Itoh, T.; Imai, Y. Cytogenetic complexity and heterogeneity in intravascular lymphoma. J. Clin. Pathol. 2021, 74, 244–250. [Google Scholar] [CrossRef]
- Jung, K.S.; Cho, S.-H.; Kim, S.J.; Ko, Y.H.; Kim, W.S. Clinical features and treatment outcome of Epstein–Barr virus-positive nodal T-cell lymphoma. Int. J. Hematol. 2016, 104, 591–595. [Google Scholar] [CrossRef]
- Wai, C.M.M.; Chen, S.; Phyu, T.; Fan, S.; Leong, S.M.; Zheng, W.; Low, L.C.Y.; Choo, S.-N.; Lee, C.-K.; Chung, T.-H.; et al. Immune pathway upregulation and lower genomic instability distinguish EBV-positive nodal T/NK-cell lymphoma from ENKTL and PTCL-NOS. Haematologica 2022, 107, 1864–1879. [Google Scholar] [CrossRef]
- Jeon, Y.K.; Kim, J.-H.; Sung, J.-Y.; Han, J.H.; Ko, Y.-H. Epstein-Barr virus–positive nodal T/NK-cell lymphoma: An analysis of 15 cases with distinct clinicopathological features. Hum. Pathol. 2015, 46, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Dojcinov, S.D.; Fend, F.; Quintanilla-Martinez, L. EBV-positive lymphoproliferations of B- T- and NK-cell derivation in non-immunocompromised hosts. Pathogens 2018, 7, 28. [Google Scholar] [CrossRef]
- Quintanilla-Martinez, L.; Ridaura, C.; Nagl, F.; Sáez-De-Ocariz, M.; Durán-McKinster, C.; Ruiz-Maldonado, R.; Alderete, G.; Grube, P.; Lome-Maldonado, C.; Bonzheim, I.; et al. Hydroa vacciniforme-like lymphoma: A chronic EBV+ lymphoproliferative disorder with risk to develop a systemic lymphoma. Blood J. Am. Soc. Hematol. 2013, 122, 3101–3110. [Google Scholar] [CrossRef]
- Cohen, J.I.; Iwatsuki, K.; Ko, Y.-H.; Kimura, H.; Manoli, I.; Ohshima, K.; Pittaluga, S.; Quintanilla-Martinez, L.; Jaffe, E.S. Epstein-Barr virus NK and T cell lymphoproliferative disease: Report of a 2018 international meeting. Leuk. Lymphoma 2019, 61, 808–819. [Google Scholar] [CrossRef]
- Miyake, T.; Yamamoto, T.; Hirai, Y.; Otsuka, M.; Hamada, T.; Tsuji, K.; Morizane, S.; Suzuki, D.; Aoyama, Y.; Iwatsuki, K. Survival rates and prognostic factors of Epstein-Barr virus-associated hydroa vacciniforme and hypersensitivity to mosquito bites. Br. J. Dermatol. 2015, 172, 56–63. [Google Scholar] [CrossRef]
- Barrionuevo, C.; Anderson, V.M.; Zevallos-Giampietri, E.; Zaharia, M.; Misad, O.; Bravo, F.; Cáceres, H.; Taxa, L.; Martínez, M.T.; Wachtel, A.; et al. Hydroa-like cutaneous T-cell lymphoma: A clinicopathologic and molecular genetic study of 16 pediatric cases from Peru. Appl. Immunohistochem. Mol. Morphol. 2002, 10, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Pinilla, S.M.; Barrionuevo, C.; García, J.; Ángeles, M.d.L.; Pajares, R.; Casavilca, S.; Montes, J.; Martínez, A.; Montes-Moreno, S.; Sánchez, L.; et al. Epstein-Barr virus-positive systemic NK/T-cell lymphomas in children: Report of six cases. Histopathology 2011, 59, 1183–1193. [Google Scholar] [CrossRef] [PubMed]
- Bollard, C.M.; Cohen, J.I. How I treat T-cell chronic active Epstein-Barr virus disease. Blood J. Am. Soc. Hematol. 2018, 131, 2899–2905. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Ito, Y.; Kawabe, S.; Gotoh, K.; Takahashi, Y.; Kojima, S.; Naoe, T.; Esaki, S.; Kikuta, A.; Sawada, A.; et al. EBV-associated T/NK–cell lymphoproliferative diseases in nonimmunocompromised hosts: Prospective analysis of 108 cases. Blood J. Am. Soc. Hematol. 2012, 119, 673–686. [Google Scholar] [CrossRef] [PubMed]
- Kimura, H.; Cohen, J.I. Chronic active Epstein–Barr virus disease. Front. Immunol. 2017, 8, 1867. [Google Scholar] [CrossRef]
- Yonese, I.; Sakashita, C.; Imadome, K.-I.; Kobayashi, T.; Yamamoto, M.; Sawada, A.; Ito, Y.; Fukuhara, N.; Hirose, A.; Takeda, Y.; et al. Nationwide survey of systemic chronic active EBV infection in Japan in accordance with the new WHO classification. Blood Adv. 2020, 4, 2918–2926. [Google Scholar] [CrossRef]
- Cohen, J.I.; Manoli, I.; Dowdell, K.; Krogmann, T.A.; Tamura, D.; Radecki, P.; Bu, W.; Turk, S.-P.; Liepshutz, K.; Hornung, R.L.; et al. Hydroa vacciniforme–like lymphoproliferative disorder: An EBV disease with a low risk of systemic illness in whites. Blood J. Am. Soc. Hematol. 2019, 133, 2753–2764. [Google Scholar] [CrossRef]
- Montes-Mojarro, I.A.; Kim, W.Y.; Fend, F.; Quintanilla-Martinez, L. (Eds.) Epstein—Barr virus positive T and NK-cell lymphoproliferations: Morphological features and differential diagnosis. In Seminars in Diagnostic Pathology; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
WHO-HEAM5 | WHO-HEAM4R | ICC |
---|---|---|
Mature T-cell and NK-cell neoplasms | ||
Mature T-cell and NK-cell leukemia | ||
T-prolymphocytic leukemia | T-prolymphocytic leukemia | T-cell prolymphocytic leukemia |
T-large granular lymphocytic leukemia | T-cell large granular lymphocytic leukemia | T-cell large granular lymphocytic leukemia |
NK large granular lymphocytic leukemia | Chronic lymphoproliferative disorder of NK cells | Chronic lymphoproliferative disorder of NK cells |
Adult T-cell leukemia/lymphoma | Adult T-cell leukemia/lymphoma | Adult T-cell leukemia/lymphoma |
Sezary syndrome | Sezary syndrome | Sezary syndrome |
Aggressive NK-cell leukaemia | Aggressive NK-cell leukaemia | Aggressive NK-cell leukemia |
Primary cutaneous T-cell lymphomas | Primary cutaneous T-cell lymphomas | |
Primary cutaneous CD4-positive small or medium T-cell lymphoproliferative disorder | Primary cutaneous CD4-positive small or medium T-cell lymphoproliferative disorder | Primary cutaneous small/medium CD4 T-cell lymphoproliferative disorder |
Primary cutaneous acral CD8-positive lymphoproliferative disorder | Primary cutaneous acral CD8-positive T-cell lymphoma | Primary cutaneous acral CD8 T-cell lymphoproliferative disorder |
Mycosis fungoides | Mycosis fungoides | Mycosis fungoides |
Primary cutaneous CD30-positive T-cell lymphoproliferative disorder: lymphomatoid papulosis | Primary cutaneous CD30-positive T-cell lymphoproliferative disorder: lymphomatoid papulosis | Primary cutaneous CD30-positive T-cell lymphoproliferative disorder: lymphomatoid papulosis |
Primary cutaneous CD30-positive T-cell lymphoproliferative disorder: primary cutaneous anaplastic large-cell lymphoma | Primary cutaneous CD30-positive T-cell lymphoproliferative disorder: primary cutaneous anaplastic large-cell lymphoma | Primary cutaneous anaplastic large-cell lymphoma |
Subcutaneous panniculitis-like T-cell lymphoma | Subcutaneous panniculitis-like T-cell lymphoma | Subcutaneous panniculitis-like T-cell lymphoma |
Primary cutaneous gamma/delta T-cell lymphoma | Primary cutaneous gamma/delta T-cell lymphoma | Primary cutaneous gamma-delta T-cell lymphoma |
Primary cutaneous CD8-positive aggressive epidermotropic cytotoxic T-cell lymphoma | Primary cutaneous CD8-positive aggressive epidermotropic cytotoxic T-cell lymphoma | Primary cutaneous CD8 aggressive epidermotropic cytotoxic T-cell lymphoma |
Primary cutaneous peripheral T-cell lymphoma, NOS | Not previously included | |
Intestinal T-cell and NK-cell lymphoid proliferations and lymphomas | ||
Indolent T-cell lymphoma of the gastrointestinal tract | Indolent T-cell lymphoproliferative disorder of the gastrointestinal tract | Indolent T-cell lymphoma of the gastrointestinal tract |
Indolent NK-cell lymphoproliferative disorder of the gastrointestinal tract | Not previously included | Indolent clonal T-cell lymphoproliferative disorder of the gastrointestinal tract |
Enteropathy-associated T-cell lymphoma | Enteropathy-associated T-cell lymphoma | Enteropathy-associated T-cell lymphoma Type II refractory celiac disease |
Monomorphic epitheliotropic intestinal T-cell lymphoma | Monomorphic epitheliotropic intestinal T-cell lymphoma | Monomorphic epitheliotropic intestinal T-cell lymphoma |
Intestinal T-cell lymphoma, NOS | Intestinal T-cell lymphoma, NOS | Intestinal T-cell lymphoma, NOS |
Hepatosplenic T-cell lymphoma | ||
Hepatosplenic T-cell lymphoma | Hepatosplenic T-cell lymphoma | Hepatosplenic T-cell lymphoma |
Anaplastic large cell lymphomas | ||
ALK-positive anaplastic large-cell lymphoma | Anaplastic large-cell lymphoma, ALK-positive | Anaplastic large-cell lymphoma, ALK positive |
ALK-negative anaplastic large-cell lymphoma | Anaplastic large-cell lymphoma, ALK-negative | Anaplastic large-cell lymphoma, ALK negative |
Breast-implant-associated anaplastic large-cell lymphoma | Breast-implant-associated anaplastic large-cell lymphoma | Breast-implant-associated anaplastic large-cell lymphoma |
Nodal T-follicular helper (TFH)-cell lymphoma | Follicular helper T-cell lymphoma | |
Nodal TFH-cell lymphoma, angioimmunoblastic-type | Angioimmunoblastic T-cell lymphoma | TFH lymphoma, angioimmunoblastic type (angioimmunoblastic T-cell lymphoma) |
Nodal TFH cell lymphoma, follicular-type | Follicular T-cell lymphoma | Follicular helper T-cell lymphoma, follicular type |
Nodal TFH cell lymphoma, NOS | Nodal peripheral T-cell lymphoma with TFH phenotype | Follicular helper T-cell lymphoma, NOS |
Other peripheral T-cell lymphomas | ||
Peripheral T-cell lymphoma, not otherwise specified | Peripheral T-cell lymphoma, not otherwise specified | Peripheral T-cell lymphoma, NOS |
EBV-positive NK-/T-cell lymphomas | ||
EBV-positive nodal T- and NK-cell lymphoma | Not previously included | |
Extranodal NK-/T-cell lymphoma | Extranodal NK-/T-cell lymphoma, nasal-type | |
EBV-positive T- and NK-cell lymphoid proliferations and lymphomas of childhood | ||
Severe mosquito bite allergy | Severe mosquito bite allergy | Severe mosquito bite allergy |
Hydroa vacciniforme lymphoproliferative disorder | Hydroa vacciniforme-like lymphoproliferative disorder | Hydroa vacciniforme lymphoproliferative disorder Classic Systemic |
Systemic chronic active EBV disease | Chronic active EBV infection of T- and NK-cell type, systemic form | Chronic active Epstein–Barr virus disease, systemic (T-cell and NK-cell phenotype) |
Systemic EBV-positive T-cell lymphoma of childhood | Systemic EBV-positive T-cell lymphoma of childhood | Systemic Epstein–Barr-virus-positive T-cell lymphoma of childhood |
1 | The WHO-HAEM5 groups mature T-cell malignancies into nine categories, while the ICC puts all entities into one group of mature T-cell and NK-cell neoplasms. |
2 | The WHO-HAEM5 changed the nomenclature of T-cell large granular lymphocytic leukemia, chronic lymphoproliferative disorder of NK cells, anaplastic large-cell lymphoma, and ALK-positive and -negative anaplastic large-cell lymphoma, but ICC retained the old nomenclature from the WHO-HAEM4R. |
3 | The WHO-HAEM5 included primary cutaneous peripheral T-cell lymphoma NOS and EBV-positive nodal T- and NK-cell lymphoma as new entities, while the ICC did not include them. |
4 | Regarding intestinal T-cell and NK-cell lymphoid proliferations and lymphomas, both the WHO-HAEM5 and the ICC revised the name of indolent T-cell lymphoproliferative disorder of the gastrointestinal tract, now included as indolent T-cell lymphoma of the gastrointestinal tract, and both classifications added indolent NK-cell lymphoproliferative disorder as a new entity. |
5 | WHO-HAEM5 groups primary cutaneous T-cell lymphoid proliferations and lymphomas (CTCL) into nine different entities, while in the ICC, the sole observed change was to the nomenclature of primary cutaneous acral CD8+ T-cell lymphoma, as it is now classified as a primary cutaneous acral CD8+ T-cell LPD. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccaluga, P.P.; Khattab, S.S. A Comparison of the Fifth World Health Organization and the International Consensus Classifications of Mature T-Cell Lymphomas. Int. J. Mol. Sci. 2023, 24, 14170. https://doi.org/10.3390/ijms241814170
Piccaluga PP, Khattab SS. A Comparison of the Fifth World Health Organization and the International Consensus Classifications of Mature T-Cell Lymphomas. International Journal of Molecular Sciences. 2023; 24(18):14170. https://doi.org/10.3390/ijms241814170
Chicago/Turabian StylePiccaluga, Pier Paolo, and Shaimaa S. Khattab. 2023. "A Comparison of the Fifth World Health Organization and the International Consensus Classifications of Mature T-Cell Lymphomas" International Journal of Molecular Sciences 24, no. 18: 14170. https://doi.org/10.3390/ijms241814170
APA StylePiccaluga, P. P., & Khattab, S. S. (2023). A Comparison of the Fifth World Health Organization and the International Consensus Classifications of Mature T-Cell Lymphomas. International Journal of Molecular Sciences, 24(18), 14170. https://doi.org/10.3390/ijms241814170