Mapping QTL for Mineral Accumulation and Shoot Dry Biomass in Barley under Different Levels of Zinc Supply
Abstract
:1. Introduction
2. Results
2.1. Zinc Accumulation in Barley Cultivars
2.2. Shoot Mineral Accumulation and Biomass of Barley Double Haploid Lines
2.3. Correlation between Traits
2.4. Identification of QTL
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.1.1. Experiment 1
4.1.2. Experiment 2
4.2. Substrate Material and Experimental Design
4.3. Sample Preparation for Elemental Analysis
4.4. QTL Mapping and Candidate Gene Search
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- White, P.J.; Brown, P.H. Plant nutrition for sustainable development and global health. Ann. Bot. 2010, 105, 1073–1080. [Google Scholar] [CrossRef]
- Huang, S.; Wang, P.; Yamaji, N.; Ma, J.F. Plant nutrition for human nutrition: Hints from rice research and future perspectives. Mol. Plant 2020, 13, 825–835. [Google Scholar] [CrossRef]
- Buturi, C.V.; Mauro, R.P.; Fogliano, V.; Leonardi, C.; Giuffrida, F. Mineral biofortification of vegetables as a tool to improve human diet. Foods 2021, 10, 223. [Google Scholar] [CrossRef]
- Beal, T.; Ortenzi, F. Priority micronutrient density in foods. Front. Nutr. 2022, 9, 806566. [Google Scholar] [CrossRef]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant Soil 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Swaminathan, M.S. Public health. Cutting world hunger in half. Science 2005, 307, 357–359. [Google Scholar] [CrossRef]
- Mahmood, Q.; Asif, M.; Shaheen, S.; Hayat, M.T.; Ali, S. Cadmium contamination in water and soil. In Cadmium Toxicity and Tolerance in Plants; Elsevier: Amsterdam, The Netherlands, 2019; pp. 141–161. [Google Scholar]
- Ochoa, M.; Tierra, W.; Tupuna-Yerovi, D.S.; Guanoluisa, D.; Otero, X.L.; Ruales, J. Assessment of cadmium and lead contamination in rice farming soils and rice (Oryza sativa L.) from Guayas province in Ecuador. Environ. Pollut. 2020, 260, 114050. [Google Scholar] [CrossRef]
- Sarwar, N.; Saifullah; Malhi, S.S.; Zia, M.H.; Naeem, A.; Bibi, S.; Farid, G. Role of mineral nutrition in minimizing cadmium accumulation by plants. J. Sci. Food. Agric. 2010, 90, 925–937. [Google Scholar] [CrossRef]
- Hussain, S.; Khan, A.M.; Rengel, Z. Zinc-biofortified wheat accumulates more cadmium in grains than standard wheat when grown on cadmium-contaminated soil regardless of soil and foliar zinc application. Sci. Total Environ. 2019, 654, 402–408. [Google Scholar] [CrossRef]
- Sakellariou, M.; Mylona, P.V. New uses for traditional crops: The case of barley biofortification. Agronomy 2020, 10, 1964. [Google Scholar] [CrossRef]
- Gyawali, S.; Otte, M.L.; Jacob, D.L.; Abderrazek, J.; Singh Verma, R.P. Multiple element concentration in the grain of spring barley (Hordeum vulgare L.) collection. J. Plant Nutr. 2019, 42, 1036–1046. [Google Scholar] [CrossRef]
- Genc, Y.; Huang, C.Y.; Langridge, P. A study of the role of root morphological traits in growth of barley in zinc-deficient soil. J. Exp. Bot. 2007, 58, 2775–2784. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.A.; Shabala, S.; Cuin, T.A.; Zhou, M.; Penrose, B. Avenues for biofortification of zinc in barley for human and animal health: A meta-analysis. Plant Soil 2021, 466, 101–119. [Google Scholar] [CrossRef]
- Khoshgoftarmanesh, A.H.; Afyuni, M.; Norouzi, M.; Ghiasi, S.; Schulin, R. Fractionation and bioavailability of zinc (Zn) in the rhizosphere of two wheat cultivars with different Zn deficiency tolerance. Geoderma 2018, 309, 1–6. [Google Scholar] [CrossRef]
- Mori, A.; Kirk, G.J.D.; Lee, J.-S.; Morete, M.J.; Nanda, A.K.; Johnson-Beebout, S.E.; Wissuwa, M. Rice genotype differences in tolerance of zinc-deficient soils: Evidence for the importance of root-induced changes in the rhizosphere. Front. Plant Sci. 2016, 6, 1160. [Google Scholar] [CrossRef]
- Impa, S.M.; Morete, M.J.; Ismail, A.M.; Schulin, R.; Johnson-Beebout, S.E. Zn uptake, translocation and grain Zn loading in rice (Oryza sativa L.) genotypes selected for Zn deficiency tolerance and high grain Zn. J. Exp. Bot. 2013, 64, 2739–2751. [Google Scholar] [CrossRef]
- Xu, J.; Qin, X.; Ni, Z.; Chen, F.; Fu, X.; Yu, F. Identification of zinc efficiency-associated loci (ZEALS) and candidate genes for Zn deficiency tolerance of two recombination inbred line populations in maize. Int. J. Mol. Sci. 2022, 23, 94852. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Lu, L.-L.; Yang, X.-E.; Feng, Y.; Wei, Y.-Y.; Hao, H.-L.; Stoffella, P.J.; He, Z.-L. Uptake, translocation, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities. J. Agric. Food. Chem. 2010, 58, 6767–6773. [Google Scholar] [CrossRef]
- Lonergan, P.F.; Pallotta, M.A.; Lorimer, M.; Paull, J.G.; Barker, S.J.; Graham, R.D. Multiple genetic loci for zinc uptake and distribution in barley (Hordeum vulgare). New Phytol. 2009, 184, 168–179. [Google Scholar] [CrossRef]
- Sadeghzadeh, B.; Rengel, Z.; Li, C. Quantitative trait loci (QTL) of seed Zn accumulation in barley population Clipper x Sahara. J. Plant Nutr. 2015, 38, 1672–1684. [Google Scholar] [CrossRef]
- Hussain, S.; Rengel, Z.; Mohammadi, S.A.; Ebadi-Segherloo, A.; Maqsood, M.A. Mapping QTL associated with remobilization of zinc from vegetative tissues into grains of barley (Hordeum vulgare). Plant Soil 2016, 399, 193–208. [Google Scholar] [CrossRef]
- Nyiraguhirwa, S.; Grana, Z.; Ouabbou, H.; Iraqi, D.; Ibriz, M.; Mamidi, S.; Udupa, S.M. A genome-wide association study identifying single-nucleotide polymorphisms for iron and zinc biofortification in a worldwide barley collection. Plants 2022, 11, 1349. [Google Scholar] [CrossRef]
- Detterbeck, A.; Nagel, M.; Rensch, S.; Weber, M.; Borner, A.; Persson, D.P.; Schjoerring, J.K.; Christov, V.; Clemens, S. The search for candidate genes associated with natural variation of grain Zn accumulation in barley. Biochem. J. 2019, 476, 1889–1909. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, S.; Otte, M.L.; Chao, S.M.; Jilal, A.; Jacob, D.L.; Amezrou, R.; Verma, R.P.S. Genome wide association studies (GWAS) of element contents in grain with a special focus on zinc and iron in a world collection of barley (Hordeum vulgare L.). J. Cereal Sci. 2017, 77, 266–274. [Google Scholar] [CrossRef]
- Thabet, S.G.; Alomari, D.Z.; Brinch-Pedersen, H.; Alqudah, A.M. Genetic analysis toward more nutritious barley grains for a food secure world. Bot. Stud. 2022, 63, 6. [Google Scholar] [CrossRef]
- Mamo, B.E.; Barber, B.L.; Steffenson, B.J. Genome-wide association mapping of zinc and iron concentration in barley landraces from Ethiopia and Eritrea. J. Cereal Sci. 2014, 60, 497–506. [Google Scholar] [CrossRef]
- Abendroth, J.A.; Sallam, A.H.; Steffenson, B.J.; Vinje, M.A.; Mahalingam, R.; Walling, J.G. Identification of genomic loci controlling grain macro and micronutrient variation in a wild barley (Hordeum vulgare spp. spontaneum) diversity panel. Agronomy 2022, 12, 2839. [Google Scholar] [CrossRef]
- Tiong, J.; McDonald, G.; Genc, Y.; Shirley, N.; Langridge, P.; Huang, C.Y. Increased expression of six ZIP family genes by zinc (Zn) deficiency is associated with enhanced uptake and root-to-shoot translocation of Zn in barley (Hordeum vulgare). New Phytol. 2015, 207, 1097–1109. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, Q.; Li, J.; Zhao, S.; Qie, M.; Wu, X.; Bai, Y.; Zhao, Y. Study on the origin traceability of Tibet highland barley (Hordeum vulgare L.) based on its nutrients and mineral elements. Food Chem. 2021, 346, 128928. [Google Scholar] [CrossRef]
- Wang, N.; Qiu, W.; Dai, J.; Guo, X.; Lu, Q.; Wang, T.; Li, S.; Liu, T.; Zuo, Y. AhNRAMP1 Enhances Manganese and Zinc Uptake in Plants. Front. Plant Sci. 2019, 10, 415. [Google Scholar] [CrossRef]
- Milner, M.J.; Seamon, J.; Craft, E.; Kochian, L.V. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J. Exp. Bot. 2013, 64, 369–381. [Google Scholar] [CrossRef] [PubMed]
- McCouch, S.R.; CGSNL (Committee on Gene Symbolization, Nomenclature and Linkage, Rice Genetics Cooperative). Gene Nomenclature System for Rice. Rice 2008, 1, 72–84. [Google Scholar] [CrossRef]
- Amini, S.; Arsova, B.; Gobert, S.; Carnol, M.; Bosman, B.; Motte, P.; Watt, M.; Hanikenne, M. Transcriptional regulation of ZIP genes is independent of local zinc status in Brachypodium shoots upon zinc deficiency and resupply. Plant Cell Environ. 2021, 44, 3376–3397. [Google Scholar] [CrossRef]
- Wenzl, P.; Li, H.; Carling, J.; Zhou, M.; Raman, H.; Paul, E.; Hearnden, P.; Maier, C.; Xia, L.; Caig, V.; et al. A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genom. 2006, 7, 206. [Google Scholar] [CrossRef]
- Chiou, T.-J.; Aung, K.; Lin, S.-I.; Wu, C.-C.; Chiang, S.-F.; Su, C.-l. Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 2006, 18, 412–421. [Google Scholar] [CrossRef]
- Zhang, L.; MacQueen, A.; Bonnette, J.; Fritschi, F.B.; Lowry, D.B.; Juenger, T.E. QTL × environment interactions underlie ionome divergence in switchgrass. G3 Genes Genom. Genet. 2021, 11, jkab144. [Google Scholar] [CrossRef] [PubMed]
- Cu, S.T.; Warnock, N.I.; Pasuquin, J.; Dingkuhn, M.; Stangoulis, J. A high-resolution genome-wide association study of the grain ionome and agronomic traits in rice Oryza sativa subsp. indica. Sci. Rep. 2021, 11, 19230. [Google Scholar] [CrossRef]
- Sytar, O.; Ghosh, S.; Malinska, H.; Zivcak, M.; Brestic, M. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiol. Plant. 2021, 173, 148–166. [Google Scholar] [CrossRef]
- Thiébaut, N.; Hanikenne, M. Zinc deficiency responses: Bridging the gap between Arabidopsis and dicotyledonous crops. J. Exp. Bot. 2022, 73, 1699–1716. [Google Scholar] [CrossRef]
- Nouet, C.; Charlier, J.-B.; Carnol, M.; Bosman, B.; Farnir, F.; Motte, P.; Hanikenne, M. Functional analysis of the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri. J. Exp. Bot. 2015, 66, 5783–5795. [Google Scholar] [CrossRef]
- Assunção, A.G.L.; Herrero, E.; Lin, Y.-F.; Huettel, B.; Talukdar, S.; Smaczniak, C.; Immink, R.G.H.; van Eldik, M.; Fiers, M.; Schat, H.; et al. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc. Natl. Acad. Sci. USA 2010, 107, 10296–10301. [Google Scholar] [CrossRef]
- Kenzhebayeva, S.S.; Atabayeva, S.D.; Sarsu, F. Iron-deficiency response and differential expression of iron homeostasis related genes in spring wheat (Triticum aestivum) mutant lines with increased grain iron content. Crop Pasture Sci. 2022, 73, 127–137. [Google Scholar] [CrossRef]
- Fu, S.; Lu, Y.; Zhang, X.; Yang, G.; Chao, D.; Wang, Z.; Shi, M.; Chen, J.; Chao, D.-Y.; Li, R. The ABC transporter ABCG36 is required for cadmium tolerance in rice. J. Exp. Bot. 2019, 70, 5909–5918. [Google Scholar] [CrossRef] [PubMed]
- Reuscher, S.; Kolter, A.; Hoffmann, A.; Pillen, K.; Krämer, U. Quantitative trait loci and inter-organ partitioning for essential metal and toxic analogue accumulation in barley. PLoS ONE 2016, 11, e0153392. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, H.; Nishizawa, N.K.; Nakanishi, H.; Mori, S. IDI7, a new iron-regulated ABC transporter from barley roots, localizes to the tonoplast. J. Exp. Bot. 2002, 53, 727–735. [Google Scholar] [CrossRef]
- Darbani, B.; Noeparvar, S.; Borg, S. Deciphering mineral homeostasis in barley seed transfer cells at transcriptional level. PLoS ONE 2015, 10, e0141398. [Google Scholar] [CrossRef]
- Mills, R.F.; Peaston, K.A.; Runions, J.; Williams, L.E. HvHMA2, a P1B-ATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport. PLoS ONE 2012, 7, e42640. [Google Scholar] [CrossRef]
- Mikkelsen, M.D.; Pedas, P.; Schiller, M.; Vincze, E.; Mills, R.F.; Borg, S.; Møller, A.; Schjoerring, J.K.; Williams, L.E.; Baekgaard, L. Barley HvHMA1 is a heavy metal pump involved in mobilizing organellar Zn and Cu and plays a role in metal loading into grains. PLoS ONE 2012, 7, e49027. [Google Scholar] [CrossRef]
- Yamanashi, T.; Uchiyama, T.; Saito, S.; Higashi, T.; Ikeda, H.; Kikunaga, H.; Yamagami, M.; Ishimaru, Y.; Uozumi, N. Potassium transporter KUP9 participates in K+ distribution in roots and leaves under low K+ stress. Stress Biol. 2022, 2, 52. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, Q.; Xie, Z.; Yu, B.; Zeng, R.; Min, Q.; Huang, J. OsFPFL4 is Involved in the root and flower development by affecting auxin levels and ROS accumulation in rice (Oryza sativa). Rice 2020, 13, 2. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Kim, K.; Melough, M.M.; Vance, T.M.; Noh, H.; Koo, S.I.; Chun, O.K. Dietary cadmium intake and sources in the US. Nutrients 2018, 11, 2. [Google Scholar] [CrossRef]
- Li, K.; Cao, C.; Ma, Y.; Su, D.; Li, J. Identification of cadmium bioaccumulation in rice (Oryza sativa L.) by the soil-plant transfer model and species sensitivity distribution. Sci. Total Environ. 2019, 692, 1022–1028. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yang, Y.; Chen, W. Manganese, zinc, and pH affect cadmium accumulation in rice grain under field conditions in southern China. J. Environ. Qual. 2018, 47, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, S.A.; Seitz, B.; van der Heijden, M.G.A.; Schulin, R.; Tandy, S. Impact of organic and conventional farming systems on wheat grain uptake and soil bioavailability of zinc and cadmium. Sci. Total Environ. 2018, 639, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Li, H.; Tong, Y.; Jing, R.; Zhang, F.; Zou, C. Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant Soil 2008, 306, 95–104. [Google Scholar] [CrossRef]
- Kumar, A.; Nayak, S.; Ngangkham, U.; Sah, R.P.; Lal, M.K.; TP, A.; Behera, S.; Swain, P.; Behera, L.; Sharma, S. A single nucleotide substitution in the SPDT transporter gene reduced phytic acid and increased mineral bioavailability from Rice grain (Oryza sativa L.). J. Food Biochem. 2021, 45, e13822. [Google Scholar] [CrossRef]
- Sadeghzadeh, B.; Rengel, Z.; Li, C.; Yang, H.a. Molecular marker linked to a chromosome region regulating seed Zn accumulation in barley. Mol. Breed. 2010, 25, 167–177. [Google Scholar] [CrossRef]
- Davies, P.A.; Morton, S. A comparison of barley isolated microspore and anther culture and the influence of cell culture density. Plant Cell Rep. 1998, 17, 206–210. [Google Scholar] [CrossRef]
- Li, H.B.; Zhou, M.X. Quantitative trait loci controlling barley powdery mildew and scald resistances in two different barley doubled haploid populations. Mol. Breed. 2011, 27, 479–490. [Google Scholar] [CrossRef]
- Van Ooijen, J. MapQTL® 6, Software for the Mapping of Quantitative Trait Loci in Experimental Populations of Diploid Species; Kyazma BV: Wageningen, The Netherlands, 2009; 64p. [Google Scholar]
- Voorrips, R.E. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef]
- Wang, J.; Yu, H.; Xie, W.; Xing, Y.; Yu, S.; Xu, C.; Li, X.; Xiao, J.; Zhang, Q. A global analysis of QTLs for expression variations in rice shoots at the early seedling stage. Plant J. 2010, 63, 1063–1074. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Peterson, B.G.; Carl, P.; Boudt, K.; Bennett, R.; Ulrich, J.; Zivot, E.; Lestel, M.; Balkissoon, K.; Wuertz, D. Performance Analytics: Econometric Tools for Performance and Risk Analysis; R Foundation for Statistical Computing: Vienna, Austria, 2014; Volume 1. [Google Scholar]
Trait | Zinc Level in Growing Media | DH Parents (Mean) | DH Lines | ||
---|---|---|---|---|---|
Franklin | Yerong | Range | Mean | ||
Biomass (g/pot) | Adequate | 8.00 | 8.02 | 5.80–8.99 | 7.25 |
Low | 7.50 | 8.05 | 5.70–9.04 | 7.14 | |
Phosphorus (g/pot) | Adequate | 0.06 | 0.07 | 0.05–0.08 | 0.06 |
Low | 0.05 | 0.07 | 0.05–0.08 | 0.06 | |
Potassium (g/pot) | Adequate | 0.79 | 0.76 | 0.52–0.94 | 0.70 |
Low | 0.74 | 0.78 | 0.53–1.08 | 0.74 | |
Calcium (g/pot) | Adequate | 0.09 | 0.09 | 0.06–0.13 | 0.09 |
Low | 0.11 | 0.11 | 0.07–0.15 | 0.09 | |
Manganese (mg/pot) | Adequate | 0.75 | 0.77 | 0.56–1.33 | 0.79 |
Low | 0.71 | 0.67 | 0.37–0.93 | 0.65 | |
Iron (mg/pot) | Adequate | 0.88 | 0.84 | 0.56–1.33 | 0.79 |
Low | 1.05 | 0.91 | 0.61–1.31 | 0.84 | |
Zinc (mg/pot) | Adequate | 0.46 | 0.46 | 0.29–0.73 | 0.47 |
Low | 0.30 | 0.38 | 0.21–0.52 | 0.34 | |
Cadmium (μg/pot) | Adequate | 0.30 | 0.30 | 0.17–0.55 | 0.31 |
Low | 0.26 | 0.46 | 0.14–0.77 | 0.37 |
Trait | Chr | Position (cM) | Closest Marker | LOD | R2 (%) |
---|---|---|---|---|---|
BmA | 2H | 73.12 | Bmac0093 | 7.92 | 19.3 |
BmL | 2H | 44.04 | bPb-4875 | 11.77 | 27.3 |
ZnA | 2H | 59.15 | bPb-3572 | 3.79 | 9.9 |
ZnL | 2H | 72.67 | Bmag0518 | 4.63 | 12.1 |
FeL | 2H | 31.91 | bPb-8750 | 3.45 | 8.9 |
CaA | 2H | 73.12 | Bmac0093 | 4.52 | 11.5 |
CaL | 2H | 44.24 | bPb-9682 | 8.76 | 21.1 |
KL | 2H | 44.24 | bPb-9682 | 7.75 | 18.9 |
PA | 2H | 71.58 | bPb-3056 | 5.45 | 13.7 |
PL | 2H | 31.97 | bPb-8750 | 4.48 | 11.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, W.A.; Penrose, B.; Shabala, S.; Zhang, X.; Cao, F.; Zhou, M. Mapping QTL for Mineral Accumulation and Shoot Dry Biomass in Barley under Different Levels of Zinc Supply. Int. J. Mol. Sci. 2023, 24, 14333. https://doi.org/10.3390/ijms241814333
Khan WA, Penrose B, Shabala S, Zhang X, Cao F, Zhou M. Mapping QTL for Mineral Accumulation and Shoot Dry Biomass in Barley under Different Levels of Zinc Supply. International Journal of Molecular Sciences. 2023; 24(18):14333. https://doi.org/10.3390/ijms241814333
Chicago/Turabian StyleKhan, Waleed Amjad, Beth Penrose, Sergey Shabala, Xueqing Zhang, Fangbin Cao, and Meixue Zhou. 2023. "Mapping QTL for Mineral Accumulation and Shoot Dry Biomass in Barley under Different Levels of Zinc Supply" International Journal of Molecular Sciences 24, no. 18: 14333. https://doi.org/10.3390/ijms241814333
APA StyleKhan, W. A., Penrose, B., Shabala, S., Zhang, X., Cao, F., & Zhou, M. (2023). Mapping QTL for Mineral Accumulation and Shoot Dry Biomass in Barley under Different Levels of Zinc Supply. International Journal of Molecular Sciences, 24(18), 14333. https://doi.org/10.3390/ijms241814333