Astrochemically Relevant Radicals and Radical–Molecule Complexes: A New Insight from Matrix Isolation
Abstract
:1. Introduction
2. Approaches and Methods
3. Radicals and Radical Ions Produced from Astrochemically Important Molecules
3.1. Hydrocarbon Radicals
3.1.1. Methyl Radical
3.1.2. C2 Hydrocarbon Radicals
3.1.3. Radicals Produced from Aromatic Hydrocarbons
3.2. C,O-Containing Radicals
3.2.1. Formyl and Hydrocarboxyl Radicals
3.2.2. Hydroxyalkyl and Alkoxy Radicals
3.2.3. Acetyl and More Complex Radicals
3.3. C,N-Containing Radicals
3.3.1. The Radicals Related to HCN
3.3.2. The Radicals Produced from Acetonitrile
3.3.3. C,N,O-Containing Radicals
3.4. Radical Cations
4. Radical–Molecule Complexes
4.1. Identification of Radical–Molecule Complexes and Their Possible Role in Cold Astrochemistry
4.2. The Radical–Molecule Complexes of Carbon Monoxide
4.3. The Radical–Molecule Complexes of Carbon Dioxide
4.4. Other Radical–Molecule Complexes of Astrochemical Significance
5. Conclusions and Perspectives
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herbst, E. The synthesis of large interstellar molecules. Int. Rev. Phys. Chem. 2017, 36, 287–331. [Google Scholar] [CrossRef]
- Arumainayagam, C.R.; Garrod, R.T.; Boyer, M.C.; Hay, A.K.; Bao, S.T.; Campbell, J.S.; Wang, J.; Nowak, C.M.; Arumainayagam, M.R.; Hodge, P.J. Extraterrestrial prebiotic molecules: Photochemistry vs. radiation chemistry of interstellar ices. Chem. Soc. Rev. 2019, 48, 2293–2314. [Google Scholar] [CrossRef] [PubMed]
- Öberg, K.I. Photochemistry and Astrochemistry: Photochemical Pathways to Interstellar Complex Organic Molecules. Chem. Rev. 2016, 116, 9631–9663. [Google Scholar] [CrossRef] [PubMed]
- Maity, S.; Kaiser, R.I.; Jones, B.M. Formation of complex organic molecules in methanol and methanol–carbon monoxide ices exposed to ionizing radiation–a combined FTIR and reflectron time-of-flight mass spectrometry study. Phys. Chem. Chem. Phys. 2015, 17, 3081–3114. [Google Scholar] [CrossRef] [PubMed]
- Fedoseev, G.; Cuppen, H.M.; Ioppolo, S.; Lamberts, T.; Linnartz, H. Experimental evidence for glycolaldehyde and ethylene glycol formation by surface hydrogenation of CO molecules under dense molecular cloud conditions. Mon. Not. R. Astron. Soc. 2015, 448, 1288–1297. [Google Scholar] [CrossRef]
- Mrad, N.A.; Duvernay, F.; Chiavassa, T.; Danger, G. Methanol ice VUV photoprocessing: GC-MS analysis of volatile organic compounds. Mon. Not. R. Astron. Soc. 2016, 458, 1234–1241. [Google Scholar] [CrossRef]
- Butscher, T.; Duvernay, F.; Danger, G.; Torro, R.; Lucas, G.; Carissan, Y.; Hagebaum-Reignier, G.; Chiavassa, T. Radical-assisted polymerization in interstellar ice analogues: Formyl radical and polyoxymethylene. Mon. Not. R. Astron. Soc. 2019, 486, 1953–1963. [Google Scholar] [CrossRef]
- Enrique-Romero, J.; Álvarez-Barcia, S.; Kolb, F.J.; Rimola, A.; Ceccarelli, C.; Balucani, N.; Meisner, J.; Ugliengo, P.; Lamberts, T.; Kästner, J. Revisiting the reactivity between HCO and CH3 on interstellar grain surfaces. Mon. Not. R. Astron. Soc. 2020, 493, 2523–2527. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, J.; Turner, A.M.; Marks, J.H.; Chandra, S.; Fortenberry, R.C.; Kaiser, R.I. On the Formation of Vinylamine (C2H3NH2) in Interstellar Ice Analogs. Astrophys. J. 2023, 952, 132. [Google Scholar] [CrossRef]
- Allamandola, L.J. Interstellar problems and matrix solutions. J. Mol. Struct. 1987, 157, 255–273. [Google Scholar] [CrossRef]
- Guti’errez-Quintanilla, A.; Layssac, Y.; Butscher, T.; Henkel, S.; Tsegaw, Y.A.; Grote, D.; Sander, W.; Borget, F.; Chiavassa, T.; Duvernay, F. iCOM formation from radical chemistry: A mechanistic study from cryogenic matrix coupled with IR and EPR spectroscopies. Mon. Not. R. Astron. Soc. 2021, 506, 3734–3750. [Google Scholar] [CrossRef]
- Feldman, V.I.; Ryazantsev, S.V.; Kameneva, S.V. Matrix isolation in laboratory astrochemistry: State-of-the-art, implications and perspective. Russ. Chem. Rev. 2021, 90, 1142–1165. [Google Scholar] [CrossRef]
- Feldman, V.I. Radiation-induced transformations of isolated organic molecules in solid rare gas matrices. Radiat. Phys. Chem. 1999, 55, 565–571. [Google Scholar] [CrossRef]
- Feldman, V.I. Organic Radical Cations and Neutral Radicals Produced by Radiation in Low-Temperature Matrices. In EPR of Free Radicals in Solids II. Trends in Methods and Applications, 2nd ed.; Lund, A., Shiotani, M., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 25–70. [Google Scholar]
- Feldman, V.I.; Ryazantsev, S.V.; Saenko, E.V.; Kameneva, S.V.; Shiryaeva, E.S. Matrix isolation model studies on the radiation-induced transformations of small molecules of astrochemical and atmospheric interest. Radiat. Phys. Chem. 2016, 124, 7–13. [Google Scholar] [CrossRef]
- Bahou, M.; Das, P.; Lee, Y.-F.; Wu, Y.-J.; Lee, Y.-P. Infrared spectra of free radicals and protonated species produced in para-hydrogen matrices. Phys. Chem. Chem. Phys. 2014, 16, 2200–2210. [Google Scholar] [CrossRef]
- Feldman, V.I. EPR and IR spectroscopy of free radicals and radical ions produced by radiation in solid systems. In Applications of EPR in Radiation Research; Lund, A., Shiotani, M., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 151–188. [Google Scholar]
- Feldman, V.I. Structure and Properties of Hydrocarbon Radical Cations in Low-Temperature Matrices as Studied by Combination of ESR and IR Spectroscopy. Acta Chem. Scand. 1997, 51, 181–192. [Google Scholar] [CrossRef]
- Goldschleger, I.U.; Akimov, A.V.; Misochko, E.Y.; Wight, C.A. EPR and infrared spectra of the HFC = N• free radical stabilised in solid argon. Mend. Comm. 2001, 11, 64–66. [Google Scholar] [CrossRef]
- Muller, B.; Bally, T.; Pappas, R.; Williams, F. Spectroscopic and Computational Studies on the Rearrangement of Ionized [1.1.1]-Propellane and Some of its Valence Isomers: The Key Role of Vibronic Coupling. J. Am. Chem. Soc. 2010, 132, 14649–14660. [Google Scholar] [CrossRef]
- Neuhaus, P.; Sander, W. Isolation and Characterization of the Triradical 1,3,5-Trimethylenebenzene. Angew. Chem. Int. Ed. 2010, 122, 7435–7438. [Google Scholar] [CrossRef]
- Costa, P.; Lohmiller, T.; Trosien, I.; Savitsky, A.; Lubitz, W.; Fernandez-Oliva, M.; Sanchez-Garcia, E.; Sander, W. Light and Temperature Control of the Spin State of Bis(p-methoxyphenyl)-carbene: A Magnetically Bistable Carbene. J. Am. Chem. Soc. 2016, 138, 1622–1629. [Google Scholar] [CrossRef]
- Herzberg, G. Historical Remarks on the Discovery of Interstellar Molecules. J. Roy. Astron. Soc. Can. 1988, 82, 115. [Google Scholar]
- Feuchtgruber, H.; Helmich, F.P.; van Dishoeck, E.F.; Wright, C.M. Detection of interstellar CH3. Astrophys. J. 2000, 535, L111–L114. [Google Scholar] [CrossRef] [PubMed]
- Morehouse, R.L.; Christiansen, J.J.; Gordy, W. ESR of Free Radicals Trapped in Inert Matrices at Low Temperature: CH3, SiH3, GeH3 and SnH3. J. Chem. Phys. 1966, 45, 1751–1758. [Google Scholar] [CrossRef]
- Gotoh, K.; Miyazaki, T.; Fueki, L.; Lee, K.P. ESR Study of Radiolysis of Solid Rare Gas-Alkane Mixtures at 4.2 K. Ionic Fragmentation and Initial Energy of Hot Atoms. Radiat. Phys. Chem. 1987, 30, 89–93. [Google Scholar]
- Yamada, T.; Komaguchi, K.; Shiotani, M.; Benetis, M.P.; Sørnes, A.R. High-Resolution EPR and Quantum Effects on CH3, CH2D, CHD2, and CD3 Radicals under Argon Matrix Isolation Conditions. J. Phys. Chem. A 1999, 103, 4823–4829. [Google Scholar] [CrossRef]
- Dmitriev, Y.A. High-resolution EPR and the origin of the spectrum anisotropy of CH3 radicals in Ar, Kr, and CO matrices at liquid helium temperatures. Phys. B 2004, 352, 383–389. [Google Scholar] [CrossRef]
- Milligan, J.E.; Jacox, M.E. Infrared and Ultraviolet Spectroscopic Study of the Products of the Vacuum-Ultraviolet Photolysis of Methane in Ar and N2 Matrices. The Infrared Spectrum of the Free Radical CH3. J. Chem. Phys. 1967, 47, 5146–5156. [Google Scholar] [CrossRef]
- NIST Chemistry Webbook, SRD 69. National Institute Standards and Technology. Available online: https://webbook.nist.gov/ (accessed on 18 August 2023).
- Popov, E.; Kiljunen, T.; Kunttu, H.; Eloranta, J. Rotation of methyl radicals in a solid argon matrix. J. Chem. Phys. 2007, 126, 134504. [Google Scholar] [CrossRef]
- Benetis, N.P.; Dmitriev, Y.A. Inertial rotation and matrix interaction effects on the EPR spectra of methyl radicals isolated in “inert” cryogenic matrices. J. Phys. Condens. Matter. 2009, 21, 103201. [Google Scholar] [CrossRef]
- Benetis, N.P.; Dmitriev, Y.; Mocci, F.; Laaksonen, A. Rotation dynamics do not determine the unexpected isotropy of methyl radical EPR spectra. J. Phys. Chem. A 2015, 119, 9385–9404. [Google Scholar] [CrossRef]
- Knight, L.B. ESR investigations of molecular cation radicals in neon matrices at 4 K: Generation, trapping, and ion-neutral reactions. Acc. Chem. Res. 1986, 19, 313–321. [Google Scholar] [CrossRef]
- Feldman, V.I.; Sukhov, F.F.; Orlov, A.Y.; Tyulpina, I.V. High-Resolution EPR Spectroscopy of Small Radicals in a Solid 136Xe Matrix. Mend. Comm. 2008, 18, 121–122. [Google Scholar] [CrossRef]
- Saenko, E.V.; Feldman, V.I. Radiation-induced transformations of methanol molecules in low-temperature solids: A matrix isolation study. Phys. Chem. Chem. Phys. 2016, 18, 32503–32513. [Google Scholar] [CrossRef] [PubMed]
- Zasimov, P.V.; Sanochkina, E.V.; Tyurin, D.A.; Feldman, V.I. An EPR study on the radiolysis of isolated ethanol molecules in solid argon and xenon: Matrix control of radiation-induced generation of radicals in cryogenic media. Phys. Chem. Chem. Phys. 2023, 25, 4624–4634. [Google Scholar] [CrossRef]
- Feldman, V.; Sukhov, F.; Orlov, A.; Tyulpina, I. Stabilisation and reactions of aliphatic radical cations produced by fast electron irradiation in solid argon matrices. Phys. Chem. Chem. Phys. 2003, 5, 1769–1774. [Google Scholar] [CrossRef]
- Zasimov, P.V.; Sanochkina, E.V.; Feldman, V.I. Radiation-induced transformations of acetaldehyde molecules at cryogenic temperatures: A matrix isolation n study. Phys. Chem. Chem. Phys. 2022, 24, 419–432. [Google Scholar] [CrossRef]
- Kameneva, S.V.; Volosatova, A.D.; Feldman, V.I. Radiation-induced transformations of isolated CH3CN molecules in noble gas matrices. Radiat. Phys. Chem. 2016, 141, 363–368. [Google Scholar] [CrossRef]
- Feldman, V.I.; Sukhov, F.F.; Orlov, A.Y. An ESR Study of Benzene Radical Cation in an Argon Matrix: Evidence for Favourable Stabilization of 2B1g Rather than 2B2g State. Chem. Phys. Lett. 1999, 300, 713–718. [Google Scholar] [CrossRef]
- Feldman, V.I.; Sukhov, F.F.; Orlov, A.Y.; Tyulpina, I.V.; Ivanchenko, V.K. Stabilization and isomerization of radical cations generated by fast electron irradiation of unsaturated organic molecules in a solid argon matrix. Radiat. Phys. Chem. 2006, 75, 106–114. [Google Scholar] [CrossRef]
- Feldman, V.I.; Sukhov, F.; Orlov, A.; Kadam, R.; Itagaki, Y.; Feldman, V. Effect of matrix and substituent on the electronic structure of trapped benzene radical cations. Phys. Chem. Chem. Phys. 2000, 2, 29–35. [Google Scholar] [CrossRef]
- Ziurys, L.M. The chemistry in circumstellar envelopes of evolved stars: Following the origin of the elements to the origin of life. Proc. Natl. Acad. Sci. USA 2006, 103, 12274–12279. [Google Scholar] [CrossRef]
- Mumma, M.J.; DiSanti, M.A.; Russo, N.D.; Fomenkova, M.; Magee-Sauer, K.; Kaminski, C.D.; Xie, D.X. Detection of Abundant Ethane and Methane, Along with Carbon Monoxide and Water, in Comet C/1996 B2 Hyakutake: Evidence for Interstellar Origin. Science 1996, 272, 1310–1314. [Google Scholar] [CrossRef] [PubMed]
- Coustenis, A.; Achterberg, R.K.; Conrath, B.J.; Jennings, D.E.; Marten, A.; Gautier, D.; Nixon, C.A.; Flasar, F.M.; Teanby, N.A.; Bézard, B.; et al. The composition of Titan’s stratosphere from Cassini/CIRS midinfrared spectra. Icarus 2007, 189, 35–62. [Google Scholar] [CrossRef]
- Kaiser, R.I.; Roessler, K. Theoretical and laboratory studies on the interaction of cosmic-ray particles with interstellar ices. III. Suprathermal chemistry-induced formation of hydrocarbon molecules in solid methane (CH4), ethylene (C2H4), and acetylene (C2H2). Astrophys. J. 1998, 503, 959–975. [Google Scholar] [CrossRef]
- Strazzulla, G.; Baratta, G.A.; Domingo, M.; Satorre, M.A. Ion irradiation of frozen C2Hn (n = 2, 4, 6). Nucl. Instr. Methods Phys. Res. A 2002, 191, 714–717. [Google Scholar] [CrossRef]
- Hudson, R.L.; Moore, M.H.; Raines, L.L. Ethane ices in the outer Solar System: Spectroscopy and chemistry. Icarus 2009, 203, 677–680. [Google Scholar] [CrossRef]
- Kim, Y.S.; Bennett, C.J.; Chen, L.-H.; O’Brien, K.; Kaiser, R.I. Laboratory studies on the irradiation of solid ethane analog ices and implications to Titan’s chemistry. Astrophys. J. 2010, 711, 744–756. [Google Scholar] [CrossRef]
- Ennis, C.; Yuan, H.; Sibener, S.J.; Kaiser, R.I. On the chemical processing of hydrocarbon surfaces by fast oxygen ions. Phys. Chem. Chem. Phys. 2011, 13, 17870–17884. [Google Scholar] [CrossRef]
- Zhou, L.; Maity, S.; Abplanalp, M.; Turner, A.; Kaiser, R.I. On the radiolysis of ethylene ices by energetic electrons and implications to the extraterrestrial hydrocarbon chemistry. Astrophys. J. 2014, 790, 38. [Google Scholar] [CrossRef]
- Abplanalp, M.J.; Kaiser, R.I. Implications for extraterrestrial hydrocarbon chemistry: Analysis of ethylene (C2H4) and d4-ethylene (C2D4) ices exposed to ionizing radiation via combined infrared spectroscopy and reflectron time-of-flight mass spectrometry. Astrophys. J. 2017, 836, 195. [Google Scholar] [CrossRef]
- Ryazantsev, S.V.; Zasimov, P.V.; Feldman, V.I. X-ray radiolysis of C2 hydrocarbons in cryogenic media. Radiat. Phys. Chem. 2018, 151, 253–260. [Google Scholar] [CrossRef]
- Graham, W.R.M.; Dismuke, K.I.; Weltner, W., Jr. C2H radical: 13C hyperfine interaction and optical spectrum. J. Chem. Phys. 1974, 60, 3817–3823. [Google Scholar] [CrossRef]
- Feldman, V.I.; Sukhov, F.F.; Orlov, A.Y.; Tyul’pina, I.V.; Logacheva, E.A.; Tyurin, D.A. Chemical reactions in the xenon-acetylene systems irradiated with fast electrons at 16 K: Formation of xenon-containing molecules and radicals. Russ. Chem. Bull. 2005, 54, 1458–1466. [Google Scholar] [CrossRef]
- Maier, G.; Lautz, C. Laser Irradiation of Monomeric Acetylene and the T-Shaped Acetylene Dimer in Xenon and Argon Matrices. Eur. J. Org. Chem. 1998, 1998, 769–776. [Google Scholar] [CrossRef]
- Cochran, E.L.; Adrian, F.J.; Bowers, V.A. ESR Study of Ethynyl and Vinyl Free Radicals. J. Chem. Phys. 1964, 40, 213–220. [Google Scholar] [CrossRef]
- Kasai, P.H.; Whipple, E.B. Orientation and Motion of Vinyl Radicals in Neon Matrices. J. Am. Chem. Soc. 1967, 89, 1033–1034. [Google Scholar] [CrossRef]
- Kasai, P.H. Electron spin resonance studies of vinyl, propargyl, and butatrienyl radicals isolated in argon matrices. J. Am. Chem. Soc. 1972, 94, 5950–5956. [Google Scholar] [CrossRef]
- Tanskanen, H.; Khriachtchev, L.; Räsänen, M.; Feldman, V.I.; Sukhov, F.F.; Orlov, A.Y.; Tyurin, D.A. Infrared absorption and electron paramagnetic resonance studies of vinyl radical in noble-gas matrices. J. Chem. Phys. 2005, 123, 064318. [Google Scholar] [CrossRef]
- Wu, Y.-J.; Lin, M.-Y.; Cheng, B.-M.; Chen, H.-F.; Lee, Y.-P. Infrared absorption spectra of vinyl radicals isolated in solid Ne. J. Chem. Phys. 2008, 128, 204509. [Google Scholar] [CrossRef]
- Feldman, V.I.; Sukhov, F.F.; Orlov, A.Y.; Tyulpina, I.V. Experimental Evidence for the Formation of HXeCCH: The First Hydrocarbon with an Inserted Rare-Gas Atom. J. Am. Chem. Soc. 2003, 125, 4698–4699. [Google Scholar] [CrossRef]
- Khriachtchev, L.; Tanskanen, H.; Cohen, A.; Gerber, R.B.; Lundell, J.; Pettersson, M.; Kiljunen, H.; Räsänen, M. A gate to organokrypton chemistry: HKrCCH. J. Am. Chem. Soc. 2003, 125, 6876–6877. [Google Scholar] [CrossRef] [PubMed]
- Pshezhetskii, S.Y.; Kotov, A.G.; Milinchuk, V.K.; Roginskii, V.A.; Tupikov, V.I. EPR of Free Radicals in Radiation Chemistry; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Pacansky, J.; Gardini, G.P.; Bargon, J. Low temperature studies on propionyl benzoyl peroxide and propionyl peroxide. The ethyl radical. J. Am. Chem. Soc. 1976, 98, 2665–2666. [Google Scholar] [CrossRef]
- Pacansky, J.; Dupuis, M. Assignment of the infrared spectrum for the ethyl radical. J. Am. Chem. Soc. 1982, 104, 415–421. [Google Scholar] [CrossRef]
- Chettur, G.; Snelson, A. Alkylperoxy and alkyl radicals. 4. Matrix IR spectra and UV photolysis of ethylperoxy and ethyl radicals. J. Phys. Chem. 1987, 91, 3483–3488. [Google Scholar] [CrossRef]
- Wu, Y.-J.; Yang, X.; Lee, Y.-P. Infrared matrix-isolation spectroscopy using pulsed deposition of p-H2. J. Chem. Phys. 2004, 120, 1168–1171. [Google Scholar] [CrossRef]
- Fessenden, R.W.; Schuler, R.H. Electron Spin Resonance Studies of Transient Alkyl Radicals. J. Chem. Phys. 1963, 39, 2147–2195. [Google Scholar] [CrossRef]
- Smaller, B.; Matheson, M.S. Paramagnetic Species Produced by γ Irradiation of Organic Compounds. J. Chem. Phys. 1958, 28, 1169–1178. [Google Scholar] [CrossRef]
- Abplanalp, M.J.; Kaiser, R.I. Complex hydrocarbon chemistry in interstellar and solar system ices revealed: A combined infrared spectroscopy and reflectron time-of-flight mass spectrometry analysis of ethane (C2H6) and d6-ethane (C2D6) ices exposed to ionizing radiation. Astrophys. J. 2016, 827, 132. [Google Scholar] [CrossRef]
- Kaiser, R.I.; Hansen, N. An aromatic universe–A physical chemistry perspective. J. Phys. Chem. A 2021, 125, 3826–3840. [Google Scholar] [CrossRef]
- Mebel, A.M.; Landera, A.; Kaiser, R.I. Formation mechanisms of naphthalene and indene: From the interstellar medium to combustion flames. J. Phys. Chem. A 2017, 121, 901–926. [Google Scholar] [CrossRef]
- Cernicharo, J.; Heras, A.M.; Tielens, A.G.G.M.; Pardo, J.R.; Herpin, F.; Guélin, M.; Waters, L.B.F.M. Infrared Space Observatory’s Discovery of C4H2, C6H2, and Benzene in CRL 618. Astrophys. J. 2001, 546, L123–L126. [Google Scholar] [CrossRef]
- Strazzulla, G.; Baratta, G.A. Laboratory Study of the IR Spectrum of Ion-Irradiated Frozen Benzene. Astron. Astrophys. 1991, 241, 310–316. [Google Scholar]
- Ruiterkamp, R.; Peeters, Z.; Moore, M.H.; Hudson, R.L.; Ehrenfreund, P.A. Quantitative Study of Proton Irradiation and UV Photolysis of Benzene in Interstellar Environments. Astron. Astrophys. 2005, 440, 391–402. [Google Scholar] [CrossRef]
- Kasai, P.H.; Hedaya, E.; Whipple, E.B. Electron spin resonance study of phenyl radicals isolated in an argon matrix at 40 K. J. Am. Chem. Soc. 1969, 91, 4364–4368. [Google Scholar] [CrossRef]
- Johnstone, D.E.; Sodeau, J.R. Matrix-Controlled Photochemistry of Benzene and Pyridine. J. Phys. Chem. 1991, 95, 165–169. [Google Scholar] [CrossRef]
- Laboy, J.L.; Ault, B.S. 193 nm Excimer Laser Photochemistry of Benzene in Argon Matrices. J. Photochem. Photobiol. A 1993, 74, 99–108. [Google Scholar] [CrossRef]
- Toh, S.Y.; Djuricanin, P.; Momose, T.; Miyazaki, J. UV Photochemistry of Benzene and Cyclohexadienyl Radical in Solid Parahydrogen. J. Phys. Chem. A 2015, 119, 2683–2691. [Google Scholar] [CrossRef]
- Feldman, V.I.; Sukhov, F.F.; Logacheva, E.A.; Orlov, A.Y.; Tyulpina, I.V.; Tyurin, D.A. Reactions of H atoms produced by electron irradiation of benzene in solid xenon: IR spectrum of cylohexadienyl radical and possible involvement of HXeC6H5. Chem. Phys. Lett. 2007, 437, 207–211. [Google Scholar] [CrossRef]
- Lukianova, M.A.; Sanochkina, E.V.; Feldman, V.I. Radiation-Induced Transformations of C6H6 Molecules in Solid Noble-Gas Matrices: Is Benzene Intrinsically Resistant in Condensed Media? J. Phys. Chem. A 2019, 123, 5199–5205. [Google Scholar] [CrossRef]
- Ohnishi, S.; Tanei, T.; Nitta, I. ESR Study of Free Radicals Produced by Irradiation in Benzene and Its Derivatives. J. Chem. Phys. 1962, 36, 2402–2407. [Google Scholar] [CrossRef]
- Lukianova, M.A.; Sosulin, I.S.; Tyurin, D.A.; Feldman, V.I. Radiation-induced transformations of isolated toluene molecules in low-temperature matrices: Towards better understanding of molecular radiation chemistry in condensed phases. Radiat. Phys. Chem. 2021, 176, 109022. [Google Scholar] [CrossRef]
- Baskir, E.G.; Maltsev, A.K.; Korolev, V.A.; Khabashesku, V.N.; Nefedov, O.M. Generation and IR spectroscopic study of benzyl radical. Russ. Chem. Bull. 1993, 42, 1499–1502. [Google Scholar] [CrossRef]
- McGuire, B.A.; Burkhardt, A.M.; Kalenskii, S.; Shingledecker, C.N.; Remijan, A.J.; Herbst, E.; McCarthy, M.C. Detection of the aromatic molecule benzonitrile (c-C6H5CN) in the interstellar medium. Science 2018, 359, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Schenewerk, M.S.; Snyder, L.E.; Hjalmarson, A. Interstellar HCO-Detection of the missing 3 millimeter quartet. Astrophys. J. 1986, 303, L71–L74. [Google Scholar] [CrossRef]
- Milligan, D.E.; Jacox, M.E. Infrared Spectrum of HCO. J. Chem. Phys. 1964, 41, 3032–3036. [Google Scholar] [CrossRef]
- Adrian, F.J.; Cochran, E.L.; Bowers, V.A. ESR Spectrum and Structure of the Formyl Radical. J. Chem. Phys. 1962, 36, 1661–1672. [Google Scholar] [CrossRef]
- Ryazantsev, S.V.; Tyurin, D.A.; Feldman, V.I. Experimental determination of the absolute infrared absorption intensities of formyl radical HCO. Spectrochim. Acta A Mol. Biomol. 2017, 187, 39–42. [Google Scholar] [CrossRef]
- Moore, B.; Mahoney, K.; Zeng, M.F.; Djuricanin, P.; Momose, T. Ultraviolet Photodissociation of Proteinogenic Amino Acids. J. Am. Chem. Soc. 2023, 145, 11045–11055. [Google Scholar] [CrossRef]
- Ryazantsev, S.V.; Duarte, L.; Feldman, V.I.; Khriachtchev, L. VUV photochemistry of the H2O…CO complex in noble-gas matrices: Formation of the OH…CO complex and the HOCO radical. Phys. Chem. Chem. Phys. 2017, 19, 356–365. [Google Scholar] [CrossRef]
- Ryazantsev, S.V.; Zasimov, P.V.; Feldman, V.I. Radiation-induced synthesis of formic acid in the H2O–CO system: A matrix isolation study. Chem. Phys. Lett. 2020, 753, 137540. [Google Scholar] [CrossRef]
- Ryazantsev, S.V.; Feldman, V.I. Matrix-isolation studies on the radiation-induced chemistry in H2O/CO2 systems: Reactions of oxygen atoms and formation of HOCO radical. J. Phys. Chem. A 2015, 119, 2578–2586. [Google Scholar] [CrossRef]
- Ryazantsev, S.V.; Feldman, V.I. Radiation-induced transformations of matrix-isolated formic acid: Evidence for the HCOOH → HOCO + H channel. Phys. Chem. Chem. Phys. 2015, 17, 30648–30658. [Google Scholar] [CrossRef] [PubMed]
- Ryazantsev, S.V.; Feldman, V.I.; Khriachtchev, L. Conformational Switching of HOCO Radical: Selective Vibrational Excitation and Hydrogen-Atom Tunneling. J. Am. Chem. Soc. 2017, 139, 9551–9557. [Google Scholar] [CrossRef] [PubMed]
- Johansson, L.E.B.; Andeersson, C.; Ellder, J.; Friberg, P.; Hjalmarson, A.; Hoglund, B.; Irvine, V.M.; Olofsson, H.; Rydbeck, G. Spectral scan of Orion A and IRC+10216 from 72 to 91 GHz. Astrophys. J. 1984, 130, 227–256. [Google Scholar]
- Zuckerman, B.; Turner, B.E.; Johnson, D.R.; Clark, F.O.; Lovas, F.J.; Fourikis, N.; Palmer, P.; Morris, M.; Lilley, A.E.; Ball, J.A.; et al. Detection of interstellar trans-ethyl alcohol. Astrophys. J. 1975, 196, L99–L102. [Google Scholar] [CrossRef]
- Alger, R.S.; Anderson, T.H.; Webb, L.A. Irradiation Effects in Simple Organic Solids. J. Chem. Phys. 1959, 30, 695–706. [Google Scholar] [CrossRef]
- Jacox, M.E.; Milligan, D.E. Matrix isolation study of the vacuum-ultraviolet photolysis of methanol. J. Mol. Spectrosc. 1973, 47, 148–162. [Google Scholar] [CrossRef]
- Zasimov, P.V.; Sanochkina, E.V.; Tyurin, D.A.; Feldman, V.I. Radiation-induced transformations of matrix-isolated ethanol molecules at cryogenic temperatures: A FTIR study. Phys. Chem. Chem. Phys. 2023, 25, 21883–21996. [Google Scholar] [CrossRef]
- Cernicharo, J.; Marcelino, N.; Roueff, E.; Gerin, M.; Jiménez-Escobar, A.; Muñoz Caro, G.M. Discovery of the Methoxy Radical, CH3O, toward B1: Dust Grain and Gas-phase Chemistry in Cold Dark Clouds. Astrophys. J. 2012, 759, L43–L46. [Google Scholar] [CrossRef]
- Toriyama, K.; Iwasaki, M. Electron spin resonance studies on radiolysis of crystalline methanol at 4.2 K. J. Am. Chem. Soc. 1979, 101, 2516–2523. [Google Scholar] [CrossRef]
- Feldman, V.I.; Sukhov, F.F.; Orlov, A.Y.; Shmakova, N.A. Effect of Matrix Electronic Characteristics on Trapping and Degradation of Organic Radical Cations in Solid Rare Gases: A Case Study of Methylal Radical Cation. J. Phys. Chem. A 2000, 104, 3792–3799. [Google Scholar] [CrossRef]
- Lee, Y.-F.; Chou, W.T.; Johnson, B.A.; Tabor, D.P.; Sibert, E.L., III; Lee, Y.-P. Infrared absorption of CH3O and CD3O radicals isolated in solid para-H2. J. Mol. Spectrosc. 2015, 310, 57–67. [Google Scholar] [CrossRef]
- Tachikawa, H. Reaction mechanism of the radical isomerization from CH3O to CH2OH in frozen methanol. An ab initio MO and RRKM study. Chem. Phys. Lett. 1993, 212, 27–31. [Google Scholar] [CrossRef]
- Jacox, M.E. The reaction of F atoms with acetaldehyde and ethylene oxide. Vibrational spectra of the CH3CO and CH2CHO free radicals trapped in solid argon. Chem. Phys. 1982, 69, 407–422. [Google Scholar] [CrossRef]
- Mehringer, D.M.; Snyder, L.E.; Miao, Y.; Lovas, F.J. Detection and Confirmation of Interstellar Acetic Acid. Astrophys. J. 1997, 480, L71–L74. [Google Scholar] [CrossRef]
- Joshi, P.R.; How, K.C.-Y.; Lee, Y.-P. Hydrogen Abstraction of Acetic Acid by Hydrogen Atom to Form Carboxymethyl Radical •CH2C(O)OH in Solid para-Hydrogen and Its Implication in Astrochemistry. ACS Earth Space Chem. 2021, 5, 106–117. [Google Scholar] [CrossRef]
- Agúndez, M.; Cernicharo, J.; Guélin, M. Discovery of interstellar ketenyl (HCCO), a surprisingly abundant radical. Astron. Astrophys. 2015, 577, L5. [Google Scholar] [CrossRef]
- Zasimov, P.V.; Ryazantsev, S.V.; Tyurin, D.A.; Feldman, V.I. Radiation-induced chemistry in the C2H2–H2O system at cryogenic temperatures: A matrix isolation study. Mon. Not. R. Astron. Soc. 2020, 491, 5140–5150. [Google Scholar] [CrossRef]
- Cochran, E.L.; Adrian, F.J.; Bowers, V.A. ESR detection of the cyanogen and methylene imino free radicals. J. Chem. Phys. 1962, 36, 1938–1942. [Google Scholar] [CrossRef]
- Jacox, M.E. Vibrational and electronic spectra of the H + HCN reaction products trapped in solid argon. J. Phys. Chem. 1987, 91, 6595–6600. [Google Scholar] [CrossRef]
- Forney, D.; Thompson, W.E.; Jacox, M.E. The vibrational spectra of molecular ions isolated in solid neon. IX. HCN+, HNC+, and CN-. J. Chem. Phys. 1992, 97, 1664–1674. [Google Scholar] [CrossRef]
- Kameneva, S.V.; Tyurin, D.A.; Feldman, V.I. Structure and properties of the radiation-induced intermediates produced from HCN in noble gas matrices. Radiat. Phys. Chem. 2016, 124, 30–37. [Google Scholar] [CrossRef]
- Volosatova, A.D.; Lukianova, M.A.; Zasimov, P.V.; Feldman, V.I. Direct evidence for a radiation-induced synthesis of acetonitrile and isoacetonitrile from a 1:1 CH4…HCN complex at cryogenic temperatures: Is it a missing link between inorganic and prebiotic astrochemistry ? Phys. Chem. Chem. Phys. 2021, 23, 18449–18460. [Google Scholar] [CrossRef] [PubMed]
- Ohishi, M.; McGonagle, D.; Irvine, W.M.; Yamamoto, S.; Saito, S. Detection of a New Interstellar Molecule, H2CN. Astrophys. J. 1994, 427, L51–L54. [Google Scholar] [CrossRef] [PubMed]
- Halpern, J.B.; Petway, L.; Lu, R.; Jackson, W.M.; McCrary, V.R.; Nottingham, W. Photochemistry of Cyano- and Dicyanoacetylene at 193 nm. J. Phys. Chem. 1990, 94, 1869–1873. [Google Scholar] [CrossRef]
- Wang, X.; Bowman, J.M. Zero-point Energy is Needed in Molecular Dynamics Calculations to Access the Saddle Point for H+HCN→H2CN* and cis/trans-HCNH* on a New Potential Energy Surface. J. Chem. Theory Comput. 2013, 9, 901–908. [Google Scholar] [CrossRef]
- Remijan, A.J.; Hollis, J.M.; Lovas, F.J.; Plusquellic, D.F.; Jewell, P.R. Interstellar Isomers: The Importance of Bonding Energy Differences. Astrophys. J. 2005, 632, 333–339. [Google Scholar] [CrossRef]
- Volosatova, A.D.; Kameneva, S.V.; Feldman, V.I. Formation and interconversion of CCN and CNC radicals resulting from the radiation-induced decomposition of acetonitrile in solid noble gas matrices. Phys. Chem. Chem. Phys. 2019, 21, 13014–13021. [Google Scholar] [CrossRef]
- Anderson, J.K.; Ziurys, L.M. Detection of CCN (X2Πr) in IRC+10216: Constraining Carbon-chain Chemistry. Astrophys. J. 2014, 795, Ll. [Google Scholar] [CrossRef]
- Pettersson, M.; Khriachtchev, L.; Jolkkonen, S.; Rasanen, M. Photochemistry of HNCO in Solid Xe: Channels of UV Photolysis and Creation of H. J. Phys. Chem. A 1999, 103, 9154–9162. [Google Scholar] [CrossRef]
- Volosatova, A.D.; Tyurin, D.A.; Feldman, V.I. The Radiation Chemistry of NH3···CO Complex in Cryogenic Media as Studied by Matrix Isolation. J. Phys. Chem. A 2022, 126, 3893–3902. [Google Scholar] [CrossRef]
- Symons, M.C.R. Radical Cations in Condensed Phases. Chem. Soc. Rev. 1984, 13, 393. [Google Scholar] [CrossRef]
- Shiotani, M. ESR Studies of Radical Cations on Solid Matrixes. Magn. Reson. Rev. 1987, 12, 333–381. [Google Scholar]
- Feldman, V.I. Structure and Reactions of Aliphatic Bridged Bifunctional Radical Ions: Exploring Fine-Tuning in Radiation Chemistry. Isr. J. Chem. 2014, 54, 284–291. [Google Scholar] [CrossRef]
- Knight, L.B.; King, G.M.; Petty, J.T.; Matsushita, M.; Momose, T.; Shida, T. Electron spin resonance studies of the methane radical cations (12,13CH+4, 12,13CDH+3, 12CD2H+2,12CD3H+, 12CD+4) in solid neon matrices between 2.5 and 11 K: Analysis of tunneling. J. Chem. Phys. 1995, 103, 3377–3385. [Google Scholar] [CrossRef]
- Knight, L.B.; Kerr, K.; Villanueva, M.; McKinley, A.J.; Feller, D. Theoretical and neon matrix electron spin resonance studies of the methanol cation: CH3OH+, CH3OD+, CH2DOH+, and 13CH3OH+. J. Chem. Phys. 1992, 97, 5363–5376. [Google Scholar] [CrossRef]
- Knight, L.B.; Steadman, J. An ESR investigation of the formaldehyde cation radicals (H212CO+ and H213CO+) in neon matrices at 4 K. J. Chem. Phys. 1984, 80, 1018. [Google Scholar] [CrossRef]
- Knight, L.B.; Gregory, B.W.; Cobranchi, S.T.; Williams, F.; Qin, X.-Z. High-resolution electron-spin-resonance spectroscopy and structure of the acetaldehyde radical cation (CH3CHO+) in neon matrices at 4 K-comparison with results in freon matrices. J. Am. Chem. Soc. 1988, 110, 327–342. [Google Scholar] [CrossRef]
- Rhodes, C.J.; Symons, M.C.R. The radical cation of formaldehyde in a freon matrix-an electron-spin resonance study. J. Chem. Soc. Faraday Trans. 1 1988, 84, 4501–4507. [Google Scholar] [CrossRef]
- Zasimov, P.V.; Tyurin, D.A.; Ryazantsev, S.V.; Feldman, V.I. Formation and Evolution of H2C3O+• Radical Cations: A Computational and Matrix Isolation Study. J. Am. Chem. Soc. 2022, 144, 8115–8128. [Google Scholar] [CrossRef]
- Kim, J.; Oh, D.; Park, E.; Park, J.; Kim, J.; Lim, J.S. Photochemical Reaction Mechanism of Intramolecular H Transfer Reaction of H2C3O+⋅ Radical Cation. ChemPhysChem 2023, 24, e202300393. [Google Scholar] [CrossRef]
- Kameneva, S.V.; Tyurin, D.A.; Feldman, V.I. Characterization of the HCN⋯CO complex and its radiation-induced transformation to HNC⋯CO in cold media: An experimental and theoretical investigation. Phys. Chem. Chem. Phys. 2017, 19, 24348–24356. [Google Scholar] [CrossRef]
- Lukianova, M.A.; Volosatova, A.D.; Drabkin, V.D.; Sosulin, I.S.; Kameneva, S.V.; Feldman, V.I. Radiation-induced transformations of HCN⋯C2H2, HCN⋯C2H4 and HCN⋯C2H6 complexes in noble gas matrices: Synthesis of C3HxN molecules in cryogenic media. Radiat. Phys. Chem. 2021, 180, 109232. [Google Scholar] [CrossRef]
- Kameneva, S.V.; Tyurin, D.A.; Nuzhdin, K.B.; Feldman, V.I. Matrix isolation and ab initio study on HCN/CO2 system and its radiation-induced transformations: Spectroscopic evidence for HCN⋯CO2 and trans-HCNH⋯CO2 complexes. J. Chem. Phys. 2016, 145, 214309. [Google Scholar] [CrossRef]
- Volosatova, A.D.; Zasimov, P.V.; Feldman, V.I. Radiation-induced transformation of the C2H2⋅ ⋅ ⋅NH3 complex in cryogenic media: Identification of C2H2⋅ ⋅ ⋅NH2∙complex and evidence of cold synthetic routes. J. Chem. Phys. 2022, 157, 174306. [Google Scholar] [CrossRef]
- Lukianova, M.A.; Feldman, V.I. Radiation-induced closure of the second aromatic ring: Possible way to PAH starting from a styrene-acetylene complex. Radiat. Phys. Chem. 2022, 191, 109847. [Google Scholar] [CrossRef]
- Drabkin, V.D.; Volosatova, A.D.; Feldman, V.I. Direct evidence for formation of acetimidic acid and acetamide under irradiation of isolated acetonitrile–water complexes at cryogenic temperatures. Mon. Not. R. Astron. Soc. 2023, 518, 1744–1749. [Google Scholar] [CrossRef]
- Misochko, E.Y.; Akimov, A.V.; Goldschleger, I.U. Modern applications of matrix isolation technique to investigation of radical species generated in atom–molecular chemical reactions. Russ. Chem. Rev. 2003, 72, 233–255. [Google Scholar] [CrossRef]
- Du, S.; Francisco, J.S. OH⋅N2 and SH⋅N2 radical-molecule van der Waals complex. J. Chem. Phys. 2009, 131, 064307. [Google Scholar] [CrossRef]
- Sosulin, I.S.; Tyurin, D.A.; Feldman, V.I. Radiation-Induced Transformation of CHF3···CO to the CF3···CO Complex: Matrix Isolation and Ab Initio Study. J. Phys. Chem. A 2020, 124, 1954–1958. [Google Scholar] [CrossRef]
- Ryazantsev, S.V.; Tarroni, R.; Feldman, V.I.; Khriachtchev, L. Effect of Noncovalent Interactions on Vibronic Transitions: An Experimental and Theoretical Study of the C2H⋅⋅⋅CO2 Complex. ChemPhysChem 2017, 18, 949–958. [Google Scholar] [CrossRef] [PubMed]
- Ryazantsev, S.V.; Tyurin, D.A.; Feldman, V.I.; Khriachtchev, L. Spectroscopic characterization of the complex of vinyl radical and carbon dioxide: Matrix isolation and ab initio study. J. Chem. Phys. 2017, 147, 184301. [Google Scholar] [CrossRef] [PubMed]
Radical | Source Molecule | Detection Method | Reference |
---|---|---|---|
CH3• | CH3OH | FTIR | [36] |
CH3CHO | FTIR, EPR | [38,39] | |
CH3CH2OH | EPR | [37] | |
CH3OCH3 * | EPR | [13] | |
CH3COCH3 * | EPR | [38] | |
CH3CN * | FTIR | [40] | |
C2H• | C2H2 | FTIR, EPR | [54,56,63] |
C2H3• | C2H2 ** | FTIR, EPR | [54,56,61] |
C2H4 | FTIR | [54] | |
C2H6 * | FTIR | [54] | |
C2H5• | C2H6 | FTIR | [54] |
C6H5• | C6H6 | FTIR, EPR | [82,83] |
C6H7• | C6H6 ** | FTIR, EPR | [82] |
CH2OH• | CH3OH | FTIR | [36] |
CH3CHOH• | CH3CH2OH | EPR, FTIR | [36,102] |
HCO• | CH3OH CH3CH2OH | FTIR EPR | [36,37] |
CH3CHO | EPR, FTIR | [39] | |
HOCO• | HCOOH | FTIR | [96] |
CH3CO• | CH3CHO | FTIR | [39] |
HCCO• | CH3CHO * | FTIR | [39] |
CN• | HCN | EPR, FTIR | [116] |
H2CN• | HCN ** | EPR, FTIR | [116] |
trans-HCNH• | HCN ** | FTIR | [116] |
CH2CN• | CH3CN | FTIR | [40,122] |
CH2NC• | CH3CN | FTIR | [40,122] |
CCN• | CH3CN *** | FTIR | [122] |
CNC• | CH3CN *** | FTIR | [122] |
H2NCO• | NH3⋯CO | FTIR | [125] |
NCO• | NH3⋯CO *** | FTIR | [125] |
C6H6+. | C6H6 | EPR | [41,43] |
CH3CHO +. | CH3CHO | EPR | [38] |
CH3OCH3 +. | CH3OCH3 | EPR | [13] |
CH3COCH3 +. | CH3COCH3 | EPR | [38] |
E-HCCHCO+. | C2H2⋯CO | EPR, FTIR | [134] |
H2CCCO+. **** | C2H2⋯CO | EPR, FTIR | [134] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feldman, V.I. Astrochemically Relevant Radicals and Radical–Molecule Complexes: A New Insight from Matrix Isolation. Int. J. Mol. Sci. 2023, 24, 14510. https://doi.org/10.3390/ijms241914510
Feldman VI. Astrochemically Relevant Radicals and Radical–Molecule Complexes: A New Insight from Matrix Isolation. International Journal of Molecular Sciences. 2023; 24(19):14510. https://doi.org/10.3390/ijms241914510
Chicago/Turabian StyleFeldman, Vladimir I. 2023. "Astrochemically Relevant Radicals and Radical–Molecule Complexes: A New Insight from Matrix Isolation" International Journal of Molecular Sciences 24, no. 19: 14510. https://doi.org/10.3390/ijms241914510
APA StyleFeldman, V. I. (2023). Astrochemically Relevant Radicals and Radical–Molecule Complexes: A New Insight from Matrix Isolation. International Journal of Molecular Sciences, 24(19), 14510. https://doi.org/10.3390/ijms241914510