Harnessing the Genetic Basis of Sorghum Biomass-Related Traits to Facilitate Bioenergy Applications
Abstract
:1. Introduction
2. Bioenergy Scenarios of Sorghum
3. Genetic Control of the Biomass-Related Traits in Sorghum
3.1. Tillering
3.2. Plant Height
3.3. Flowering/Maturity
3.4. Stem Diameter
3.5. Internode Juiciness
3.6. Internode Cell Wall Metabolism
3.7. Internode Sugar and Starch Metabolism
4. Challenges Associated with Utilizing the Biomass-Related Genetic Knowledge
5. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharif, A.; Bhattacharya, M.; Afshan, S.; Shahbaz, M. Disaggregated Renewable Energy Sources in Mitigating CO2 Emissions: New Evidence from the USA Using Quantile Regressions. Environ. Sci. Pollut. Res. 2021, 3, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Mathur, S.; Umakanth, A.; Tonapi, V.; Sharma, R.; Sharma, M. Sweet Sorghum as Biofuel Feedstock: Recent Advances and Available Resources. Biotechnol. Biofuels 2017, 10, 146. [Google Scholar] [CrossRef] [PubMed]
- Yadav, P.; Priyanka, P.; Kumar, D.; Yadav, A.; Yadav, K. Bioenergy Crops: Recent Advances and Future Outlook. In Prospects of Renewable Bioprocessing in Future Energy Systems; Rastegari, A.A., Yadav, A.N., Gupta, A., Eds.; Biofuel and Biorefinery Technologies 10, Chapter 12; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Xie, Q.; Xu, Z. Sustainable Agriculture: From Sweet Sorghum Planting and Ensiling to Ruminant Feeding. Mol. Plant 2019, 12, 603–606. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Mak, C.; Ming, R. Editorial: Genomics-enabled Crop Genetics. Front. Genet. 2021, 12, 687160. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, W.; Zhang, X.; Wang, S.; Yadegari, R.; Wang, J. Editorial: Advances in Crop Biomass Production Based on Multi-omics Approach. Front. Plant Sci. 2023, 14, 1155442. [Google Scholar] [CrossRef] [PubMed]
- Boyles, R.; Brenton, Z.; Kresovich, S. Genetic and Genomic Resources of Sorghum to Connect Genotype with Phenotype in Contrasting Environments. Plant J. 2019, 97, 19–39. [Google Scholar] [CrossRef]
- Hao, H.; Li, Z.; Leng, C.; Lu, C.; Luo, H.; Liu, Y.; Wu, X.; Liu, L.; Shang, L.; Jing, H. Sorghum Breeding in the Genomic Era: Opportunities and Challenges. Theor. Appl. Genet. 2021, 134, 1899–1924. [Google Scholar] [CrossRef]
- Takanashi, H. Genetic Control of Morphological Traits Useful for Improving Sorghum. Breed. Sci. 2023, 73, 57–69. [Google Scholar] [CrossRef]
- Silva, T.; Thomas, J.; Dahlberg, J.; Rhee, S.; Mortimer, J. Progress and Challenges in Sorghum Biotechnology, a Multipurpose Feedstock for the Bioeconomy. J. Exp. Botany. 2022, 73, 646–664. [Google Scholar] [CrossRef]
- Mullet, J.; Morishige, D.; McCormick, R.; Truong, S.; Hilley, J.; McKinley, B.; Anderson, R.; Olson, S.; Rooney, W. Energy Sorghum—A Genetic Model for the Design of C4 Grass Bioenergy Crops. J. Exp. Bot. 2014, 65, 3479–3489. [Google Scholar] [CrossRef]
- Dar, R.A.; Da, E.A.; Kaur, A.; Phutela, U.G. Sweet Sorghum—A Promising Alternative Feedstock for Biofuel Production. Renew. Sustain. Energy Rev. 2018, 82, 4070–4090. [Google Scholar]
- Appiah-Nkansah, N.; Li, J.; Rooney, W.; Wang, D. A Review of Sweet Sorghum as a Viable Renewable Bioenergy Crop and Its Techno-economic Analysis. Renew. Energy 2019, 43, 1121–1132. [Google Scholar] [CrossRef]
- Regassa, T.H.; Wortmann, C.S. Sweet Sorghum as a Bioenergy Crop: Literature Review. Biomass Bioenergy 2014, 64, 348–355. [Google Scholar] [CrossRef]
- Jafari, Y.; Karimi, K.; Amiri, H. Efficient Bioconversion of Whole Sweet Sorghum Plant to Acetone, Butanol, and Ethanol Improved by Acetone Delignification. J. Clean Prod. 2017, 166, 1428–1437. [Google Scholar] [CrossRef]
- Wen, Z.; Chen, J.; Yang, Y.; Zhang, Y.; Jiang, Y. Pilot-scale Fermentation of 300 t/a Total Solvents from Sweet Sorghum Stalk Juice. Chem. Eng. J. 2023, 454, 140534. [Google Scholar] [CrossRef]
- Nasidi, M.; Akunna, J.; Deeni, Y.; Blackwood, D.; Walker, G. Bioethanol in Nigeria: Comparative Analysis of Sugarcane and Sweet Sorghum as Feedstock Sources. Energy Environ. Sci. 2010, 3, 1447–1454. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, C.; Gao, X.; Ding, Y.; Cheng, B.; Zhang, G.; Cao, N.; Xu, Y.; Shao, M.; Zhang, L. Genome-wide Variations Analysis of Sorghum Cultivar Hongyingzi for Brewing Moutai Liquor. Hereditas 2020, 157, 19. [Google Scholar] [CrossRef]
- Ward, A.; Hobbs, P.; Holliman, P.; Jones, D. Optimisation of the Anaerobic Digestion of Agricultural Resources. Bioresour. Technol. 2008, 99, 79287940. [Google Scholar] [CrossRef]
- Appels, L.; Lauwers, J.; Degrève, J.; Helsen, L.; Lievens, B.; Willems, K.; Van Impe, J.; Dewil, R. Anaerobic Digestion in Global Bio-energy Production: Potential and Research Challenges. Renew. Sust. Energy Rev. 2011, 15, 42954301. [Google Scholar] [CrossRef]
- Tambone, F.; Genevini, P.; D’Imporzano, G.; Adani, F. Assessing Amendment Properties of Digestate by Studying the Organic Matter Composition and the Degree of Biological Stability During the Anaerobic Digestion of the Organic Fraction of MSW. Bioresour. Technol. 2009, 100, 31403142. [Google Scholar] [CrossRef]
- Ostovareh, S.; Karimi, K.; Zaman, A. Efficient Conversion of Sweet Sorghum Stalks to Biogas and Ethanol Using Organosolv Pretreatment. Ind. Crops Prod. 2015, 66, 170177. [Google Scholar] [CrossRef]
- Antonopoulou, G.; Gavala, H.; Skiadas, I.; Lyberatos, G. ADM1-based Modeling of Methane Production from Acidified Sweet Sorghum Extract in a Two Stage Process. Bioresour. Technol. 2012, 106, 1019. [Google Scholar] [CrossRef] [PubMed]
- Matsakas, L.; Christakopoulos, P. Fermentation of Lique-facted Hydrothermally Pretreated Sweet Sorghum Bagasse to Ethanol at High-solids Content. Bioresour. Technol. 2013, 127, 202208. [Google Scholar] [CrossRef]
- Matsakas, L.; Christakopoulos, P. Optimization of Ethanol Production from High Dry Matter Liquefied Dry Sweet Sorghum Stalks. Biomass Bioenergy 2013, 51, 9198. [Google Scholar] [CrossRef]
- Bonin, C.L.; Heaton, E.A.; Cogdill, T.J.; Moore, K.J. Management of Sweet Sorghum for Biomass Production. Sugar Tech. 2016, 18, 150–159. [Google Scholar] [CrossRef]
- Velmurugan, B.; Narra, M.; Rudakiya, D.; Madamwar, D. Sweet Sorghum: A Potential Resource for Bioenergy Production. In Refining Biomass Residues for Sustainable Energy and Bioproducts; Academic Press: Cambridge, MA, USA, 2020; pp. 215–242. [Google Scholar]
- Molaverdi, M.; Karimi, K.; Khanahmadi, M.; Goshadrou, A. Enhanced Sweet Sorghum Stalk to Ethanol by Fungus Mucor Indicus Using Solid State Fermentation Followed by Simultaneous Saccharification and Fermentation. Ind. Crops Prod. 2013, 49, 580585. [Google Scholar] [CrossRef]
- Ray, R.; Uppuluri, K.; Trilokesh, C.; Lareo, C. Sweet Sorghum for Bioethanol Production: Scope, Technology, and Economics. In Bioethanol Production from Food Crops; Academic Press: Cambridge, MA, USA, 2019; p. 81100. [Google Scholar]
- Qureshi, N.; Lin, X.; Liu, S.; Saha, B.C.; Mariano, A.P.; Polaina, J.; Ezeji, T.C.; Friedl, A.; Maddox, I.S.; Klasson, K.T.; et al. Global View of Biofuel Butanol and Economics of Its Production by Fermentation from Sweet Sorghum Bagasse, Food Waste, and Yellow Top Presscake: Application of Novel Technologies. Fermentation 2020, 6, 58. [Google Scholar] [CrossRef]
- Briand, C.; Geleta, S.; Kratochvil, R. Sweet Sorghum (Sorghum bicolor [L.] Moench) a Potential Biofuel Feedstock: Analysis of Cultivar Performance in the Mid-Atlantic. Renew. Energy 2018, 129, 328333. [Google Scholar] [CrossRef]
- Ratnavathi, C.; Patil, J.; Chavan, U. Sorghum Biochemistry: An Industrial Perspective; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Staggenborg, S. Forage and Renewable Sorghum End Uses. In Sorghum: State of the Art and Future Perspectives; Agronomy Monograph; Wiley: Hoboken, NJ, USA, 2016; p. 58. [Google Scholar]
- Lafarge, T.; Broad, I.; Hammer, G. Tillering in Grain Sorghum Over a Wide Range of Population Densities: Identification of a Common Hierarchy for Tiller Emergence, Leaf Area Development and Fertility. Ann. Bot. 2002, 90, 87–98. [Google Scholar] [CrossRef]
- Kim, H.K.; van Oosterom, E.; Dingkuhn, M.; Luquet, D.; Hammer, G. Regulation of Tillering in Sorghum: Environmental Effects. Ann. Bot. 2010, 106, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Kebrom, T.; Burson, B.; Finlayson, S. Phytochrome B Represses Teosinte Branched1 Expression and Induces Sorghum Axillary Bud Outgrowth in Response to Light Signals. Plant Physiol. 2006, 140, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, L.; Zhu, M.; Han, L.; Lv, Y.; Liu, Y.; Li, P.; Jing, H.; Cai, H. Non-dormant Axillary Bud 1 regulates axillary bud outgrowth in sorghum. J. Integr. Plant Biol. 2018, 60, 938–955. [Google Scholar] [CrossRef] [PubMed]
- Ordonio, R.; Ito, Y.; Morinaka, Y.; Sazuka, T.; Matsuoka, M. Molecular Breeding of Sorghum bicolor, a Novel Energy Crop. Int. Rev. Cell Mol. Biol. 2016, 321, 221–257. [Google Scholar]
- Zhang, X.; Lin, Z.; Wang, J.; Liu, H.; Zhou, L.; Zhong, S.; Li, Y.; Zhu, C.; Liu, J.; Lin, Z. The tin1 Gene Retains the Function of Promoting Tillering in Maize. Nat. Commun. 2019, 10, 5608. [Google Scholar] [CrossRef]
- Quinby, J.; Karper, R. Inheritance of Height in Sorghum. Agron. J. 1954, 46, 211–216. [Google Scholar] [CrossRef]
- Hashimoto, S.; Wake, T.; Nakamura, H.; Minamiyama, M.; Araki-Nakamura, S.; Ohmae-Shinohara, K.; Koketsu, E.; Okamura, S.; Miura, K.; Kawaguchi, H.; et al. The Dominance Model for Heterosis Explains Culm Length Genetics in a Hybrid Sorghum Variety. Sci. Rep. 2021, 11, 4532. [Google Scholar] [CrossRef]
- Hilley, J.; Truong, S.; Olson, S.; Morishige, D.; Mullet, J. Identification of Dw1, a Regulator of Sorghum Stem Internode Length. PLoS ONE 2016, 11, e0151271. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Fujimoto, H.; Hirano, K.; Araki-Nakamura, S.; Ohmae-Shinohara, K.; Fujii, A.; Tsunashima, M.; Song, X.; Ito, Y.; Nagae, R.; et al. Sorghum Dw1, an Agronomically Important Gene for Lodging Resistance, Encodes a Novel Protein Involved in Cell Proliferation. Sci. Rep. 2016, 6, 28366. [Google Scholar] [CrossRef]
- Hirano, K.; Kawamura, M.; Araki-Nakamura, S.; Fujimoto, H.; Ohmae-Shinohara, K.; Yamaguchi, M.; Fujii, A.; Sasaki, H.; Kasuga, S.; Sazuka, T. Sorghum DW1 positively regulates brassinosteroid signaling by inhibiting the nuclear localization of BRASSINOSTEROID INSENSITIVE 2. Sci. Rep. 2017, 7, 126. [Google Scholar] [CrossRef]
- Hilley, J.; Weers, B.; Truong, S.; McCormick, R.; Mattison, A.; McKinley, B.; Morishige, D.; Mullet, J. Sorghum Dw2 Encodes a Protein Kinase Regulator of Stem Internode Length. Sci. Rep. 2017, 7, 4616. [Google Scholar] [CrossRef] [PubMed]
- Multani, D.; Briggs, S.; Chamberlin, M.; Blakeslee, J.; Murphy, A.; Johal, G. Loss of an MDR Transporter in Compact Stalks of Maize br2 and Sorghum dw3 Mutants. Science 2003, 302, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.; Rooney, W.; Franks, C.; Kresovich, S. Efficient Mapping of Plant Height Quantitative Trait Loci in a Sorghum Association Population with Introgressed Dwarfing Genes. Genetics 2008, 180, 629–637. [Google Scholar] [CrossRef]
- Madhusudhana, R.; Patil, J. A Major QTL for Plant Height is Linked with Bloom Locus in Sorghum [Sorghum bicolor (L.) Moench]. Euphytica 2012, 191, 259–268. [Google Scholar] [CrossRef]
- Girma, G.; Nida, H.; Seyoum, A.; Mekonen, M.; Nega, A.; Lule, D.; Dessalegn, K.; Bekele, A.; Gebreyohannes, A.; Adeyanju, A.; et al. A Large-scale Genome-wide Association Analyses of Ethiopian Sorghum Landrace Collection Reveal Loci Associated with Important Traits. Front. Plant Sci. 2019, 10, 691–705. [Google Scholar] [CrossRef]
- Mace, E.; Innes, D.; Hunt, C.; Wang, X.; Tao, Y.; Baxter, J.; Hassall, M.; Hathorn, A.; Jordan, D. The Sorghum QTL Atlas: A Powerful Tool for Trait Dissection, Comparative Genomics and Crop Improvement. Theor. Appl. Genet. 2019, 132, 751–766. [Google Scholar] [CrossRef]
- Quinby, J.R. The Genetic Control of Flowering and Growth in Sorghum. Adv. Agron. 1974, 25, 125–162. [Google Scholar]
- Takai, T.; Yonemaru, J.; Kaidai, H.; Kasuga, S. Quantitative Trait Locus Analysis for Days-to-heading and Morphological Traits in an RIL Population Derived from an Extremely Late Flowering F1 Hybrid of Sorghum. Euphytica 2012, 187, 411–420. [Google Scholar] [CrossRef]
- Murphy, R.; Morishige, D.; Brady, J.; Rooney, W.; Yang, S.; Klein, P.; Mullet, J. Ghd7 (Ma6) Represses Sorghum Flowering in Long Days: Ghd7 Alleles Enhance Biomass Accumulation and Grain Production. Plant Genome 2014, 7, 1–10. [Google Scholar] [CrossRef]
- Murphy, R.; Klein, R.; Morishige, D.; Brady, J.; Rooney, W.; Miller, F.; Dugas, D.; Klein, P.; Mullet, J. Coincident Light and Clock Regulation of Pseudoresponse Regulator Protein 37 (PRR37) Controls Photoperiodic Flowering in Sorghum. Proc. Natl. Acad. Sci. USA 2011, 108, 16469–16474. [Google Scholar] [CrossRef]
- Mace, E.; Jordan, D. Location of Major Effect Genes in Sorghum (Sorghum bicolor (L.) Moench). Theor. Appl. Genet. 2010, 121, 1339–1356. [Google Scholar] [CrossRef] [PubMed]
- Childs, K.; Miller, F.; Cordonnier-Pratt, M.; Pratt, L.; Morgan, P.; Mullet, J. The Sorghum Photoperiod Sensitivity Gene, Ma3, Encodes a Phytochrome B. Plant Physiol. 1997, 113, 611–619. [Google Scholar] [CrossRef] [PubMed]
- Pao, C.; Morgan, P. Genetic Regulation of development in Sorghum bicolor. I. Role of the Maturity Genes. Plant Physiol. 1986, 82, 575–580. [Google Scholar] [CrossRef] [PubMed]
- Rooney, W.; Aydin, S. Genetic Control of a Photoperiod-sensitive Response in Sorghum bicolor (L.). Moench. Crop Sci. 1999, 39, 397–400. [Google Scholar] [CrossRef]
- Calvino, M.; Messing, J. Discovery of MicroRNA169 Gene Copies in Genomes of Flowering Plants Through Positional Information. Genome Biol. Evol. 2013, 5, 402–417. [Google Scholar] [CrossRef]
- Brown, P.J.; Paterson, A. Bridging Classical and Molecular Genetics of Sorghum Plant Stature and Maturity. In Genomics of the Saccharinae; Paterson, A., Ed.; Springer: New York, NY, USA, 2012; pp. 333–345. [Google Scholar]
- Quinby, J. The Maturity Genes of Sorghum. Adv. Agron. 1967, 19, 267–305. [Google Scholar]
- Klein, R.; Mullet, J.; Jordan, D.; Miller, F.; Rooney, W.; Menz, M.; Franks, C.; Klein, P. The Effect of Tropical Sorghum Conversion and Inbred Development on Genome Diversity as Revealed by High-resolution Genotyping. Plant Genome 2008, 1, 12–26. [Google Scholar] [CrossRef]
- Wang, L.; Liu, Y.; Gao, L.; Yang, X.; Zhang, X.; Xie, S.; Chen, M.; Wang, Y.; Li, J.; Shen, Y. Identification of Candidate Forage Yield Genes in Sorghum (Sorghum bicolor L.) Using Integrated Genome-wide Association Studies and RNA-seq. Front. Plant Sci. 2022, 12, 788433. [Google Scholar] [CrossRef]
- Shiringani, A.L.; Frisch, M.; Friedt, W. Genetic Mapping of QTLs for Sugar-related Traits in a RIL Population of Sorghum bicolor L. Moench. Theor. Appl. Genet. 2010, 121, 323–336. [Google Scholar] [CrossRef]
- Kong, W.Q.; Jin, H.Z.; Goff, V.H.; Auckland, S.A.; Rainville, L.K.; Paterson, A.H. Genetic Analysis of Stem Diameter and Water Contents to Improve Sorghum Bioenergy Efficiency. G3 2020, 10, 3991–4000. [Google Scholar] [CrossRef]
- Casto, A.; McKinley, B.; Yu, K.; Rooney, W.; Mullet, J. Sorghum Stem Aerenchyma Formation is Regulated by SbNAC_D During Internode Development. Plant Direct 2018, 2, e00085. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mehta, S.; Messing, J. A New High-throughput Assay for Determining Soluble Sugar in Sorghum Internode-extracted juice. Planta 2018, 248, 785–793. [Google Scholar] [CrossRef] [PubMed]
- Teshome, A.; Baum, B.; Fahrig, L.; Torrance, J.; Arnason, T.; Lambert, J. Sorghum [Sorghum bicolor (L.) Moench] Landrace Variation and Classification in North Shewa and South Welo, Ethiopia. Euphytica 1997, 97, 255–263. [Google Scholar] [CrossRef]
- Hilson, G. A Note on the Inheritance of Certain Stem Characters in Sorghum. Agric. J. India 1916, 11, 150–155. [Google Scholar]
- Swanson, A.; Parker, J. Inheritance of Smut Resistance and Juiciness of Stalk: In the Sorghum Cross, Red Amber × Feterita. J. Hered. 1931, 22, 51–56. [Google Scholar] [CrossRef]
- Zhang, L.; Leng, C.; Luo, H.; Wu, X.; Liu, Z.; Zhang, Y.; Zhang, H.; Xia, Y.; Shang, L.; Liu, C.M.; et al. Sweet Sorghum Originated Through Selection of Dry, a Plant-specific NAC Transcription Factor Gene. Plant Cell 2018, 30, 2286–2307. [Google Scholar] [CrossRef]
- McKinley, B.; Casto, A.; Rooney, W.; Mullet, J. Developmental Dynamics of Stem Starch Accumulation in Sorghum bicolor. Plant Direct 2018, 2, e00074. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Feng, Y.; Tu, M.; Wittich, P.E.; Bate, N.J.; Messing, J. Transcriptome and Metabolome Reveal Distinct Carbon Allocation Patterns During Internode Sugar Accumulation in Different Sorghum Genotypes. Plant Biotechnol. J. 2019, 17, 472–487. [Google Scholar] [CrossRef]
- Qazi, H.A.; Paranjpe, S.; Bhargava, S. Stem Sugar Accumulation in Sweet Sorghum—Activity and Expression of Sucrose Metabolizing Enzymes and Sucrose Transporters. J. Plant Physiol. 2012, 169, 605–613. [Google Scholar] [CrossRef]
- Fujimoto, M.; Sazuka, T.; Oda, Y.; Kawahigashi, H.; Wu, J.; Takanashi, H.; Ohnishi, T.; Yoneda, J.; Ishimori, M.; Kajiya-Kanegae, H.; et al. Transcriptional Switch for Programmed Cell Death in Pith Parenchyma of Sorghum Stems. Proc. Natl. Acad. Sci. USA 2018, 115, e8783–e8792. [Google Scholar] [CrossRef]
- Xia, J.; Zhao, Y.; Burks, P.; Pauly, M.; Brown, P. A Sorghum NAC Gene is Associated with Variation in Biomass Properties and Yield Potential. Plant Direct 2018, 2, e00070. [Google Scholar] [CrossRef] [PubMed]
- Raes, J.; Rohde, A.; Christensen, J.H.; Van de Peer, Y.; Boerjan, W. Genome-wide Characterization of the Lignification Toolbox in Arabidopsis. Plant Physiol. 2003, 133, 1051–1071. [Google Scholar] [CrossRef] [PubMed]
- Rai, K.; Thu, S.; Balasubramanian, V.; Cobos, C.; Disasa, T.; Mendu, V. Identification, Characterization, and Expression Analysis of Cell Wall Related Genes in Sorghum bicolor (L.) Moench, a Food, Fodder, and Biofuel Crop. Front. Plant Sci. 2016, 7, 1287. [Google Scholar] [CrossRef] [PubMed]
- Hennet, L.; Berger, A.; Trabanco, N.; Ricciuti, E.; Dufayard, J.; Bocs, S.; Bastianelli, D.; Bonnal, L.; Roqies, S.; Rossini, L.; et al. Transcriptional Regulation of Sorghum Stem Composition: Key Players Identified Through Co-expression Gene Network and Comparative Genomics Analyses. Front. Plant Sci. 2020, 11, 224. [Google Scholar] [CrossRef]
- Saballos, A.; Vermerris, W.; Rivera, L.; Ejeta, G. Allelic Association, Chemical Characterization and Saccharification Properties of Brown Midrib Mutants of Sorghum (Sorghum bicolor (L.) Moench). Bioenerg. Res. 2008, 1, 193–204. [Google Scholar] [CrossRef]
- Sattler, S.E.; Saballos, A.; Xin, Z.; Funnell-Harris, D.L.; Vermerris, W.; Pedersen, J.F. Characterization of Novel Sorghum brown midrib Mutants from an EMS-mutagenized Population. G3 2014, 4, 2115–2124. [Google Scholar] [CrossRef]
- Adeyanju, A.O.; Sattler, S.E.; Rich, P.J.; Rivera-Burgos, L.A.; Xu, X.; Ejeta, G. Sorghum Brown Midrib19 (Bmr19) Gene Links Lignin Biosynthesis to Folate Metabolism. Genes 2021, 12, 660. [Google Scholar] [CrossRef]
- Saballos, A.; Sattler, S.; Sanchez, E.; Foster, T.; Xin, Z.; Kang, C.; Pedersen, J.; Vermerris, W. Brown Midrib2 (Bmr2) Encodes the Major 4-coumarate: Coenzyme A ligase Involved in Lignin Biosynthesis in Sorghum (Sorghum bicolor (L.) Moench). Plant J. 2012, 70, 818–830. [Google Scholar] [CrossRef]
- Pillonel, C.; Mulder, M.; Boon, J.; Forster, B.; Binder, A. Involvement of Cinnamyl-alcohol Dehydrogenase in the Control of Lignin Formation in Sorghum bicolor L. Moench. Planta 1991, 185, 538–544. [Google Scholar] [CrossRef]
- da Silva, M.; Carneiro, P.; Carneiro, J.; Damasceno, C.; Parrella, N.; Pastina, M.; Simeone, M.; Schaffert, R.; Parrella, R. Evaluation of the Potential of Lines and Hybrids of Biomass Sorghum. Ind. Crops. Prod. 2018, 125, 379–385. [Google Scholar] [CrossRef]
- Saballos, A.; Ejeta, G.; Sanchez, E.; Kang, C.; Vermerris, W. A Genomewide Analysis of the Cinnamyl Alcohol Dehydrogenase Family in Sorghum [Sorghum bicolor (L.) Moench] Identifies SbCAD2 as the Brown Midrib6 Gene. Genetics 2009, 81, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Sattler, S.; Palmer, N.; Saballos, A.; Greene, A.; Xin, Z.; Sarath, G.; Vermerris, W.; Pedersen, J. Identification and Characterization of Four Missense Mutations in Brown Midrib 12 (bmr12), the Caffeic O-Methyltranferase (COMT) of Sorghum. Bioenerg. Res. 2012, 5, 855–865. [Google Scholar] [CrossRef]
- McKinley, B.; Rooney, W.; Wilkerson, C.; Mullet, J. Dynamics of Biomass Partitioning, Stem Gene Expression, Cell Wall Biosynthesis, and Sucrose Accumulation during Development of Sorghum bicolor. Plant J. 2016, 88, 662–680. [Google Scholar] [CrossRef] [PubMed]
- Kebrom, T.; McKinley, B.; Mullet, J. Dynamics of Gene Expression During Development and Expansion of Vegetative Stem Internodes of Bioenergy Sorghum. Biotechnol. Biofuels 2017, 10, 159. [Google Scholar] [CrossRef]
- Yu, K.; Oliver, J.; McKinley, B.; Weers, B.; Fabich, H.; Evetts, N.; Conradi, M.; Altobelli, S.; Marshall-Colon, A.; Mullet, J. Bioenergy Sorghum Stem Growth Regulation: Intercalary Meristem Localization, Development, and Gene Regulatory Network Analysis. Plant J. 2021, 112, 476–492. [Google Scholar] [CrossRef]
- Li, Y.; Tu, M.; Feng, Y.; Wang, W.; Messing, J. Common Metabolic networks Contribute to Carbon Sink Strength of Sorghum Internodes: Implications for Bioenergy Improvement. Biotechnol. Biofuels 2019, 12, 274. [Google Scholar]
- Sekhon, R.; Breitzman, M.; Silva, R.; Santoro, N.; Rooney, W.; de Leon, N.; Kaeppler, S. Stover Composition in Maize and Sorghum Reveals Remarkable Genetic Variation and Plasticity for Carbohydrate Accumulation. Front. Plant Sci. 2016, 7, 822. [Google Scholar] [CrossRef]
- Bihmidine, S.; Julius, B.; Dweikat, I.; Braun, D. Tonoplast Sugar Transporters (SbTSTs) Putatively Control Sucrose Accumulation in Sweet Sorghum Stems. Plant Signal Behav. 2015, 11, e1117721. [Google Scholar] [CrossRef]
- Milne, R.; Byrt, C.; Patrick, J.; Grof, C. Are Sucrose Transporter Expression Profiles Linked with Patterns of Biomass Partitioning in Sorghum Phenotypes? Front. Plant Sci. 2013, 4, 223. [Google Scholar] [CrossRef]
- Kanbar, A.; Shakeri, E.; Alhajturki, D.; Riemann, M.; Bunzel, M.; Morgano, M.; Stapf, D.; Nick, P. Sweet Versus Grain Sorghum: Differential Sugar Transport and Accumulation are Linked with Vascular Bundle Architecture. Indus. Crops. Prod. 2021, 167, 113550. [Google Scholar] [CrossRef]
- Mizuno, H.; Kasuga, S.; Kawahigashi, H. The Sorghum SWEET Gene Family: Stem Sucrose Accumulation as Revealed through Transcriptome Profiling. Biotechnol. Biofuels 2016, 9, 127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Hua, X.; Liu, H.; Yuan, Y.; Shi, Y.; Wang, Z.; Zhang, M.; Ming, R.; Zhang, J. Evolutionary Expansion and Functional Divergence of Sugar Transporters in Saccharum (S. spontaneum and S. officinarum). Plant J. 2021, 105, 884–906. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Wang, Y.; Hou, X.; Wei, X.; Zhao, X.; Huang, L.; Guo, Y.; Liu, Z. Genome-wide Identification, Expression and Functional Analysis of Sugar Transporters in Sorghum (Sorghum bicolor L.). J. Integr. Agric. 2022, 21, 2848–2864. [Google Scholar] [CrossRef]
- Tao, Y.; Luo, H.; Xu, J.; Cruickshank, A.; Zhao, X.; Teng, F.; Hathorn, A.; Wu, X.; Liu, Y.; Shatte, T.; et al. Extensive Variation within the Pan-genome of Cultivated and Wild Sorghum. Nat. Plants 2021, 7, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Voelker, W.; Krishnan, K.; Chougule, K.; Alexander, L., Jr.; Lu, Z.; Olson, A.; Ware, D.; Songsomboon, M.; Ponce, C.; Brenton, Z.; et al. Ten New High-quality Genome Assemblies for Diverse Bioenergy Sorghum Genotypes. Front. Plant Sci. 2023, 13, 1040909. [Google Scholar] [CrossRef]
- Brenton, Z.; Juengst, B.; Cooper, E.; Myers, M.; Jordan, K.; Dale, S.; Glaubitz, J.; Wang, X.Y.; Boyles, R.E.; Connolly, E.; et al. Species-specific Duplication Event Associated with Elevated Levels of Nonstructural Carbohydrates in Sorghum bicolor. G3 2020, 10, 1511–1520. [Google Scholar] [CrossRef]
- Calvino, M.; Bruggmann, R.; Messing, J. Characterization of the Small RNA Component of the Transcriptome from Grain and Sweet Sorghum Stems. BMC Genom. 2011, 12, 356. [Google Scholar] [CrossRef]
- Calvino, M.; Messing, J. Sweet Sorghum as a Model System for Bioenergy Crops. Curr. Opin. Biotechnol. 2012, 23, 323–329. [Google Scholar] [CrossRef]
- Yu, H.; Cong, L.; Zhu, Z.; Wang, C.; Zou, J.; Tao, C.; Shi, Z.; Lu, X. Identification of Differentially Expressed microRNA in the Stems and Leaves During Sugar Accumulation in Sweet Sorghum. Gene 2015, 571, 221–230. [Google Scholar] [CrossRef]
- Gyawali, B.; Barozai, M.; Aziz, A. Comparative Expression Analysis of microRNAs and Their Targets in Emerging Biofuel Crop Sweet Sorghum (Sorghum bicolor L.). Plant Gene 2021, 26, 100274. [Google Scholar] [CrossRef]
- Casler, M.D.; Pedersen, J.F.; Undersander, D.J. Forage Yield and Economic Losses Associated with the Brown-Midrib Trait in Sudangrass. Crop Sci. 2003, 43, 782–789. [Google Scholar] [CrossRef]
- Bean, B.; McCollum, T.; McCuistion, K.; Robinson, J.; Villeareal, B.; VanMeter, R.; Pietsch, D. Texas Panhandle Forage Sorghum Silage Trial; Texas Cooperative Extension and Texas Agricultural Experiment Station: College Station, TX, USA, 2006. [Google Scholar]
- Bean, B.; McCollum, T.; Villeareal, B.; Robinson, J.; Buttrey, E.; VanMeter, R.; Pietsch, D. Texas Panhandle Forage Sorghum Silage Trial; Texas Cooperative Extension and Texas Agricultural Experiment Station: College Station, TX, USA, 2007. [Google Scholar]
- Bean, B.; McCollum, T.; Villeareal, B.; Blumenthal, J.; Robinson, J.; Brandon, R.; Buttrey, E.; VanMeter, R.; Pietsch, D. Texas Panhandle Forage Sorghum Silage Trial; Texas Cooperative Extension and Texas Agricultural Experiment Station: College Station, TX, USA, 2008. [Google Scholar]
- Dien, B.S.; Sarath, G.; Pedersen, J.F.; Sattler, S.E.; Chen, H.; Funnell-Harris, D.L.; Nichols, N.N.; Cotta, M.A. Improved Sugar Conversion and Ethanol Yield for Forage Sorghum (Sorghum bicolor L. Moench) Lines with Reduced Lignin Contents. Bioenergy Res. 2009, 2, 153–164. [Google Scholar] [CrossRef]
- Wuyuntanmanda; Han, F.; Dun, B.; Zhang, J.; Wang, Z.; Sui, Y.; Zhu, L.; Li, G. Cloning and Functional Analysis of Soluble Acid Invertase 2 Gene (SbSAI-2) in Sorghum. Planta 2022, 255, 13. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Jia, S.; Yobi, A.; Ge, Z.; Sato, S.J.; Zhang, C.; Angelovici, R.; Clemente, T.E.; Holding, D.R. Editing of an Alpha-Kafirin Gene Family Increases, Digestibility and Protein Quality in Sorghum. Plant Physiol. 2018, 177, 1425–1438. [Google Scholar] [CrossRef] [PubMed]
- Char, S.N.; Wei, J.; Mu, Q.; Li, X.; Zhang, Z.J.; Yu, J.; Yang, B. An Agrobacterium-delivered CRISPR/Cas9 System for Targeted Mutagenesis in Sorghum. Plant Biotechnol. J. 2020, 18, 319–321. [Google Scholar] [CrossRef]
- Che, P.; Anand, A.; Wu, E.; Sander, J.D.; Simon, M.K.; Zhu, W.; Sigmund, A.L.; Zastrow-Hayes, G.; Miller, M.; Liu, D.; et al. Developing a Flexible, High-efficiency Agrobacterium-mediated Sorghum Transformation System with Broad Application. Plant Biotechnol. J. 2018, 16, 1388–1395. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Perez, M.; Hu, J.; Fernandez, M. Genome-Wide Association Study for Nine Plant Architecture Traits in Sorghum. Plant Genome 2016, 9, 2. [Google Scholar] [CrossRef]
- Brenton, Z.; Cooper, E.; Myers, M.; Boyles, R.; Shakoor, N.; Zielinski, K.; Rauh, B.; Bridges, W.; Morris, G.; Kresovich, S. A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy. Genetics 2016, 204, 21–33. [Google Scholar] [CrossRef]
- Hu, Z.; Olatoye, M.; Marla, S.; Morris, G. An Integrated Genotyping-by-Sequencing Polymorphism Map for Over 10,000 Sorghum Genotypes. Plant Genome 2019, 12, 1. [Google Scholar] [CrossRef]
- Shaw, R.; Tian, X.; Xu, J. Single-Cell Transcriptome Analysis in Plants: Advances and Challenges. Mol. Plant 2020, 14, 115–126. [Google Scholar] [CrossRef]
- Shahan, R.; Nolan, T.; Benfey, P. Single-cell Analysis of Cell Identity in the Arabidopsis Root Apical Meristem: Insights and Opportunities. J. Exp. Bot. 2021, 72, 6679–6686. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Sonawane, P.; Cohen, H.; Polturak, G.; Feldberg, L.; Avivi, S.; Rogachev, I.; Aharoni, A. High Mass Resolution, Spatial Metabolite Mapping Enhances the Current Plant Gene and Pathway Discovery Toolbox. New Phytol. 2020, 228, 1986–2002. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Wang, Y.; Chen, W.; Xu, M.; Zhou, R.; Shou, H.; Chen, J. High-resolution Anatomical and Spatial Transcriptome Analyses Reveal Two Types of Meristematic Cell Pools Within the Secondary Vascular Tissue of Poplar Stem. Mol. Plant 2023, 16, 809–828. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Hou, K.; Zhang, H.; Liang, X.; Chen, C.; Wang, Z.; Wu, Q.; Chen, G.; He, J.; Bai, E.; et al. Integrated Mass Spectrometry Imaging and Single-cell Transcriptome Atlas Strategies Provide Novel Insights into Taxoid Biosynthesis and Transport in Taxus Mairei Stems. Plant J. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Makita, Y.; Shimada, S.; Kawashima, M.; Kondou-Kuriyama, T.; Toyoda, T.; Matsui, M. MOROKOSHI: Transcriptome Database in Sorghum bicolor. Plant Cell Physiol. 2015, 56, e6. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Z.; Wu, X.; Zhu, J.; Luo, H.; Tian, D.; Li, C.; Luo, J.; Zhao, W.; Hao, H.; et al. SorGSD: Updating and Expanding the Sorghum Genome Science Database with New Contents and Tools. Biotechnol. Biofuels 2021, 14, 165. [Google Scholar] [CrossRef]
- Gladman, N.; Olson, A.; Wei, S.; Chougule, K.; Lu, Z.; Tello-Ruiz, M.; Meijs, I.; Buren, P.V.; Jiao, Y.; Wang, B.; et al. SorghumBase: A Web-based Portal for Sorghum Genetic Information and Community Advancement. Planta 2022, 255, 35. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Zhou, Q.; Sheng, X.; Chen, X.; Hua, Y.; Lin, S.; Luo, Q.; Yu, B.; Shao, T.; Wu, Y.; et al. Harnessing the Genetic Basis of Sorghum Biomass-Related Traits to Facilitate Bioenergy Applications. Int. J. Mol. Sci. 2023, 24, 14549. https://doi.org/10.3390/ijms241914549
Yang L, Zhou Q, Sheng X, Chen X, Hua Y, Lin S, Luo Q, Yu B, Shao T, Wu Y, et al. Harnessing the Genetic Basis of Sorghum Biomass-Related Traits to Facilitate Bioenergy Applications. International Journal of Molecular Sciences. 2023; 24(19):14549. https://doi.org/10.3390/ijms241914549
Chicago/Turabian StyleYang, Lin, Qin Zhou, Xuan Sheng, Xiangqian Chen, Yuqing Hua, Shuang Lin, Qiyun Luo, Boju Yu, Ti Shao, Yixiao Wu, and et al. 2023. "Harnessing the Genetic Basis of Sorghum Biomass-Related Traits to Facilitate Bioenergy Applications" International Journal of Molecular Sciences 24, no. 19: 14549. https://doi.org/10.3390/ijms241914549
APA StyleYang, L., Zhou, Q., Sheng, X., Chen, X., Hua, Y., Lin, S., Luo, Q., Yu, B., Shao, T., Wu, Y., Chang, J., Li, Y., & Tu, M. (2023). Harnessing the Genetic Basis of Sorghum Biomass-Related Traits to Facilitate Bioenergy Applications. International Journal of Molecular Sciences, 24(19), 14549. https://doi.org/10.3390/ijms241914549