Efficient Accumulation of Amylopectin and Its Molecular Mechanism in the Submerged Duckweed Mutant
Abstract
:1. Introduction
2. Results
2.1. Sugar and Starch Were Massively Accumulated in sub-1 Mutant
2.2. Chain Length Distribution and Branching Degree of Amylopectin
2.3. X-ray Diffraction (XRD) Analysis
2.4. Fourier Transformed Infrared Spectrometry (FTIR) Analysis
2.5. Physicalproperty of Starch in sub-1 Mutant
2.6. Metabolome Analysis
2.7. Transcriptome Analysis
2.8. Enzyme Genes in Starch and Sucrose Metabolic Pathways Verified by Q-PCR
3. Discussion
4. Materials and Methods
4.1. Materials and Culture Environment
4.2. I2/KI Staining
4.3. Periodic Acid-Schiff (PAS) Staining
4.4. Extraction of Starch Granules
4.5. Determination of Amylose Content
4.6. Degree of Branching
4.7. Chain Length Distribution of Amylopectin
4.8. X-ray Differaction (XRD) Analysis
4.9. Fourier Transformed Infrared Spectrometry (FTIR) Analysis
4.10. Water Solubility (WS) and Swelling Power (SP)
4.11. Metabolome and Transcriptome Analysis
4.12. Differentially Expressed Genes Verified by Quantitative Real-Time PCR (Q-PCR)
4.13. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.; Xu, H.; Yu, C.J.; Zhou, G.K. Multifaceted roles of duckweed in aquatic phytoremediation and bioproducts synthesis. GCB Bioenergy 2021, 13, 70–82. [Google Scholar] [CrossRef]
- Bertoft, E. Fine structure of amylopectin. In Starch; Springer: Tokyo, Japan, 2015; pp. 3–40. [Google Scholar]
- Vilaplana, F.; Hasjim, J.; Gilbert, R.G. Amylose content in starches: Toward optimal definition and validating experimental methods. Carbohyd. Polym. 2012, 88, 103–111. [Google Scholar] [CrossRef]
- Bertoft, E. Understanding starch structure: Recent progress. Agronomy 2017, 7, 56. [Google Scholar] [CrossRef]
- Waterschoot, J.; Gomand, S.V.; Fierens, E.; Delcour, J.A. Production, structure, physicochemical and functional properties of maize, cassava, wheat, potato and rice starches. Starch-Stärke 2015, 67, 14–29. [Google Scholar] [CrossRef]
- Gismondi, A.; D’Agostino, A.; Canuti, L.; Di Marco, G.; Basoli, F.; Canini, A. Starch granules: A data collection of 40 food species. Plant Biosyst. 2019, 153, 273–279. [Google Scholar] [CrossRef]
- Ashogbon, A.O.; Akintayo, E.T. Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch-Stärke 2014, 66, 41–57. [Google Scholar] [CrossRef]
- Zhu, F. Barley starch: Composition, structure, properties, and modifications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 558–579. [Google Scholar] [CrossRef]
- Hejazi, M.; Fettke, J.; Paris, O.; Steup, M. The two plastidial starch-related dikinases sequentially phosphorylate glucosyl residues at the surface of both the A-and B-type allomorphs of crystallized maltodextrins but the mode of action differs. Plant Physiol. 2009, 150, 962–976. [Google Scholar] [CrossRef]
- Chen, L.; Yu, C.J.; Ma, Y.B.; Xu, H.; Wang, S.M.; Wang, Y.; Liu, X.X.; Zhou, G.K. Insights into the structural and physicochemical properties of small granular starches from two hydrophyte duckweeds, Spirodela oligorrhiza and Lemna minor. Carbohyd. Res. 2016, 435, 208–214. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, H.; Wang, Y.; Tang, X.F.; He, G.; Wang, S.M.; Ma, Y.B.; Kong, Y.Z.; Yu, C.J.; Zhou, G.K. A submerged duckweed mutant with abundant starch accumulation for bioethanol production. GCB Bioenergy 2020, 12, 1078–1091. [Google Scholar] [CrossRef]
- Abt, M.R.; Zeeman, S.C. Evolutionary innovations in starch metabolism. Curr. Opin. Plant Biol. 2020, 55, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Sun, H.B.; Qiao, J.; Zhu, L.L.; Zhang, F.; Zhang, J.; Tang, Z.J.; Wei, X.L.; Yang, J.G.; Yuan, Q.Q.; et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science 2021, 373, 1523–1527. [Google Scholar] [CrossRef]
- Stitt, M.; Zeeman, S.C. Starch turnover: Pathways, regulation and role in growth. Curr. Opin. Plant Biol. 2012, 15, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.Q.; Messing, J. Analysis of ADP-glucose pyrophosphorylase expression during turion formation induced by abscisic acid in Spirodela polyrhiza (greater duckweed). BMC Plant Biol. 2012, 12, 1–14. [Google Scholar] [CrossRef]
- Li, J.M.; Du, A.P.; Liu, P.H.; Tian, X.P.; Jin, Y.L.; Yi, Z.L.; He, K.Z.; Fang, Y.; Zhao, H. High starch accumulation mechanism and phosphorus utilization efficiency of duckweed (Landoltia punctata) under phosphate starvation. Ind. Crop. Prod. 2021, 167, 113529. [Google Scholar] [CrossRef]
- Hanashiro, I.; Abe, J.I.; Hizukuri, S. A periodic distribution of the chain length of amylopectin as revealed by high-performance anion-exchange chromatography. Carbohyd Res. 1996, 283, 151–159. [Google Scholar] [CrossRef]
- Wang, S.J.; Copeland, L. Effect of acid hydrolysis on starch structure and functionality: A review. Crit. Rev. Food Sci. 2015, 55, 1081–1097. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, T.J.; Bello-Pérez, L.A. Self-assembled and assembled starch V-type complexes for the development of functional foodstuffs: A review. Food Hydrocoll. 2021, 125, 107453. [Google Scholar] [CrossRef]
- Pérez, S.; Bertoft, E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch-Stärke 2010, 62, 389–420. [Google Scholar] [CrossRef]
- Bello-Perez, L.A.; Ottenhof, M.A.; Agama-Acevedo, E.; Farhat, I.A. Effect of storage time on the retrogradation of banana starch extrudate. J. Agric. Food Chem. 2005, 53, 1081–1086. [Google Scholar] [CrossRef]
- Capron, I.; Robert, P.; Colonna, P.; Brogly, M.; Planchot, V. Starch in rubbery and glassy states by FTIR spectroscopy. Carbohyd Polym. 2007, 68, 249–259. [Google Scholar] [CrossRef]
- Liu, Z.Y.; Wang, C.; Liao, X.J.; Shen, Q. Measurement and comparison of multi-scale structure in heat and pressure treated corn starch granule under the same degree of gelatinization. Food Hydrocoll. 2020, 108, 106081. [Google Scholar] [CrossRef]
- Lin, L.S.; Cai, C.H.; Gilbert, R.G.; Li, E.P.; Wang, J.; Wei, C.X. Relationships between amylopectin molecular structures and functional properties of different-sized fractions of normal and high-amylose maize starches. Food Hydrocoll. 2016, 52, 359–368. [Google Scholar] [CrossRef]
- Lii, C.Y.; Tsai, M.L.; Tseng, K.H. Effect of amylose content on the rheological property of rice starch. Cereal Chem. 1996, 73, 415–420. [Google Scholar]
- Salman, H.; Blazek, J.; Lopez-Rubio, A.; Gilbert, E.P.; Hanley, T.; Copeland, L. Structure–function relationships in A and B granules from wheat starches of similar amylose content. Carbohyd. Polym. 2009, 75, 420–427. [Google Scholar] [CrossRef]
- Van Harsselaar, J.K.; Lorenz, J.; Senning, M.; Sonnewald, U.; Sonnewald, S. Genome-wide analysis of starch metabolism genes in potato (Solanum tuberosum L.). BMC Genom. 2017, 18, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.J.; Chen, J.; Yi, Q.; Hu, Y.F.; Liu, H.M.; Liu, Y.H.; Huang, Y.B. Novel role of ZmaNAC36 in co-expression of starch synthetic genes in maize endosperm. Plant Mol. Biol. 2014, 84, 359–369. [Google Scholar] [CrossRef]
- Rolland-Sabaté, A.; Sánchez, T.; Buléon, A.; Colonna, P.; Jaillais, B.; Ceballos, H.; Dufour, D. Structural characterization of novel cassava starches with low and high-amylose contents in comparison with other commercial sources. Food Hydrocoll. 2012, 27, 161–174. [Google Scholar] [CrossRef]
- Blazek, J.; Copeland, L. Pasting and swelling properties of wheat flour and starch in relation to amylose content. Carbohyd. Polym. 2008, 71, 380–387. [Google Scholar] [CrossRef]
- Lee, C.J.; Yangcheng, H.; Cheng, J.J.; Jane, J.L. Starch characterization and ethanol production of duckweed and corn kernel. Starch-Stärke 2016, 68, 348–354. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, L.L.; Bian, X.F.; Guo, K.; Zhou, L.; Wei, C.X. Characterization and comparative study of starches from seven purple sweet potatoes. Food Hydrocoll. 2018, 80, 168–176. [Google Scholar] [CrossRef]
- Huang, J.; Shang, Z.Q.; Man, J.M.; Liu, Q.Q.; Zhu, C.J.; Wei, C.X. Comparison of molecular structures and functional properties of high-amylose starches from rice transgenic line and commercial maize. Food Hydrocoll. 2015, 46, 172–179. [Google Scholar] [CrossRef]
- Lemos, P.V.F.; Barbosa, L.S.; Ramos, I.G.; Coelho, R.E.; Druzian, J.I. Characterization of amylose and amylopectin fractions separated from potato, banana, corn, and cassava starches. Int. J. Biol. Macromol. 2019, 132, 32–42. [Google Scholar] [CrossRef]
- Witt, T.; Doutch, J.; Gilbert, E.P.; Gilbert, R.G. Relations between molecular, crystalline, and lamellar structures of amylopectin. Biomacromolecules 2012, 13, 4273–4282. [Google Scholar] [CrossRef]
- Monroe, J.D.; Storm, A.R. The Arabidopsis β-amylase (BAM) gene family: Diversity of form and function. Plant Sci. 2018, 276, 163–170. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.Q.; Feng, Y.P.; Tu, M.; Wittich, P.E.; Bate, N.J.; Messing, J. Transcriptome and metabolome reveal distinct carbon allocation patterns during internode sugar accumulation in different sorghum genotypes. Plant Biotechnol. J. 2019, 17, 472–487. [Google Scholar] [CrossRef] [PubMed]
- Zanella, M.; Borghi, G.L.; Pirone, C.; Thalmann, M.; Pazmino, D.; Costa, A.; Santelia, D.; Trost, P.; Sparla, F. β-amylase 1 (BAM1) degrades transitory starch to sustain proline biosynthesis during drought stress. J. Exp. Bot. 2016, 67, 1819–1826. [Google Scholar] [CrossRef] [PubMed]
- Valerio, C.; Costa, A.; Marri, L.; Issakidis-Bourguet, E.; Pupillo, P.; Trost, P.; Sparla, F. Thioredoxin-regulated β-amylase (BAM1) triggers diurnal starch degradation in guard cells, and in mesophyll cells under osmotic stress. J. Exp. Bot. 2011, 62, 545–555. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.J.; Zhang, Y.D.; Wu, Y.L.; Zhou, W.Z.; Yang, J.; Yuan, L.; Zhang, P.; Wang, H.X. The H+-pyrophosphatase IBVP1 regulates carbon flux to influence the starch metabolism and yield of sweet potato. Hortic. Res. 2021, 8, 20. [Google Scholar] [CrossRef]
- Yu, M.H.; Liu, B.; Zhong, F.; Wan, Q.; Zhu, S.; Huang, D.J.; Li, Y. Interactions between caffeic acid and corn starch with varying amylose content and their effects on starch digestion. Food Hydrocoll. 2021, 114, 106544. [Google Scholar] [CrossRef]
- Ren, Z.T.; He, S.Z.; Zhao, N.; Zhai, H.; Liu, Q.C. A sucrose non-fermenting-1-related protein kinase-1 gene, IbSnRK1, improves starch content, composition, granule size, degree of crystallinity and gelatinization in transgenic sweet potato. Plant Biotechnol. J. 2019, 17, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Dong, Y.Q.; Fang, Y.X.; Gao, W.; Kang, X.M.; Liu, P.F.; Yan, S.X.; Cui, B.; Abd El-Aty, A.M. Effects of different moisture contents on the structure and properties of corn starch during extrusion. Food Chem. 2022, 368, 130804. [Google Scholar] [CrossRef]
- Gao, L.C.; Wang, H.L.; Wan, C.X.; Leng, J.J.; Wang, P.K.; Yang, P.; Gao, X.L.; Gao, J.F. Structural, pasting and thermal properties of common buckwheat (Fagopyrum esculentum Moench) starches affected by molecular structure. Int. J. Biol. Macromol. 2020, 156, 120–126. [Google Scholar] [CrossRef]
Starch Charecteristics | Species | |
---|---|---|
Wild Type | sub-1 | |
Amylose (%) | 24.34 ± 0.26 a | 15.96 ± 0.15 b |
Amylopectin (%) | 75.66 ± 0.26 b | 84.04 ± 0.15 a |
Amylose/Amylopectin | 0.32 ± 0.01 a | 0.19 ± 0.01 b |
Sample | DP 6–12 (%) | DP 13–24(%) | DP 25–36(%) | DP > 36 (%) | DP |
---|---|---|---|---|---|
WT | 21.26 ± 0.06 a | 47.30 ± 0.06 b | 14.02 ± 0.03 a | 17.42 ± 0.08 a | 23.16 ± 0.04 a |
sub-1 | 20.78 ± 0.06 b | 49.50 ± 0.16 a | 13.02 ± 0.02 b | 16.70 ± 0.19 b | 22.72 ± 0.08 b |
Sample | WS | SP | DB |
---|---|---|---|
WT | 33.96 ± 1.07 a | 10.24 ± 0.47 b | 6.67 ± 0.02 b |
sub-1 | 23.97 ± 1.48 b | 20.18 ± 0.33 a | 7.98 ± 0.06 a |
Compound | VIP | Fold Change | Type | |
---|---|---|---|---|
CK vs. sub-1 (0H) | Panose | 1.14 | 5.48 | Up-regulated |
D-(+)-Melezitose | 1.14 | 3.38 | Up-regulated | |
D-Glucose | 1.15 | 2.61 | Up-regulated | |
D-(+)-Glucose | 1.15 | 2.32 | Up-regulated | |
CK vs. sub-1 (16H) | Panose | 1.16 | 2.65 | Up-regulated |
D-(+)-Melezitose | 1.13 | 2.29 | Up-regulated | |
D-Glucose | 1.13 | 2.23 | Up-regulated |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yan, R.; Li, Z.; Fan, S.; Li, C.; Yu, R.; Liu, H.; Kong, Y.; Li, H.; Tang, X.; et al. Efficient Accumulation of Amylopectin and Its Molecular Mechanism in the Submerged Duckweed Mutant. Int. J. Mol. Sci. 2023, 24, 2934. https://doi.org/10.3390/ijms24032934
Liu Y, Yan R, Li Z, Fan S, Li C, Yu R, Liu H, Kong Y, Li H, Tang X, et al. Efficient Accumulation of Amylopectin and Its Molecular Mechanism in the Submerged Duckweed Mutant. International Journal of Molecular Sciences. 2023; 24(3):2934. https://doi.org/10.3390/ijms24032934
Chicago/Turabian StyleLiu, Yu, Ruiting Yan, Zonghao Li, Shusheng Fan, Chuantong Li, Ruikang Yu, Huaqing Liu, Yingzhen Kong, Haimei Li, Xianfeng Tang, and et al. 2023. "Efficient Accumulation of Amylopectin and Its Molecular Mechanism in the Submerged Duckweed Mutant" International Journal of Molecular Sciences 24, no. 3: 2934. https://doi.org/10.3390/ijms24032934
APA StyleLiu, Y., Yan, R., Li, Z., Fan, S., Li, C., Yu, R., Liu, H., Kong, Y., Li, H., Tang, X., & Zhou, G. (2023). Efficient Accumulation of Amylopectin and Its Molecular Mechanism in the Submerged Duckweed Mutant. International Journal of Molecular Sciences, 24(3), 2934. https://doi.org/10.3390/ijms24032934