Identifying the Target Traumatic Brain Injury Population for Hyperbaric Oxygen Therapy
Abstract
:1. Introduction to TBI
2. HBOT in the Setting of Brain Injury
3. Chronic Impairments in TBI Populations
4. HBOT Mechanism of Action
5. Probing the Mechanisms Mediating HBOT via Biomolecular Assays
5.1. Inflammation (GFAP and UCH-L1)
5.2. Oxidative Stress (s100B, MBP, and NF-L)
5.3. Mitochondria Activity (Seahorse)
5.4. Stem Cell Proliferation (Flow Cytometry for Oct4, Nanog, and SSEA)
6. Efficacy of HBOT for Different TBI Populations
7. Safety of HBOT in TBI Populations
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TBI | Traumatic brain injury |
GCS | Glasgow Coma Scale |
HBOT | Hyperbaric oxygen therapy |
ROS | Reactive oxygen species |
RNS | Reactive nitrogen species |
ICP | Intracranial pressure |
GOS | Glasgow outcome scale |
mTBI | Mild traumatic brain injury |
PPCS | Persistent post-concussion symptoms |
CTE | Chronic traumatic encephalopathy |
CBF | Cerebral blood flow |
TLR | Toll like receptor |
NFKB | Nuclear factor kappa B |
TNF-α | Tumor necrosis factor A |
IL | Interleukin |
IBA | Allograft inflammatory factor |
EEG | Electroencephalogram |
BDNF | Brain-derived neurotrophic factor |
NGF | Nerve growth factor |
VEGF | Vascular endothelial growth factor |
References
- Menon, D.K.; Schwab, K.; Wright, D.W.; Maas, A.I. Position statement: Definition of traumatic brain injury. Arch. Phys. Med. Rehabil. 2010, 91, 1637–1640. [Google Scholar] [CrossRef] [PubMed]
- Kazim, S.F.; Shamim, M.S.; Tahir, M.Z.; Enam, S.A.; Waheed, S. Management of penetrating brain injury. J. Emergencies Trauma Shock 2011, 4, 395–402. [Google Scholar] [CrossRef]
- Wolf, S.J.; Bebarta, V.S.; Bonnett, C.J.; Pons, P.T.; Cantrill, S.V. Blast injuries. Lancet 2009, 374, 405–415. [Google Scholar] [CrossRef]
- Kinoshita, K. Traumatic brain injury: Pathophysiology for neurocritical care. J. Intensive Care 2016, 4, 29. [Google Scholar] [CrossRef] [PubMed]
- Saatman, K.E.; Duhaime, A.C.; Bullock, R.; Maas, A.I.; Valadka, A.; Manley, G.T. Classification of traumatic brain injury for targeted therapies. J. Neurotrauma 2008, 25, 719–738. [Google Scholar] [CrossRef]
- Teasdale, G.; Jennett, B. Assessment of coma and impaired consciousness. A practical scale. Lancet 1974, 2, 81–84. [Google Scholar] [CrossRef] [PubMed]
- Teasdale, G.; Maas, A.; Lecky, F.; Manley, G.; Stocchetti, N.; Murray, G. The Glasgow Coma Scale at 40 years: Standing the test of time. Lancet Neurol. 2014, 13, 844–854. [Google Scholar] [CrossRef] [PubMed]
- McCrory, P.; Meeuwisse, W.H.; Aubry, M.; Cantu, B.; Dvorák, J.; Echemendia, R.J.; Engebretsen, L.; Johnston, K.; Kutcher, J.S.; Raftery, M.; et al. Consensus statement on concussion in sport: The 4th International Conference on Concussion in Sport held in Zurich, November 2012. Br. J. Sports Med. 2013, 47, 250–258. [Google Scholar] [CrossRef]
- Einarsen, C.E.; van der Naalt, J.; Jacobs, B.; Follestad, T.; Moen, K.G.; Vik, A.; Håberg, A.K.; Skandsen, T. Moderate Traumatic Brain Injury: Clinical Characteristics and a Prognostic Model of 12-Month Outcome. World Neurosurg. 2018, 114, e1199–e1210. [Google Scholar] [CrossRef]
- Prabhakaran, K.; Petrone, P.; Lombardo, G.; Stoller, C.; Policastro, A.; Marini, C.P. Mortality rates of severe traumatic brain injury patients: Impact of direct versus nondirect transfers. J. Surg. Res. 2017, 219, 66–71. [Google Scholar] [CrossRef]
- Thom, S.R. Hyperbaric oxygen: Its mechanisms and efficacy. Plast. Reconstr. Surg. 2011, 127 (Suppl. S1), 131S–141S. [Google Scholar] [CrossRef]
- Guedes, V.A.; Song, S.; Provenzano, M.; Borlongan, C.V. Understanding the pathology and treatment of traumatic brain injury and posttraumatic stress disorder: A therapeutic role for hyperbaric oxygen therapy. Expert Rev. Neurother. 2016, 16, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, Y.; Long, D.M. The molecular basis of brain injury and brain edema: The role of oxygen free radicals. Neurosurgery 1990, 27, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Coe, J.E.; Hayes, T.M. Treatment of experimental brain injury by hyperbaric oxygenation. Preliminary report. Am. Surg. 1966, 32, 493–495. [Google Scholar] [PubMed]
- Dunn, J.; Lawson, D. Effects of Hypobaric and Hyperbaric Oxygen on Experimental brain injury. Orig. Hyperb. Med. 1966, 447–454. [Google Scholar]
- Miller, J.D.; Fitch, W.; Ledingham, I.M.; Jennett, W.B. The effect of hyperbaric oxygen on experimentally increased intracranial pressure. J. Neurosurg. 1970, 33, 287–296. [Google Scholar] [CrossRef]
- Palzur, E.; Vlodavsky, E.; Mulla, H.; Arieli, R.; Feinsod, M.; Soustiel, J.F. Hyperbaric oxygen therapy for reduction of secondary brain damage in head injury: An animal model of brain contusion. J. Neurotrauma 2004, 21, 41–48. [Google Scholar] [CrossRef]
- Palzur, E.; Zaaroor, M.; Vlodavsky, E.; Milman, F.; Soustiel, J.F. Neuroprotective effect of hyperbaric oxygen therapy in brain injury is mediated by preservation of mitochondrial membrane properties. Brain Res. 2008, 1221, 126–133. [Google Scholar] [CrossRef]
- Vlodavsky, E.; Palzur, E.; Soustiel, J.F. Hyperbaric oxygen therapy reduces neuroinflammation and expression of matrix metalloproteinase-9 in the rat model of traumatic brain injury. Neuropathol. Appl. Neurobiol. 2006, 32, 40–50. [Google Scholar] [CrossRef]
- Chen, X.; Duan, X.S.; Xu, L.J.; Zhao, J.J.; She, Z.F.; Chen, W.W.; Zheng, Z.J.; Jiang, G.D. Interleukin-10 mediates the neuroprotection of hyperbaric oxygen therapy against traumatic brain injury in mice. Neuroscience 2014, 266, 235–243. [Google Scholar] [CrossRef]
- Daugherty, W.P.; Levasseur, J.E.; Sun, D.; Rockswold, G.L.; Bullock, M.R. Effects of hyperbaric oxygen therapy on cerebral oxygenation and mitochondrial function following moderate lateral fluid-percussion injury in rats. J. Neurosurg. 2004, 101, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Contreras, F.L.; Kadekaro, M.; Eisenberg, H.M. The effect of hyperbaric oxygen on glucose utilization in a freeze-traumatized rat brain. J. Neurosurg. 1988, 68, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Brkic, P.; Stojiljkovic, M.; Jovanovic, T.; Dacic, S.; Lavrnja, I.; Savic, D.; Parabucki, A.; Bjelobaba, I.; Rakic, L.; Pekovic, S. Hyperbaric oxygenation improves locomotor ability by enhancing neuroplastic responses after cortical ablation in rats. Brain Inj. 2012, 26, 1273–1284. [Google Scholar] [CrossRef]
- Niklas, A.; Brock, D.; Schober, R.; Schulz, A.; Schneider, D. Continuous measurements of cerebral tissue oxygen pressure during hyperbaric oxygenation--HBO effects on brain edema and necrosis after severe brain trauma in rabbits. J. Neurol. Sci. 2004, 219, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.C.; Niu, K.C.; Tsai, K.J.; Kuo, J.R.; Wang, L.C.; Chio, C.C.; Chang, C.P. Attenuating inflammation but stimulating both angiogenesis and neurogenesis using hyperbaric oxygen in rats with traumatic brain injury. J. Trauma Acute Care Surg. 2012, 72, 650–659. [Google Scholar] [CrossRef]
- Harch, P.G.; Kriedt, C.; Van Meter, K.W.; Sutherland, R.J. Hyperbaric oxygen therapy improves spatial learning and memory in a rat model of chronic traumatic brain injury. Brain Res. 2007, 1174, 120–129. [Google Scholar] [CrossRef]
- Hardy, P.; Johnston, K.M.; De Beaumont, L.; Montgomery, D.L.; Lecomte, J.M.; Soucy, J.P.; Bourbonnais, D.; Lassonde, M. Pilot case study of the therapeutic potential of hyperbaric oxygen therapy on chronic brain injury. J. Neurol. Sci. 2007, 253, 94–105. [Google Scholar] [CrossRef]
- Hu, Q.; Manaenko, A.; Xu, T.; Guo, Z.; Tang, J.; Zhang, J.H. Hyperbaric oxygen therapy for traumatic brain injury: Bench-to-bedside. Med. Gas Res. 2016, 6, 102–110. [Google Scholar] [CrossRef]
- Wang, G.H.; Zhang, X.G.; Jiang, Z.L.; Li, X.; Peng, L.L.; Li, Y.C.; Wang, Y. Neuroprotective effects of hyperbaric oxygen treatment on traumatic brain injury in the rat. J. Neurotrauma 2010, 27, 1733–1743. [Google Scholar] [CrossRef]
- Rockswold, S.B.; Rockswold, G.L.; Vargo, J.M.; Erickson, C.A.; Sutton, R.L.; Bergman, T.A.; Biros, M.H. Effects of hyperbaric oxygenation therapy on cerebral metabolism and intracranial pressure in severely brain injured patients. J. Neurosurg. 2001, 94, 403–411. [Google Scholar] [CrossRef]
- Sukoff, M.H.; Ragatz, R.E. Hyperbaric oxygenation for the treatment of acute cerebral edema. Neurosurgery 1982, 10, 29–38. [Google Scholar] [PubMed]
- Lin, J.W.; Tsai, J.T.; Lee, L.M.; Lin, C.M.; Hung, C.C.; Hung, K.S.; Chen, W.Y.; Wei, L.; Ko, C.P.; Su, Y.K.; et al. Effect of hyperbaric oxygen on patients with traumatic brain injury. Acta Neurochir. Suppl. 2008, 101, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Prakash, A.; Parelkar, S.V.; Oak, S.N.; Gupta, R.K.; Sanghvi, B.V.; Bachani, M.; Patil, R. Role of hyperbaric oxygen therapy in severe head injury in children. J. Pediatr. Neurosci. 2012, 7, 4–8. [Google Scholar] [CrossRef] [PubMed]
- Holbach, K.H.; Wassmann, H.; Kolberg, T. Improved reversibility of the traumatic midbrain syndrome using hyperbaric oxygen. Acta Neurochir. 1974, 30, 247–256. [Google Scholar] [CrossRef]
- Artru, F.; Chacornac, R.; Deleuze, R. Hyperbaric oxygenation for severe head injuries. Preliminary results of a controlled study. Eur. Neurol. 1976, 14, 310–318. [Google Scholar] [CrossRef]
- Rockswold, G.L.; Ford, S.E.; Anderson, D.C.; Bergman, T.A.; Sherman, R.E. Results of a prospective randomized trial for treatment of severely brain-injured patients with hyperbaric oxygen. J. Neurosurg. 1992, 76, 929–934. [Google Scholar] [CrossRef]
- Harch, P.G.; Andrews, S.R.; Rowe, C.J.; Lischka, J.R.; Townsend, M.H.; Yu, Q.; Mercante, D.E. Hyperbaric oxygen therapy for mild traumatic brain injury persistent postconcussion syndrome: A randomized controlled trial. Med. Gas Res. 2020, 10, 8–20. [Google Scholar] [CrossRef]
- Cifu, D.X.; Hart, B.B.; West, S.L.; Walker, W.; Carne, W. The effect of hyperbaric oxygen on persistent postconcussion symptoms. J. Head Trauma Rehabil. 2014, 29, 11–20. [Google Scholar] [CrossRef]
- Cifu, D.X.; Hoke, K.W.; Wetzel, P.A.; Wares, J.R.; Gitchel, G.; Carne, W. Effects of hyperbaric oxygen on eye tracking abnormalities in males after mild traumatic brain injury. J. Rehabil. Res. Dev. 2014, 51, 1047–1056. [Google Scholar] [CrossRef]
- Cifu, D.X.; Walker, W.C.; West, S.L.; Hart, B.B.; Franke, L.M.; Sima, A.; Graham, C.W.; Carne, W. Hyperbaric oxygen for blast-related postconcussion syndrome: Three-month outcomes. Ann. Neurol. 2014, 75, 277–286. [Google Scholar] [CrossRef]
- Walker, W.C.; Franke, L.M.; Cifu, D.X.; Hart, B.B. Randomized, Sham-Controlled, Feasibility Trial of Hyperbaric Oxygen for Service Members with Postconcussion Syndrome: Cognitive and Psychomotor Outcomes 1 Week Postintervention. Neurorehabilit. Neural Repair 2014, 28, 420–432. [Google Scholar] [CrossRef]
- Wolf, G.; Cifu, D.; Baugh, L.; Carne, W.; Profenna, L. The effect of hyperbaric oxygen on symptoms after mild traumatic brain injury. J. Neurotrauma 2012, 29, 2606–2612. [Google Scholar] [CrossRef] [PubMed]
- DeCato, T.W.; Bradley, S.M.; Wilson, E.L.; Harlan, N.P.; Villela, M.A.; Weaver, L.K.; Hegewald, M.J. Effects of sprint interval training on cardiorespiratory fitness while in a hyperbaric oxygen environment. Undersea Hyperb. Med. 2019, 46, 117–124. [Google Scholar] [CrossRef] [PubMed]
- Walker, J.M.; Mulatya, C.; Hebert, D.; Wilson, S.H.; Lindblad, A.S.; Weaver, L.K. Sleep assessment in a randomized trial of hyperbaric oxygen in U.S. service members with post concussive mild traumatic brain injury compared to normal controls. Sleep Med. 2018, 51, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Weaver, L.K.; Wilson, S.H.; Lindblad, A.S.; Churchill, S.; Deru, K.; Price, R.C.; Williams, C.S.; Orrison, W.W.; Walker, J.M.; Meehan, A.; et al. Hyperbaric oxygen for post-concussive symptoms in United States military service members: A randomized clinical trial. Undersea Hyperb. Med. 2018, 45, 129–156. [Google Scholar] [CrossRef]
- Churchill, S.; Deru, K.; Weaver, L.K.; Wilson, S.H.; Hebert, D.; Miller, R.S.; Lindblad, A.S. Adverse events and blinding in two randomized trials of hyperbaric oxygen for persistent post-concussive symptoms. Undersea Hyperb. Med. 2019, 46, 331–340. [Google Scholar] [CrossRef]
- Miller, R.S.; Weaver, L.K.; Bahraini, N.; Churchill, S.; Price, R.C.; Skiba, V.; Caviness, J.; Mooney, S.; Hetzell, B.; Liu, J.; et al. Effects of hyperbaric oxygen on symptoms and quality of life among service members with persistent postconcussion symptoms: A randomized clinical trial. JAMA Intern. Med. 2015, 175, 43–52. [Google Scholar] [CrossRef]
- Weaver, L.K.; Churchill, S.; Wilson, S.H.; Hebert, D.; Deru, K.; Lindblad, A.S. A composite outcome for mild traumatic brain injury in trials of hyperbaric oxygen. Undersea Hyperb. Med. 2019, 46, 341–352. [Google Scholar] [CrossRef]
- Wolf, E.G.; Prye, J.; Michaelson, R.; Brower, G.; Profenna, L.; Boneta, O. Hyperbaric side effects in a traumatic brain injury randomized clinical trial. Undersea Hyperb. Med. 2012, 39, 1075–1082. [Google Scholar]
- Harch, P.G.; Andrews, S.R.; Fogarty, E.F.; Amen, D.; Pezzullo, J.C.; Lucarini, J.; Aubrey, C.; Taylor, D.V.; Staab, P.K.; Van Meter, K.W. A phase I study of low-pressure hyperbaric oxygen therapy for blast-induced post-concussion syndrome and post-traumatic stress disorder. J. Neurotrauma 2012, 29, 168–185. [Google Scholar] [CrossRef]
- Weaver, L.K.; Churchill, S.K.; Bell, J.; Deru, K.; Snow, G.L. A blinded trial to investigate whether ‘pressure-familiar’ individuals can determine chamber pressure. Undersea Hyperb. Med. 2012, 39, 801–805. [Google Scholar]
- Hart, B.B.; Wilson, S.H.; Churchill, S.; Deru, K.; Weaver, L.K.; Minnakanti, M.; Lindblad, A.S. Extended follow-up in a randomized trial of hyperbaric oxygen for persistent post-concussive symptoms. Undersea Hyperb. Med. 2019, 46, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, P.A.; Lindblad, A.S.; Mulatya, C.; Kannan, M.A.; Villmar, Z.; Gitchel, G.T.; Weaver, L.K. Eye tracker outcomes in a randomized trial of 40 sessions of hyperbaric oxygen or sham in participants with persistent post concussive symptoms. Undersea Hyperb. Med. 2019, 46, 299–311. [Google Scholar] [CrossRef] [PubMed]
- Wetzel, P.A.; Lindblad, A.S.; Raizada, H.; James, N.; Mulatya, C.; Kannan, M.A.; Villamar, Z.; Gitchel, G.T.; Weaver, L.K. Eye Tracking Results in Postconcussive Syndrome Versus Normative Participants. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4011–4019. [Google Scholar] [CrossRef]
- Meehan, A.; Searing, E.; Weaver, L.K.; Lewandowski, A. Baseline vestibular and auditory findings in a trial of post-concussive syndrome. Undersea Hyperb. Med. 2016, 43, 567–584. [Google Scholar] [PubMed]
- Wilson, S.H.; Weaver, L.K.; Lindblad, A.S. Neuropsychological assessments in a hyperbaric trial of post-concussive symptoms. Undersea Hyperb. Med. 2016, 43, 585–599. [Google Scholar]
- Walker, J.M.; James, N.T.; Campbell, H.; Wilson, S.H.; Churchill, S.; Weaver, L.K. Sleep assessments for a mild traumatic brain injury trial in a military population. Undersea Hyperb. Med. 2016, 43, 549–566. [Google Scholar]
- Mirow, S.; Wilson, S.H.; Weaver, L.K.; Churchill, S.; Deru, K.; Lindblad, A.S. Linear analysis of heart rate variability in post-concussive syndrome. Undersea Hyperb. Med. 2016, 43, 531–547. [Google Scholar]
- Williams, C.S.; Spitz, M.C.; Foley, J.F.; Weaver, L.K.; Lindblad, A.S.; Wierzbicki, M.R. Baseline EEG abnormalities in mild traumatic brain injury from the BIMA study. Undersea Hyperb. Med. 2016, 43, 521–530. [Google Scholar]
- Williams, C.S.; Weaver, L.K.; Lindblad, A.S.; Kumar, S.; Langford, D.R. Baseline neurological evaluations in a hyperbaric trial of post-concussive syndrome. Undersea Hyperb. Med. 2016, 43, 511–519. [Google Scholar]
- Weaver, L.K.; Chhoeu, A.; Lindblad, A.S.; Churchill, S.; Wilson, S.H. Hyperbaric oxygen for mild traumatic brain injury: Design and baseline summary. Undersea Hyperb. Med. 2016, 43, 491–509. [Google Scholar] [PubMed]
- Laskowski, R.A.; Creed, J.A.; Raghupathi, R. Pathophysiology of Mild TBI: Implications for Altered Signaling Pathways. In Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects; Kobeissy, F.H., Ed.; Frontiers in Neuroengineering: Boca Raton, FL, USA, 2015. [Google Scholar]
- Tenovuo, O.; Diaz-Arrastia, R.; Goldstein, L.E.; Sharp, D.J.; van der Naalt, J.; Zasler, N.D. Assessing the Severity of Traumatic Brain Injury-Time for a Change? J. Clin. Med. 2021, 10, 148. [Google Scholar] [CrossRef] [PubMed]
- Jurick, S.M.; Crocker, L.D.; Merritt, V.C.; Sanderson-Cimino, M.E.; Keller, A.V.; Glassman, L.H.; Twamley, E.W.; Rodgers, C.S.; Schiehser, D.M.; Aupperle, R.L.; et al. Independent and Synergistic Associations Between TBI Characteristics and PTSD Symptom Clusters on Cognitive Performance and Postconcussive Symptoms in Iraq and Afghanistan Veterans. J. Neuropsychiatry Clin. Neurosci. 2021, 33, 98–108. [Google Scholar] [CrossRef] [PubMed]
- Howlett, J.R.; Nelson, L.D.; Stein, M.B. Mental Health Consequences of Traumatic Brain Injury. Biol. Psychiatry 2022, 91, 413–420. [Google Scholar] [CrossRef]
- Madsen, B.A.; Fure, S.C.R.; Andelic, N.; Loke, D.; Lovstad, M.; Roe, C.; Howe, E.I. Exploring the Association between Personality Traits, Symptom Burden, and Return to Work after Mild-to-Moderate Traumatic Brain Injury. J. Clin. Med. 2023, 12, 4654. [Google Scholar] [CrossRef]
- Jaganathan, K.S.; Sullivan, K.A. Moving towards individualised and interdisciplinary approaches to treat persistent post-concussion symptoms. eClinicalMedicine 2020, 18, 100230. [Google Scholar] [CrossRef]
- Goldstein, L.E.; Fisher, A.M.; Tagge, C.A.; Zhang, X.L.; Velisek, L.; Sullivan, J.A.; Upreti, C.; Kracht, J.M.; Ericsson, M.; Wojnarowicz, M.W.; et al. Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Transl. Med. 2012, 4, 134ra160. [Google Scholar] [CrossRef]
- McKee, A.C.; Daneshvar, D.H. The neuropathology of traumatic brain injury. Handb. Clin. Neurol. 2015, 127, 45–66. [Google Scholar] [CrossRef]
- Ng, S.Y.; Lee, A.Y.W. Traumatic Brain Injuries: Pathophysiology and Potential Therapeutic Targets. Front. Cell. Neurosci. 2019, 13, 528. [Google Scholar] [CrossRef]
- Monsour, M.; Ebedes, D.; Borlongan, C.V. A review of the pathology and treatment of TBI and PTSD. Exp. Neurol. 2022, 351, 114009. [Google Scholar] [CrossRef]
- Fehily, B.; Fitzgerald, M. Repeated Mild Traumatic Brain Injury: Potential Mechanisms of Damage. Cell Transplant. 2017, 26, 1131–1155. [Google Scholar] [CrossRef]
- Patel, N.A.; Moss, L.D.; Lee, J.Y.; Tajiri, N.; Acosta, S.; Hudson, C.; Parag, S.; Cooper, D.R.; Borlongan, C.V.; Bickford, P.C. Long noncoding RNA MALAT1 in exosomes drives regenerative function and modulates inflammation-linked networks following traumatic brain injury. J. Neuroinflammation 2018, 15, 204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, Y.; Yan, K.; Chen, L.; Chen, X.R.; Li, P.; Chen, F.F.; Jiang, X.D. Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J. Neuroinflammation 2013, 10, 106. [Google Scholar] [CrossRef] [PubMed]
- Camandola, S.; Mattson, M.P. Brain metabolism in health, aging, and neurodegeneration. EMBO J. 2017, 36, 1474–1492. [Google Scholar] [CrossRef] [PubMed]
- Casanova-Maldonado, I.; Arancibia, D.; Lois, P.; Pena-Villalobos, I.; Palma, V. Hyperbaric oxygen treatment increases intestinal stem cell proliferation through the mTORC1/S6K1 signaling pathway in Mus musculus. Biol. Res. 2023, 56, 41. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Hou, X.; Liu, X.; Ma, L.; Tan, J. Hyperbaric Oxygen Therapy-Induced Molecular and Pathway Changes in a Rat Model of Spinal Cord Injury: A Proteomic Analysis. Dose Response 2022, 20, 15593258221141579. [Google Scholar] [CrossRef]
- Lippert, T.; Borlongan, C.V. Prophylactic treatment of hyperbaric oxygen treatment mitigates inflammatory response via mitochondria transfer. CNS Neurosci. Ther. 2019, 25, 815–823. [Google Scholar] [CrossRef]
- Zhai, W.W.; Sun, L.; Yu, Z.Q.; Chen, G. Hyperbaric oxygen therapy in experimental and clinical stroke. Med. Gas Res. 2016, 6, 111–118. [Google Scholar] [CrossRef]
- Meng, X.E.; Zhang, Y.; Li, N.; Fan, D.F.; Yang, C.; Li, H.; Guo, D.Z.; Pan, S.Y. Hyperbaric Oxygen Alleviates Secondary Brain Injury After Trauma through Inhibition of TLR4/NF-kappaB Signaling Pathway. Med. Sci. Monit. 2016, 22, 284–288. [Google Scholar] [CrossRef]
- Donat, C.K.; Scott, G.; Gentleman, S.M.; Sastre, M. Microglial Activation in Traumatic Brain Injury. Front. Aging Neurosci. 2017, 9, 208. [Google Scholar] [CrossRef]
- Lim, S.W.; Wang, C.C.; Wang, Y.H.; Chio, C.C.; Niu, K.C.; Kuo, J.R. Microglial activation induced by traumatic brain injury is suppressed by postinjury treatment with hyperbaric oxygen therapy. J. Surg. Res. 2013, 184, 1076–1084. [Google Scholar] [CrossRef]
- Yang, L.; Tang, J.; Chen, Q.; Jiang, B.; Zhang, B.; Tao, Y.; Li, L.; Chen, Z.; Zhu, G. Hyperbaric oxygen preconditioning attenuates neuroinflammation after intracerebral hemorrhage in rats by regulating microglia characteristics. Brain Res. 2015, 1627, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Papa, L.; Brophy, G.M.; Alvarez, W.; Hirschl, R.; Cress, M.; Weber, K.; Giordano, P. Sex Differences in Time Course and Diagnostic Accuracy of GFAP and UCH-L1 in Trauma Patients with Mild Traumatic Brain Injury. Sci. Rep. 2023, 13, 11833. [Google Scholar] [CrossRef] [PubMed]
- Lagares, A.; Payen, J.-F.; Biberthaler, P.; Poca, M.A.; Méjan, O.; Pavlov, V.; Viglino, D.; Sapin, V.; Lassaletta, A.; de la Cruz, J. Study Protocol for Investigating the Clinical Performance of an Automated Blood Test for Glial Fibrillary Acidic Protein and Ubiquitin Carboxy-Terminal Hydrolase L1 Blood Concentrations in Elderly Patients with Mild Traumatic BRAIN Injury and Reference Values (BRAINI-2 Elderly European Study): A Prospective Multicentre Observational Study. BMJ Open 2023, 13, e071467. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, D.O.; Yue, J.K.; Puccio, A.M.; Panczykowski, D.M.; Inoue, T.; McMahon, P.J.; Sorani, M.D.; Yuh, E.L.; Lingsma, H.F.; Maas, A.I.R.; et al. GFAP-BDP as an Acute Diagnostic Marker in Traumatic Brain Injury: Results from the Prospective Transforming Research and Clinical Knowledge in Traumatic Brain Injury Study. J. Neurotrauma 2013, 30, 1490–1497. [Google Scholar] [CrossRef] [PubMed]
- Lei, J.; Gao, G.; Feng, J.; Jin, Y.; Wang, C.; Mao, Q.; Jiang, J. Glial Fibrillary Acidic Protein as a Biomarker in Severe Traumatic Brain Injury Patients: A Prospective Cohort Study. Crit. Care 2015, 19, 362. [Google Scholar] [CrossRef]
- Lee, J.Y.; Lee, C.Y.; Kim, H.R.; Lee, C.-H.; Kim, H.W.; Kim, J.H. A Role of Serum-Based Neuronal and Glial Markers as Potential Predictors for Distinguishing Severity and Related Outcomes in Traumatic Brain Injury. J. Korean Neurosurg. Soc. 2015, 58, 93–100. [Google Scholar] [CrossRef]
- Plog, B.A.; Dashnaw, M.L.; Hitomi, E.; Peng, W.; Liao, Y.; Lou, N.; Deane, R.; Nedergaard, M. Biomarkers of Traumatic Injury Are Transported from Brain to Blood via the Glymphatic System. J. Neurosci. 2015, 35, 518–526. [Google Scholar] [CrossRef]
- Papa, L.; Lewis, L.M.; Silvestri, S.; Falk, J.L.; Giordano, P.; Brophy, G.M.; Demery, J.A.; Liu, M.C.; Mo, J.; Akinyi, L.; et al. Serum Levels of Ubiquitin C-Terminal Hydrolase (UCH-L1) Distinguish Mild Traumatic Brain Injury (TBI) from Trauma Controls and Are Elevated in Mild and Moderate TBI Patients with Intracranial Lesions and Neurosurgical Intervention. J. Trauma Acute Care Surg. 2012, 72, 1335–1344. [Google Scholar] [CrossRef]
- Brophy, G.M.; Mondello, S.; Papa, L.; Robicsek, S.A.; Gabrielli, A.; Tepas, J.; Buki, A.; Robertson, C.; Tortella, F.C.; Hayes, R.L.; et al. Biokinetic Analysis of Ubiquitin C-Terminal Hydrolase-L1 (UCH-L1) in Severe Traumatic Brain Injury Patient Biofluids. J. Neurotrauma 2011, 28, 861–870. [Google Scholar] [CrossRef]
- Mondello, S.; Kobeissy, F.; Vestri, A.; Hayes, R.L.; Kochanek, P.M.; Berger, R.P. Serum Concentrations of Ubiquitin C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic Protein after Pediatric Traumatic Brain Injury. Sci. Rep. 2016, 6, 28203. [Google Scholar] [CrossRef]
- Petzold, A.; Keir, G.; Green, A.J.E.; Giovannoni, G.; Thompson, E.J. An ELISA for Glial Fibrillary Acidic Protein. J. Immunol. Methods 2004, 287, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Zoltewicz, J.S.; Scharf, D.; Yang, B.; Chawla, A.; Newsom, K.J.; Fang, L. Characterization of Antibodies that Detect Human GFAP after Traumatic Brain Injury. Biomark. Insights 2012, 7, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Lindblad, C.; Pin, E.; Just, D.; Al Nimer, F.; Nilsson, P.; Bellander, B.-M.; Svensson, M.; Piehl, F.; Thelin, E.P. Fluid Proteomics of CSF and Serum Reveal Important Neuroinflammatory Proteins in Blood–Brain Barrier Disruption and Outcome Prediction Following Severe Traumatic Brain Injury: A Prospective, Observational Study. Crit. Care 2021, 25, 103. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, G.C.; Alder, M.L.; Smothers, C.G.; Still, C.H.; Webel, A.R.; Moore, S.M. Use of High-Sensitivity Digital ELISA Improves the Diagnostic Performance of Circulating Brain-Specific Proteins for Detection of Traumatic Brain Injury during Triage. Neurol. Res. 2020, 42, 346–353. [Google Scholar] [CrossRef]
- Biberthaler, P.; Linsenmeier, U.; Pfeifer, K.-J.; Kroetz, M.; Mussack, T.; Kanz, K.-G.; Hoecherl, E.F.J.; Jonas, F.; Marzi, I.; Leucht, P.; et al. Serum S-100b Concentration Provides Additional Information Fot the Indication of Computed Tomography in Patients after Minor Head Injury: A Prospective Multicenter Study. Shock 2006, 25, 446. [Google Scholar] [CrossRef]
- Yamazaki, Y.; Yada, K.; Morii, S.; Kitahara, T.; Ohwada, T. Diagnostic Significance of Serum Neuron-Specific Enolase and Myelin Basic Protein Assay in Patients with Acute Head Injury. Surg. Neurol. 1995, 43, 267–271. [Google Scholar] [CrossRef]
- Shahim, P.; Politis, A.; van der Merwe, A.; Moore, B.; Chou, Y.-Y.; Pham, D.L.; Butman, J.A.; Diaz-Arrastia, R.; Gill, J.M.; Brody, D.L.; et al. Neurofilament Light as a Biomarker in Traumatic Brain Injury. Neurology 2020, 95, e610–e622. [Google Scholar] [CrossRef]
- Goyal, A.; Failla, M.D.; Niyonkuru, C.; Amin, K.; Fabio, A.; Berger, R.P.; Wagner, A.K. S100b as a Prognostic Biomarker in Outcome Prediction for Patients with Severe Traumatic Brain Injury. J. Neurotrauma 2013, 30, 946–957. [Google Scholar] [CrossRef]
- Abbasi, M.; Sajjadi, M.; Fathi, M.; Maghsoudi, M. Serum S100B Protein as an Outcome Prediction Tool in Emergency Department Patients with Traumatic Brain Injury. Turk. J. Emerg. Med. 2014, 14, 147–152. [Google Scholar] [CrossRef]
- Borg, K.; Bonomo, J.; Jauch, E.C.; Kupchak, P.; Stanton, E.B.; Sawadsky, B. Serum Levels of Biochemical Markers of Traumatic Brain Injury. Int. Sch. Res. Not. 2012, 2012, e417313. [Google Scholar] [CrossRef]
- Wąsik, N.; Sokół, B.; Hołysz, M.; Mańko, W.; Juszkat, R.; Jagodziński, P.P.; Jankowski, R. Serum Myelin Basic Protein as a Marker of Brain Injury in Aneurysmal Subarachnoid Haemorrhage. Acta Neurochir. 2020, 162, 545–552. [Google Scholar] [CrossRef]
- Singh, A.; Singh, K.; Sahu, A.; Prasad, R.S.; Pandey, N.; Dhar, S. Serum Concentration of Myelin Basic Protein as a Prognostic Marker in Mild-to-Moderate Head Injury Patients: A Prospective Study in a Tertiary Care Center. Indian. J. Neurosurg. 2022, 11, 216–220. [Google Scholar] [CrossRef]
- Shang, Y.; Wang, Y.; Guo, Y.; Ren, L.; Zhang, X.; Wang, S.; Zhang, C.; Cai, J. Analysis of the Risk of Traumatic Brain Injury and Evaluation Neurogranin and Myelin Basic Protein as Potential Biomarkers of Traumatic Brain Injury in Postmortem Examination. Forensic Sci. Med. Pathol. 2022, 18, 288–298. [Google Scholar] [CrossRef]
- Nimer, F.A.; Thelin, E.; Nyström, H.; Dring, A.M.; Svenningsson, A.; Piehl, F.; Nelson, D.W.; Bellander, B.-M. Comparative Assessment of the Prognostic Value of Biomarkers in Traumatic Brain Injury Reveals an Independent Role for Serum Levels of Neurofilament Light. PLoS ONE 2015, 10, e0132177. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Z.; Lv, X.; Wu, Q.; Yan, J.; Mao, G.; Xing, W. Neurofilament Light Chain Level in Traumatic Brain Injury. Medicine 2020, 99, e22363. [Google Scholar] [CrossRef] [PubMed]
- Kuhle, J.; Barro, C.; Andreasson, U.; Derfuss, T.; Lindberg, R.; Sandelius, Å.; Liman, V.; Norgren, N.; Blennow, K.; Zetterberg, H. Comparison of Three Analytical Platforms for Quantification of the Neurofilament Light Chain in Blood Samples: ELISA, Electrochemiluminescence Immunoassay and Simoa. Clin. Chem. Lab. Med. 2016, 54, 1655–1661. [Google Scholar] [CrossRef] [PubMed]
- Alhajj, M.; Zubair, M.; Farhana, A. Enzyme Linked Immunosorbent Assay. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Mondello, S.; Muller, U.; Jeromin, A.; Streeter, J.; Hayes, R.L.; Wang, K.K. Blood-Based Diagnostics of Traumatic Brain Injuries. Expert Rev. Mol. Diagn. 2011, 11, 65–78. [Google Scholar] [CrossRef]
- He, X.-Y.; Dan, Q.-Q.; Wang, F.; Li, Y.-K.; Fu, S.-J.; Zhao, N.; Wang, T.-H. Protein Network Analysis of the Serum and Their Functional Implication in Patients Subjected to Traumatic Brain Injury. Front. Neurosci. 2018, 12, 1049. [Google Scholar] [CrossRef]
- Hubbard, W.B.; Banerjee, M.; Vekaria, H.; Prakhya, K.S.; Joshi, S.; Wang, Q.J.; Saatman, K.E.; Whiteheart, S.W.; Sullivan, P.G. Differential Leukocyte and Platelet Profiles in Distinct Models of Traumatic Brain Injury. Cells 2021, 10, 500. [Google Scholar] [CrossRef]
- Gorsky, A.; Monsour, M.; Nguyen, H.; Castelli, V.; Lee, J.-Y.; Borlongan, C.V. Metabolic Switching of Cultured Mesenchymal Stem Cells Creates Super Mitochondria in Rescuing Ischemic Neurons. Neuromolecular Med. 2023, 25, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Underwood, E.; Redell, J.B.; Zhao, J.; Moore, A.N.; Dash, P.K. A Method for Assessing Tissue Respiration in Anatomically Defined Brain Regions. Sci. Rep. 2020, 10, 13179. [Google Scholar] [CrossRef] [PubMed]
- Hubbard, W.B.; Spry, M.L.; Gooch, J.L.; Cloud, A.L.; Vekaria, H.J.; Burden, S.; Powell, D.K.; Berkowitz, B.A.; Geldenhuys, W.J.; Harris, N.G.; et al. Clinically Relevant Mitochondrial-Targeted Therapy Improves Chronic Outcomes after Traumatic Brain Injury. Brain 2021, 144, 3788–3807. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Li, N.; Chang, H.; Shen, Y.; Li, Z.; Wei, W.; Chen, H.; Lu, H.; Ji, J.; Liu, N. Dual Effects of Thyroid Hormone on Neurons and Neurogenesis in Traumatic Brain Injury. Cell Death Dis. 2020, 11, 671. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, C.A.; Fisher-Wellman, K.H.; Neufer, P.D. From OCR and ECAR to Energy: Perspectives on the Design and Interpretation of Bioenergetics Studies. J. Biol. Chem. 2021, 297, 101140. [Google Scholar] [CrossRef]
- Nolfi-Donegan, D.; Braganza, A.; Shiva, S. Mitochondrial Electron Transport Chain: Oxidative Phosphorylation, Oxidant Production, and Methods of Measurement. Redox Biol. 2020, 37, 101674. [Google Scholar] [CrossRef] [PubMed]
- Desousa, B.R.; Kim, K.K.; Jones, A.E.; Ball, A.B.; Hsieh, W.Y.; Swain, P.; Morrow, D.H.; Brownstein, A.J.; Ferrick, D.A.; Shirihai, O.S.; et al. Calculation of ATP Production Rates Using the Seahorse XF Analyzer. EMBO Rep. 2023, n/a, e56380. [Google Scholar] [CrossRef]
- Mookerjee, S.A.; Nicholls, D.G.; Brand, M.D. Determining Maximum Glycolytic Capacity Using Extracellular Flux Measurements. PLoS ONE 2016, 11, e0152016. [Google Scholar] [CrossRef]
- Kramer, P.A.; Ravi, S.; Chacko, B.; Johnson, M.S.; Darley-Usmar, V.M. A Review of the Mitochondrial and Glycolytic Metabolism in Human Platelets and Leukocytes: Implications for Their Use as Bioenergetic Biomarkers. Redox Biol. 2014, 2, 206–210. [Google Scholar] [CrossRef]
- Chacko, B.K.; Smith, M.R.; Johnson, M.S.; Benavides, G.; Culp, M.L.; Pilli, J.; Shiva, S.; Uppal, K.; Go, Y.-M.; Jones, D.P.; et al. Mitochondria in Precision Medicine; Linking Bioenergetics and Metabolomics in Platelets. Redox Biol. 2019, 22, 101165. [Google Scholar] [CrossRef]
- Shandley, S.; Wolf, E.G.; Schubert-Kappan, C.M.; Baugh, L.M.; Richards, M.F.; Prye, J.; Arizpe, H.M.; Kalns, J. Increased Circulating Stem Cells and Better Cognitive Performance in Traumatic Brain Injury Subjects Following Hyperbaric Oxygen Therapy. Undersea Hyperb. Med. 2017, 44, 257–269. [Google Scholar] [CrossRef]
- Borlongan, C. Bone Marrow Stem Cell Mobilization in Stroke: A ‘Bonehead’ May Be Good after All! Leukemia 2011, 25, 1674–1686. [Google Scholar] [CrossRef]
- Kucia, M.; Reca, R.; Campbell, F.R.; Zuba-Surma, E.; Majka, M.; Ratajczak, J.; Ratajczak, M.Z. A Population of Very Small Embryonic-like (VSEL) CXCR4+SSEA-1+Oct-4+ Stem Cells Identified in Adult Bone Marrow. Leukemia 2006, 20, 857–869. [Google Scholar] [CrossRef] [PubMed]
- Gravina, A.; Tediashvili, G.; Rajalingam, R.; Quandt, Z.; Deisenroth, C.; Schrepfer, S.; Deuse, T. Protection of Cell Therapeutics from Antibody-Mediated Killing by CD64 Overexpression. Nat. Biotechnol. 2023, 41, 717–727. [Google Scholar] [CrossRef] [PubMed]
- Dawson, N.A.J.; Lamarche, C.; Hoeppli, R.E.; Bergqvist, P.; Fung, V.C.W.; McIver, E.; Huang, Q.; Gillies, J.; Speck, M.; Orban, P.C.; et al. Systematic Testing and Specificity Mapping of Alloantigen-Specific Chimeric Antigen Receptors in Regulatory T Cells. JCI Insight 2019, 4, e123672. [Google Scholar] [CrossRef]
- Krueger, W.H.; Tanasijevic, B.; Norris, C.; Tian, X.C.; Rasmussen, T.P. Oct4 Promoter Activity in Stem Cells Obtained through Somatic Reprogramming. Cell. Reprogramming 2013, 15, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.C.G.; Stumpf, P.S.; Ridden, S.J.; Sim, A.; Filippi, S.; Harrington, H.A.; MacArthur, B.D. Nanog Fluctuations in Embryonic Stem Cells Highlight the Problem of Measurement in Cell Biology. Biophys. J. 2017, 112, 2641–2652. [Google Scholar] [CrossRef] [PubMed]
- Gang, E.J.; Bosnakovski, D.; Figueiredo, C.A.; Visser, J.W.; Perlingeiro, R.C.R. SSEA-4 Identifies Mesenchymal Stem Cells from Bone Marrow. Blood 2006, 109, 1743–1751. [Google Scholar] [CrossRef]
- Picot, J.; Guerin, C.L.; Le Van Kim, C.; Boulanger, C.M. Flow Cytometry: Retrospective, Fundamentals and Recent Instrumentation. Cytotechnology 2012, 64, 109–130. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, L.; You, W.; Huang, F.; Jiang, Y.; Sun, L.; Wang, S.; Liu, S. Hyperbaric oxygen therapy promotes consciousness, cognitive function, and prognosis recovery in patients following traumatic brain injury through various pathways. Front. Neurol. 2022, 13, 929386. [Google Scholar] [CrossRef]
- Barman, A.; Chatterjee, A.; Bhide, R. Cognitive Impairment and Rehabilitation Strategies After Traumatic Brain Injury. Indian. J. Psychol. Med. 2016, 38, 172–181. [Google Scholar] [CrossRef]
- Liu, Y.S.; Liu, Z.B.; Yang, Z.; Zhao, L.; Li, H.L. Clinical efficacy of hyperbaric oxygen combined with different timings of right median-nerve electrical stimulation in patients with brain injury-induced disorders of consciousness. Brain Behav. 2022, 12, e2716. [Google Scholar] [CrossRef] [PubMed]
- Boussi-Gross, R.; Golan, H.; Fishlev, G.; Bechor, Y.; Volkov, O.; Bergan, J.; Friedman, M.; Hoofien, D.; Shlamkovitch, N.; Ben-Jacob, E.; et al. Hyperbaric oxygen therapy can improve post concussion syndrome years after mild traumatic brain injury—Randomized prospective trial. PLoS ONE 2013, 8, e79995. [Google Scholar] [CrossRef]
- Hadanny, A.; Abbott, S.; Suzin, G.; Bechor, Y.; Efrati, S. Effect of hyperbaric oxygen therapy on chronic neurocognitive deficits of post-traumatic brain injury patients: Retrospective analysis. BMJ Open 2018, 8, e023387. [Google Scholar] [CrossRef] [PubMed]
- Heyburn, L.; Abutarboush, R.; Goodrich, S.; Urioste, R.; Batuure, A.; Statz, J.; Wilder, D.; Ahlers, S.T.; Long, J.B.; Sajja, V. Repeated Low-Level Blast Overpressure Leads to Endovascular Disruption and Alterations in TDP-43 and Piezo2 in a Rat Model of Blast TBI. Front. Neurol. 2019, 10, 766. [Google Scholar] [CrossRef] [PubMed]
- Gama Sosa, M.A.; De Gasperi, R.; Perez Garcia, G.S.; Perez, G.M.; Searcy, C.; Vargas, D.; Spencer, A.; Janssen, P.L.; Tschiffely, A.E.; McCarron, R.M.; et al. Low-level blast exposure disrupts gliovascular and neurovascular connections and induces a chronic vascular pathology in rat brain. Acta Neuropathol. Commun. 2019, 7, 6. [Google Scholar] [CrossRef]
- Marcinkowska, A.B.; Mankowska, N.D.; Kot, J.; Winklewski, P.J. Impact of Hyperbaric Oxygen Therapy on Cognitive Functions: A Systematic Review. Neuropsychol. Rev. 2022, 32, 99–126. [Google Scholar] [CrossRef]
- Parr, N.J.; Anderson, J.; Veazie, S. Evidence Brief: Hyperbaric Oxygen Therapy for Traumatic Brain Injury and/or Post-traumatic Stress Disorder. In VA Evidence-Based Synthesis Program Reports; Department of Veterans Affairs: Washington, DC, USA, 2021. [Google Scholar]
- Heyboer, M., 3rd; Sharma, D.; Santiago, W.; McCulloch, N. Hyperbaric Oxygen Therapy: Side Effects Defined and Quantified. Adv. Wound Care 2017, 6, 210–224. [Google Scholar] [CrossRef]
Clinical and Pre-Clinical Studies on HBOT | |
---|---|
Clinical Studies | Preclinical Studies |
1.5 atms, 40 dives | 1.5 atms, few dives |
Safe: Mild, Moderate, Severe TBI | Safe: Mild, Moderate, Severe TBI |
Effective: Moderate-Severe TBI only | Effective: Mild, Moderate, Severe TBI |
Mechanisms: Anti-inflammation Anti-oxidative stress Mitochondrial repair Stem cell proliferation |
Trial | Status | Trial Details (PI, Main Country) | Population | Primary Outcome | Primary Outcome Measurement | Primary Results | Treatment |
---|---|---|---|---|---|---|---|
The Role of Hyperbaric Oxygen and Neuropsychological Therapy in Cognitive Function Following TBI | Terminated | Dr. Tsang-Tang Hsieh, Taiwan | Mild and moderate TBI | Neuropsychological function | Neuropsychological evaluation | Terminated due to the COVID-19 pandemic | 30 HBOT sessions, 60 min each |
HBOT to Treat Mild TBI/PPCS | Completed | Dr. Paul G. Harch, United States of America | Mild TBI | Working memory Neurobehavioral symptoms | Neuropsychological evaluation Neuro-behavioral symptom inventory | HBOT group showed persistent improvement in outcomes [37] | 40 HBOT sessions, 45 min each |
HBO2T for PCS After mTBI | Completed | Dr. David X. Cifu & Dr. Brett Hart, United States of America | Mild TBI | Post-concussive symptoms | Symptom assessment Battery for post-concussive symptoms | There was no significant difference in PCS between the sham and HBOT groups [38,39,40,41,42,43] | 40 HBOT sessions, 60 min each |
Hyperbaric Treatment of TBI | Completed | Dr. Barry Miskin, United States of America | All TBI stages with loss of consciousness | Cerebral blood flow | Single-photon emission Computerized tomography (SPECT) imaging | Missing | 120 HBOT sessions, 60 min each |
Hyperbaric Oxygen for Traumatic and Non-Traumatic Brain Injury | Completed | Dr. Lindell K. Weaver, United States of America | Symptomatic brain injury | Neurobehavioral symptoms | Reported symptoms | HBOT was associated with improved sleep quality, PCS, PTSD, and cognition but not eye movements [44,45,46] | 40 HBOT sessions, 60 min each |
Hyperbaric Oxygen Therapy and SPECT Brain Imaging in TBI | Unknown | Dr. Paul G. Harch, United States of America | All TBI stages | Cerebral blood flow | SPECT imaging | Missing | HBOT sessions |
Hyperbaric Oxygen Brain Injury Treatment Trial (HOBIT) | Recruiting | Dr. Gaylan L Rockswold, Dr. William Barsan, Dr. Byron Gajewski, Dr. Frederick K. Korley, United States of America | Severe TBI | Consciousness | Glasgow Outcome Scale extended | Actively recruiting | Up to 10 HBOT sessions, 60 min each |
HBO2 for Persistent Post-concussive Symptoms after mTBI (HOPPS) | Completed | Dr. Scott Miller, United States of America | Mild TBI | Post-concussive symptoms | Rivermead post-concussion symptom questionnaire | HBO2 did not produce a benefit in PCS and was not related to serious adverse events [47,48,49] | 40 HBOT sessions, 60 min each |
Comparison Between Different Types of Oxygen Treatment Following TBI | Completed | Dr. Gary L. Rockswold, United States of America | Mild or moderate brain injury with acute deterioration | Cerebral metabolic rate of oxygen (CMRO2) Microdialysis lactate Brain tissue oxygen (PtO2) Intracranial pressure (ICP) | Missing | Missing | HBOT |
The Effect of HBOT on Patients Suffering From Neurologic Deficiency Due to TBI | Completed | Missing, Israel | Mild TBI | Neurological function | Neurocognitive assessment | Missing | 40 HBOT sessions, 60 min each |
Treatment of TBI with HBOT | Completed | Dr. Leonardo C. Profenna, United States of America | Mild to moderate TBI | Cognitive function PTSD symptoms | Neurocognitive assessment PTSD checklist | HBO2 did not produce a benefit in PCS and was not related to serious adverse events [43,50] | 30 HBOT sessions, 3 30-min sessions each |
Cognitive Profile of Patients at the Sagol Center for Hyperbaric Medicine and Research | Active, Not Recruiting | Missing, Israel | Chronic brain injury or cognitive impairment | Cognitive function | Neurocognitive assessment | Active study | 40–60 HBOT sessions, 90 min each |
HBOT in Chronic TBI/PCS and TBI/PTSD | Completed | Dr. Paul G. Harch, United States of America | Mild to moderate TBI | Cognitive function | Psychometric testing | HBO2 had improved cognitive function when compared to sham [51] | 40 or 80 HBOT sessions, 60 min each |
HBOT Effect on PCS in Children (TBIPED) | Terminated | Missing, Israel | Mild TBI | Cognitive function | Neurocognitive assessment (Neurotrax battery test) | Terminated due to recruitment issues (refusal to undergo sham controlled) | 60 HBOT sessions, 60 min each |
The Effects of Hyperbaric Oxygen on Non-Acute TBI | Recruiting | Dr. Bing Xiong, China | Moderate and severe TBI | Consciousness Cognitive impairment | Glasgow Outcome Scale Disability rating scale | Actively recruiting | Missing |
The Biomarkers in the Hyperbaric Oxygen Brain Injury Treatment Trial (BIOHOBIT) | Recruiting | Dr. Frederick Korley, United States of America | Severe TBI | Neurological status | Glasgow Outcome Scale | Actively recruiting | Missing |
Test of Chamber Pressure on Divers and Chamber Attendants (TOP-DIVER) | Completed | Dr. Lindell K. Weaver, United States of America | Scuba divers | Perception of depth Perception of breathing gas | Questionnaires | Experienced divers are unable to differentiate between 1.2 and 1.5 atm [52] | Missing |
MRI Brain Changes Induced by HBOT in Brain Injury Patients | Unknown | Missing, Israel | Chronic TBI | Cerebral perfusion White matter microstructure | Perfusion MRI DTI | Missing | Missing |
Hyperbaric Oxygen Effects on Persistent Post-Concussive Symptoms (HOINPCS) | Recruiting | Dr. Olayinka D. Ajayi, Dr. Marc Basson, United States of America | Mild TBI | Neuropsychological function | Neuropsychological assessment | Actively recruiting | 40 HBOT sessions, 60 min each |
HBOT in Chronic TBI or PTSD (NBIRR-1) | Terminated | Dr. Robert Mozayeni, United States of America | Mild to moderate TBI | Cognitive function | Missing | Terminated due to new regulatory requirements | Missing |
mTBI Mechanisms of Action of HBO2 for Persistent Post-Concussive Symptoms (BIMA) | Completed | Dr. Lindell Weaver, United States of America | Mild TBI | Adverse events | Safety evaluations | HBOT was not associated with serious adverse effects [45,47,49,53,54,55,56,57,58,59,60,61] | 40 HBOT sessions |
Normative Datasets for Assessments Planned for Mild Traumatic Brain Injury (NORMAL) | Completed | Dr. Robert C. Price, United States of America | Mild TBI | Neuropsychological function | Neuropsychological assessments | Missing | Missing |
Hyperbaric Oxygen Treatment to Treat mTBI/PPCS | Unknown | Dr. Paul G. Harch, United States of America | Mild TBI | Neuropsychological function Neurobehavioral symptoms | Missing | Missing | 40 HBOT sessions, 45 min each |
HBOT for PCS | Unknown | Dr. David W. Harrison, Canada | PCS | Post-concussion symptoms | Post-concussion symptoms questionnaire | Missing | Missing number of sessions, 90 min each |
Hyperbaric Oxygen Therapy for Post-Concussion Syndrome | Recruiting | Dr. Shanti Pino, United States of America | Mild TBI | Post-concussion symptoms | Post-concussion symptoms questionnaire | Actively recruiting | 20 HBOT sessions, 90 min each |
HBO2 for Post-concussive Symptoms after mTBI (HOPPS) | Completed | Dr. Scott Miller, United States of America | Mild TBI | Post-concussion symptoms | Post-concussion symptoms questionnaire | PCS between HBO2 and sham did not significantly differ [47,48,49] | 40 HBOT sessions, 60 min each |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schimmel, S.; El Sayed, B.; Lockard, G.; Gordon, J.; Young, I.; D’Egidio, F.; Lee, J.Y.; Rodriguez, T.; Borlongan, C.V. Identifying the Target Traumatic Brain Injury Population for Hyperbaric Oxygen Therapy. Int. J. Mol. Sci. 2023, 24, 14612. https://doi.org/10.3390/ijms241914612
Schimmel S, El Sayed B, Lockard G, Gordon J, Young I, D’Egidio F, Lee JY, Rodriguez T, Borlongan CV. Identifying the Target Traumatic Brain Injury Population for Hyperbaric Oxygen Therapy. International Journal of Molecular Sciences. 2023; 24(19):14612. https://doi.org/10.3390/ijms241914612
Chicago/Turabian StyleSchimmel, Samantha, Bassel El Sayed, Gavin Lockard, Jonah Gordon, Isabella Young, Francesco D’Egidio, Jea Young Lee, Thomas Rodriguez, and Cesar V. Borlongan. 2023. "Identifying the Target Traumatic Brain Injury Population for Hyperbaric Oxygen Therapy" International Journal of Molecular Sciences 24, no. 19: 14612. https://doi.org/10.3390/ijms241914612
APA StyleSchimmel, S., El Sayed, B., Lockard, G., Gordon, J., Young, I., D’Egidio, F., Lee, J. Y., Rodriguez, T., & Borlongan, C. V. (2023). Identifying the Target Traumatic Brain Injury Population for Hyperbaric Oxygen Therapy. International Journal of Molecular Sciences, 24(19), 14612. https://doi.org/10.3390/ijms241914612