Water Extract of Angelica dahurica Inhibits Osteoclast Differentiation and Bone Loss
Abstract
:1. Introduction
2. Results
2.1. WEAD Suppresses Osteoclast Differentiation in BMMs-MLO-Y4 Cells Co-Culture Condition
2.2. WEAD Inhibits the Differentiation of Osteoclast Precursors
2.3. WEAD Disrupts Osteoclastogenic Signal Transduction
2.4. WEAD Ameliorates Bone Loss in OVX Mice
2.5. Phytochemical Constituents of WEAD
3. Discussion
4. Materials and Methods
4.1. Extraction of WEAD
4.2. Materials
4.3. BMM Isolation and Cell Viability Assay
4.4. Osteoclast Differentiation Assay
4.5. Western Blot Analysis
4.6. Quantitative Real-Time PCR
4.7. UHPLC-MS/MS Analysis
4.8. Animal Study
4.9. μ-CT Analysis
4.10. Histological Analysis
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dermience, M.; Lognay, G.; Mathieu, F.; Goyens, P. Effects of thirty elements on bone metabolism. J. Trace Elem. Med. Biol. 2015, 32, 86–106. [Google Scholar] [CrossRef]
- Kenkre, J.; Bassett, J. The bone remodelling cycle. Ann. Clin. Biochem. 2018, 55, 308–327. [Google Scholar] [CrossRef] [PubMed]
- Salhotra, A.; Shah, H.N.; Levi, B.; Longaker, M.T. Mechanisms of bone development and repair. Nat. Rev. Mol. Cell Biol. 2020, 21, 696–711. [Google Scholar] [CrossRef] [PubMed]
- Sözen, T.; Özışık, L.; Başaran, N.Ç. An overview and management of osteoporosis. Eur. J. Rheumatol. 2017, 4, 46. [Google Scholar] [CrossRef]
- Ono, T.; Hayashi, M.; Sasaki, F.; Nakashima, T. RANKL biology: Bone metabolism, the immune system, and beyond. Inflamm. Regen. 2020, 40, 2. [Google Scholar] [CrossRef] [PubMed]
- Mizukami, J.; Takaesu, G.; Akatsuka, H.; Sakurai, H.; Ninomiya-Tsuji, J.; Matsumoto, K.; Sakurai, N. Receptor activator of NF-κB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB2, and TRAF6. Mol. Cell. Biol. 2022, 22, 992–1000. [Google Scholar] [CrossRef]
- Zhao, Q.; Wang, X.; Liu, Y.; He, A.; Jia, R. NFATc1: Functions in osteoclasts. Int. J. Biochem. Cell Biol. 2010, 42, 576–579. [Google Scholar] [CrossRef]
- Kim, K.; Lee, S.-H.; Ha Kim, J.; Choi, Y.; Kim, N. NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol. Endocrinol. 2008, 22, 176–185. [Google Scholar] [CrossRef]
- Lee, S.-H.; Rho, J.; Jeong, D.; Sul, J.-Y.; Kim, T.; Kim, N.; Kang, J.-S.; Miyamoto, T.; Suda, T.; Lee, S.-K. v-ATPase V0 subunit d2–deficient mice exhibit impaired osteoclast fusion and increased bone formation. Nat. Med. 2006, 12, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Pang, M.; Rodríguez-Gonzalez, M.; Hernandez, M.; Recinos, C.C.; Seldeen, K.L.; Troen, B.R. AP-1 and Mitf interact with NFATc1 to stimulate cathepsin K promoter activity in osteoclast precursors. J. Cell. Biochem. 2019, 120, 12382–12392. [Google Scholar] [CrossRef]
- Zhao, B.; Takami, M.; Yamada, A.; Wang, X.; Koga, T.; Hu, X.; Tamura, T.; Ozato, K.; Choi, Y.; Ivashkiv, L.B. Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis. Nat. Med. 2009, 15, 1066–1071. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Kim, J.H.; Lee, J.; Jin, H.M.; Kook, H.; Kim, K.K.; Lee, S.Y.; Kim, N. MafB negatively regulates RANKL-mediated osteoclast differentiation. Blood 2007, 109, 3253–3259. [Google Scholar] [CrossRef]
- Putnam, S.E.; Scutt, A.M.; Bicknell, K.; Priestley, C.M.; Williamson, E.M. Natural products as alternative treatments for metabolic bone disorders and for maintenance of bone health. Phytother. Res. 2007, 21, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Che, C.T.; Wong, M.S.; Lam, C.W.K. Natural products from Chinese medicines with potential benefits to bone health. Molecules 2016, 21, 239. [Google Scholar] [CrossRef]
- Wang, Q.; Li, Y.; Wang, S.; Xiang, Z.; Dong, W.; Li, X.; Wei, Y.; Gao, P.; Dai, L. A review of the historical records, chemistry, pharmacology, pharmacokinetics and edibility of Angelica dahurica. Arab. J. Chem. 2023, 16, 104877. [Google Scholar] [CrossRef]
- Zhao, H.; Feng, Y.L.; Wang, M.; Wang, J.J.; Liu, T.; Yu, J. The Angelica dahurica: A Review of Traditional Uses, Phytochemistry and Pharmacology. Front. Pharmacol. 2022, 13, 896637. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-Y.; Seo, C.-S.; Lee, J.-A.; Lee, N.-H.; Kim, J.-H.; Ha, H.; Zheng, M.-S.; Son, J.-K.; Shin, H.-K. Anti-asthmatic effects of Angelica dahurica against ovalbumin-induced airway inflammation via upregulation of heme oxygenase-1. Food Chem. Toxicol. 2011, 49, 829–837. [Google Scholar] [CrossRef]
- Wang, G.-H.; Chen, C.-Y.; Tsai, T.-H.; Chen, C.-K.; Cheng, C.-Y.; Huang, Y.-H.; Hsieh, M.-C.; Chung, Y.-C. Evaluation of tyrosinase inhibitory and antioxidant activities of Angelica dahurica root extracts for four different probiotic bacteria fermentations. J. Biosci. Bioeng. 2017, 123, 679–684. [Google Scholar] [CrossRef]
- Wu, M.; Li, T.; Chen, L.; Peng, S.; Liao, W.; Bai, R.; Zhao, X.; Yang, H.; Wu, C.; Zeng, H. Essential oils from Inula japonica and Angelicae dahuricae enhance sensitivity of MCF-7/ADR breast cancer cells to doxorubicin via multiple mechanisms. J. Ethnopharmacol. 2016, 180, 18–27. [Google Scholar] [CrossRef]
- Che, Y.-M.; Mao, S.-H.; Jiao, W.-L.; Fu, Z.-Y. Susceptibilities of Mycoplasma hominis to herbs. Am. J. Chin. Med. 2005, 33, 191–196. [Google Scholar] [CrossRef]
- Lu, X.; Yuan, Z.Y.; Yan, X.J.; Lei, F.; Jiang, J.F.; Yu, X.; Yang, X.W.; Xing, D.M.; Du, L.J. Effects of Angelica dahurica on obesity and fatty liver in mice. Chin. J. Nat. Med. 2016, 14, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Calciolari, E.; Donos, N.; Mardas, N. Osteoporotic animal models of bone healing: Advantages and pitfalls. J. Investig. Surg. 2017, 30, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Yousefzadeh, N.; Kashfi, K.; Jeddi, S.; Ghasemi, A. Ovariectomized rat model of osteoporosis: A practical guide. EXCLI J. 2020, 19, 89. [Google Scholar]
- Zhao, S.; Zhang, Y.K.; Harris, S.; Ahuja, S.S.; Bonewald, L.F. MLO-Y4 osteocyte-like cells support osteoclast formation and activation. J. Bone Miner. Res. 2002, 17, 2068–2079. [Google Scholar] [CrossRef] [PubMed]
- Bakiri, L.; Takada, Y.; Radolf, M.; Eferl, R.; Yaniv, M.; Wagner, E.F.; Matsuo, K. Role of heterodimerization of c-Fos and Fra1 proteins in osteoclast differentiation. Bone 2007, 40, 867–875. [Google Scholar] [CrossRef] [PubMed]
- Takayanagi, H.; Kim, S.; Koga, T.; Nishina, H.; Isshiki, M.; Yoshida, H.; Saiura, A.; Isobe, M.; Yokochi, T.; Inoue, J.; et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell. 2002, 3, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Yao, Z.; Li, F.; Zhang, Q.; Badell, I.R.; Schwarz, E.M.; Takeshita, S.; Wagner, E.F.; Noda, M.; Matsuo, K. NF-κB p50 and p52 regulate receptor activator of NF-κB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J. Biol. Chem. 2007, 282, 18245–18253. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wang, M.; Guo, J.; Su, S.L.; Yu, G.; Yang, Y.; Zhou, Y.; Tang, Z. Angelica dahurica Extracts Attenuate CFA-Induced Inflammatory Pain via TRPV1 in Mice. Evid. Based Complement. Alternat. Med. 2022, 2022, 4684830. [Google Scholar] [CrossRef]
- Brady, C.W. Liver disease in menopause. World J. Gastroenterol. 2015, 21, 7613–7620. [Google Scholar] [CrossRef]
- Venetsanaki, V.; Polyzos, S.A. Menopause and non-alcoholic fatty liver disease: A review focusing on therapeutic perspectives. Curr. Vasc. Pharmacol. 2019, 17, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, X.; Lu, L.; Yu, X. The relationship between bone marrow adipose tissue and bone metabolism in postmenopausal osteoporosis. Cytokine Growth Factor Rev. 2020, 52, 88–98. [Google Scholar] [CrossRef]
- Yang, X.-D.; Chen, Z.; Ye, L.; Chen, J.; Yang, Y.-Y. Esculin protects against methionine choline-deficient diet-induced non-alcoholic steatohepatitis by regulating the Sirt1/NF-κB p65 pathway. Pharm. Biol. 2021, 59, 920–930. [Google Scholar] [CrossRef]
- Zhao, X.-L.; Chen, L.-F.; Wang, Z. Aesculin modulates bone metabolism by suppressing receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis and transduction signals. Biochem. Biophys. Res. Commun. 2017, 488, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Kim, J.; Jin, H.-S.; Choi, C.W.; Choi, T.H.; Choi, S.; Huh, D.; Jeong, S.-Y. Scopolin Attenuates Osteoporotic Bone Loss in Ovariectomized Mice. Nutrients 2020, 12, 3565. [Google Scholar] [CrossRef] [PubMed]
- Yoo, A.; Narayan, V.P.; Hong, E.Y.; Whang, W.K.; Park, T. Scopolin ameliorates high-fat diet induced hepatic steatosis in mice: Potential involvement of SIRT1-mediated signaling cascades in the liver. Sci. Rep. 2017, 7, 2251. [Google Scholar] [CrossRef]
- Ekeuku, S.O.; Pang, K.-L.; Chin, K.-Y. Effects of caffeic acid and its derivatives on bone: A systematic review. Drug Des. Dev. Ther. 2021, 15, 259–275. [Google Scholar] [CrossRef]
- Kim, H.M.; Kim, Y.; Lee, E.S.; Huh, J.H.; Chung, C.H. Caffeic acid ameliorates hepatic steatosis and reduces ER stress in high fat diet–induced obese mice by regulating autophagy. Nutrition 2018, 55–56, 63–70. [Google Scholar] [CrossRef]
- Chen, X.; Ying, X.; Sun, W.; Zhu, H.; Jiang, X.; Chen, B. The therapeutic effect of fraxetin on ethanol-induced hepatic fibrosis by enhancing ethanol metabolism, inhibiting oxidative stress and modulating inflammatory mediators in rats. Int. Immunopharmacol. 2018, 56, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.C.; Wei, Z.X.; Zhao, C.; Ma, Z.P.; Cai, D.Z. Inhibition of osteoclastogenesis for periprosthetic osteolysis therapy through the suppression of p38 signaling by fraxetin. Int. J. Mol. Med. 2018, 42, 1257–1264. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-I.; Yun, K.W.; Seo, K.-I.; Kim, M.-J.; Lee, M.-K. Scopoletin prevents alcohol-induced hepatic lipid accumulation by modulating the AMPK–SREBP pathway in diet-induced obese mice. Metabolism 2014, 63, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-J.; Na, W.; Kang, M.-K.; Kim, Y.-H.; Kim, D.-Y.; Oh, H.; Kim, S.-I.; Oh, S.-Y.; Park, S.; Park, K.; et al. Hydroxycoumarin Scopoletin Inhibits Bone Loss through Enhancing Induction of Bone Turnover Markers in a Mouse Model of Type 2 Diabetes. Biomedicines 2021, 9, 648. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Li, Z.; Zhang, L.; Liu, Y.; Ding, H.; Yin, S. Isofraxidin, a coumarin component improves high-fat diet induced hepatic lipid homeostasis disorder and macrophage inflammation in mice. Food Funct. 2017, 8, 2886–2896. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, B. Isofraxidin Inhibits Receptor Activator of Nuclear Factor-κB Ligand–Induced Osteoclastogenesis in Bone Marrow–Derived Macrophages Isolated from Sprague–Dawley Rats by Regulating NF-κB/NFATc1 and Akt/NFATc1 Signaling Pathways. Cell Transplant. 2021, 30, 0963689721990321. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Deng, X.; Jiang, Q.; Li, G.; Zhang, J.; Zhang, N.; Xin, S.; Xu, K. Scoparone alleviates inflammation, apoptosis and fibrosis of non-alcoholic steatohepatitis by suppressing the TLR4/NF-κB signaling pathway in mice. Int. Immunopharmacol. 2019, 75, 105797. [Google Scholar] [CrossRef] [PubMed]
- Park, K.R.; Kim, B.; Lee, J.Y.; Moon, H.J.; Kwon, I.K.; Yun, H.M. Effects of Scoparone on differentiation, adhesion, migration, autophagy and mineralization through the osteogenic signalling pathways. J. Cell. Mol. Med. 2022, 26, 4520–4529. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, J.; Wei, L.; Yang, X.; Zhang, Y.; Cheng, B.; Yang, Z.; Gao, W.; Song, C.; Miao, W.; et al. The Protective Effects of Imperatorin on Acetaminophen Overdose-Induced Acute Liver Injury. Oxid. Med. Cell. Longev. 2020, 2020, 8026838. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.Y.; Tang, J.; Chen, L.; Wang, B.; Weng, S.; Xie, Z.; Wu, Z.Y.; Shen, Z.; Bai, B.; Yang, L. Imperatorin promotes osteogenesis and suppresses osteoclast by activating AKT/GSK3 β/β-catenin pathways. J. Cell. Mol. Med. 2020, 24, 2330–2341. [Google Scholar] [CrossRef]
- Chen, G.; Xu, Q.; Dai, M.; Liu, X. Bergapten suppresses RANKL-induced osteoclastogenesis and ovariectomy-induced osteoporosis via suppression of NF-κB and JNK signaling pathways. Biochem. Biophys. Res. Commun. 2019, 509, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Lamichhane, G.; Pandeya, P.R.; Lamichhane, R.; Rhee, S.-j.; Devkota, H.P.; Jung, H.-J. Anti-Obesity Potential of Ponciri Fructus: Effects of Extracts, Fractions and Compounds on Adipogenesis in 3T3-L1 Preadipocytes. Molecules 2022, 27, 676. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem. 2016, 8, 531–541. [Google Scholar] [CrossRef]
- Vachliotis, I.D.; Anastasilakis, A.D.; Goulas, A.; Goulis, D.G.; Polyzos, S.A. Nonalcoholic fatty liver disease and osteoporosis: A potential association with therapeutic implications. Diabetes Obes. Metab. 2022, 24, 1702–1720. [Google Scholar] [CrossRef] [PubMed]
- Tomimori, Y.; Mori, K.; Koide, M.; Nakamichi, Y.; Ninomiya, T.; Udagawa, N.; Yasuda, H. Evaluation of pharmaceuticals with a novel 50-hour animal model of bone loss. J. Bone Miner. Res. 2009, 24, 1194–1205. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhou, A.; Cen, B.; Qiu, Q.; Dong, X.; Xu, X. Expression of soluble, active human macrophage colony stimulating factor in Escherichia coli. Int. J. Biochem. Mol. Biol. 1997, 42, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Shim, K.-S.; Gu, D.-R.; Hwang, Y.-H.; Yang, H.; Ryuk, J.-A.; Ha, H. Water extract of Fritillariae thunbergii Bulbus inhibits RANKL-mediated Osteoclastogenesis and Ovariectomy-induced trabecular bone loss. Molecules 2021, 27, 169. [Google Scholar] [CrossRef] [PubMed]
- Gu, D.R.; Yang, H.; Kim, S.C.; Hwang, Y.-H.; Ha, H. Water Extract of Piper longum Linn Ameliorates Ovariectomy-Induced Bone Loss by Inhibiting Osteoclast Differentiation. Nutrients 2022, 14, 3667. [Google Scholar] [CrossRef]
- Hwang, Y.-H.; Jang, S.-A.; Kim, T.; Ha, H. Forsythia suspensa protects against bone loss in ovariectomized mice. Nutrients 2019, 11, 1831. [Google Scholar] [CrossRef]
- Li, B.; Zhang, X.; Wang, J.; Zhang, L.; Gao, B.; Shi, S.; Wang, X.; Li, J.; Tu, P. Simultaneous Characterisation of Fifty Coumarins from the Roots of Angelica dahurica by Off-line Two-dimensional High-performance Liquid Chromatography Coupled with Electrospray Ionisation Tandem Mass Spectrometry. Phytochem. Anal. 2014, 25, 229–240. [Google Scholar] [CrossRef]
No. | tR (min) | Precursor Ion (m/z) | Elemental Composition | Error (ppm) | MS/MS Fragments (m/z) | Identification | ||
---|---|---|---|---|---|---|---|---|
Estimated | Calculated | Adduct | ||||||
1 | 1.6 | 168.1019 | 168.1018 | M+H | C15H16O9 | −0.887 | 150.0913 | Esculin * |
2 | 1.9 | 138.0913 | 138.0914 | M+H | C16H18O9 | 0.546 | 138.0914 | Scopolin * |
3 | 2.3 | 152.1070 | 152.1069 | M+H | C9H8O4 | −0.571 | 121.0650 | Caffeic acid * |
4 | 2.5 | 166.1226 | 166.1227 | M+H | C10H8O5 | 0.153 | 121.0647 | Fraxetin * |
5 | 10.7 | 193.0495 | 193.0495 | M+H | C10H8O4 | −0.447 | 177.0544, 149.0597 | Scopoletin * |
6 | 17.8 | 261.1121 | 261.1119 | M+H | C11H10O5 | −1.006 | 243.1014, 189.0545 | Isofraxidin * |
7 | 12.9 | 207.0652 | 207.0651 | M+H | C11H6O4 | −0.537 | 175.0389 | Xanthotoxol * |
8 | 13.1 | 261.1121 | 261.1118 | M+H | C11H10O4 | −1.356 | 243.1014, 189.0544 | Scoparone * |
9 | 13.7 | 245.0819 | 245.0815 | M+H | C16H16O6 | −1.641 | 175.0389 | Oxypeucedanin hydrate * |
10 | 18.7 | 285.0769 | 285.0767 | M+H | C17H16O6 | −0.666 | 270.0531 | Apaensin |
11 | 21.1 | 271.0965 | 271.0962 | M+H | C12H8O4 | −1.214 | 203.0337 | Methoxsalen * |
12 | 9.1 | 623.1618 | 623.1613 | M+Na | C17H16O6 | −0.713 | 503.1194, 383.0768, 317.0663 | Byakangelicol * |
13 | 10.4 | 609.1461 | 609.1454 | M+H | C16H14O5 | −0.588 | 301.0346 | Oxypeucedanin * |
14 | 10.5 | 431.0984 | 431.0979 | M+H | C16H14O4 | −1.019 | 311.0559 | Imperatorin * |
15 | 10.7 | 595.1668 | 595.1664 | M+H | C17H16O5 | −0.667 | 287.0559 | Phellopterin * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, D.R.; Yang, H.; Kim, S.C.; Hwang, Y.-H.; Ha, H. Water Extract of Angelica dahurica Inhibits Osteoclast Differentiation and Bone Loss. Int. J. Mol. Sci. 2023, 24, 14715. https://doi.org/10.3390/ijms241914715
Gu DR, Yang H, Kim SC, Hwang Y-H, Ha H. Water Extract of Angelica dahurica Inhibits Osteoclast Differentiation and Bone Loss. International Journal of Molecular Sciences. 2023; 24(19):14715. https://doi.org/10.3390/ijms241914715
Chicago/Turabian StyleGu, Dong Ryun, Hyun Yang, Seong Cheol Kim, Youn-Hwan Hwang, and Hyunil Ha. 2023. "Water Extract of Angelica dahurica Inhibits Osteoclast Differentiation and Bone Loss" International Journal of Molecular Sciences 24, no. 19: 14715. https://doi.org/10.3390/ijms241914715
APA StyleGu, D. R., Yang, H., Kim, S. C., Hwang, Y. -H., & Ha, H. (2023). Water Extract of Angelica dahurica Inhibits Osteoclast Differentiation and Bone Loss. International Journal of Molecular Sciences, 24(19), 14715. https://doi.org/10.3390/ijms241914715