Modeling the Homologous Recombination Process: Methods, Successes and Challenges
Abstract
:1. Introduction
2. Methods for Modeling the HR Process—Scope and Limitations
2.1. Molecular Modeling
2.2. Representations, Resolution and Sampling
2.3. Molecular Dynamics Simulations
2.4. Mesoscopic Representation
2.5. Modeling Strategies
3. Contribution of Modeling Studies in Building Structural Knowledge of the HR Process
3.1. Modeling the Separate Components of the Nucleoprotein Filament Central to HR
3.1.1. DNA and Its Stretched Forms
3.1.2. RecA
3.1.3. Polymorphism of RecA Assembly
3.1.4. ATP Hydrolysis in HR Nucleoprotein Filaments
3.2. Modeling Intermediate Species along the HR Steps
3.2.1. Modeling the DNA Strand Positions inside the HR Filament
3.2.2. Modeling the Early Stage of dsDNA Incorporation in the HR Filament
3.2.3. Modeling RecA-Induced Pairing Exchange
3.3. Interaction with Partner Proteins
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bianco, P.R.; Tracy, R.B.; Kowalczykowski, S.C. DNA strand exchange proteins: A biochemical and physical comparison. Front. Biosci. 1998, 3, D570–D603. [Google Scholar]
- Kowalczykowski, S.C. An Overview of the Molecular Mechanisms of Recombinational DNA Repair. Cold Spring Harb. Perspect. Biol. 2015, 7, a016410. [Google Scholar] [CrossRef]
- Bell, J.C.; Kowalczykowski, S.C. RecA: Regulation and Mechanism of a Molecular Search Engine. Trends Biochem. Sci. 2016, 41, 491–507. [Google Scholar] [CrossRef] [PubMed]
- Prentiss, M.; Prévost, C.; Danilowicz, C. Structure/function relationships in RecA protein-mediated homology recognition and strand exchange. Crit. Rev. Biochem. Mol. Biol. 2015, 50, 453–476. [Google Scholar] [CrossRef]
- Godoy, V.G.; Jarosz, D.F.; Simon, S.M.; Abyzov, A.; Ilyin, V.; Walker, G.C. UmuD and RecA Directly Modulate the Mutagenic Potential of the Y Family DNA Polymerase DinB. Mol. Cell 2007, 28, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Danilowicz, C.; Tashjian, T.F.; Prévost, C.; Godoy, V.G.; Prentiss, M. Slow extension of the invading DNA strand in a D-loop formed by RecA-mediated homologous recombination may enhance recognition of DNA homology. J. Biol. Chem. 2019, 294, 8606–8616. [Google Scholar] [CrossRef]
- Coïc, E.; Martin, J.; Ryu, T.; Tay, S.Y.; Kondev, J.; Haber, J.E. Dynamics of homology searching during gene conversion in Saccharomyces cerevisiae revealed by donor competition. Genetics 2011, 189, 1225–1233. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.H.; Chu, C.C.; Fan, H.F.; Wang, P.Y.; Cox, M.M.; Li, H.W. A 5’-to-3’ strand exchange polarity is intrinsic to RecA nucleoprotein filaments in the absence of ATP hydrolysis. Nucleic Acids Res. 2019, 47, 5126–5140. [Google Scholar] [CrossRef]
- Piazza, A.; Heyer, W.D. Moving forward one step back at a time: Reversibility during homologous recombination. Curr. Genet. 2019, 65, 1333–1340. [Google Scholar] [CrossRef]
- Danilowicz, C.; Hermans, L.; Coljee, V.; Prévost, C.; Prentiss, M. ATP hydrolysis provides functions that promote rejection of pairings between different copies of long repeated sequences. Nucleic Acids Res. 2017, 45, 8448–8462. [Google Scholar] [CrossRef]
- Cox, M.M. Why does RecA protein hydrolyse ATP? Trends Biochem. Sci. 1994, 19, 217–222. [Google Scholar] [CrossRef]
- VanLoock, M.S.; Yu, X.; Yang, S.; Lai, A.L.; Low, C.; Campbell, M.J.; Egelman, E.H. ATP-mediated conformational changes in the RecA filament. Structure 2003, 11, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Alekseev, A.; Pobegalov, G.; Morozova, N.; Vedyaykin, A.; Cherevatenko, G.; Yakimov, A.; Baitin, D.; Khodorkovskii, M. A new insight into RecA filament regulation by RecX from the analysis of conformation-specific interactions. Elife 2022, 11, e78409. [Google Scholar] [CrossRef] [PubMed]
- Reitz, D.; Chan, Y.L.; Bishop, D.K. How strand exchange protein function benefits from ATP hydrolysis. Curr. Opin. Genet. Dev. 2021, 71, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Kim, R.; Kanamaru, S.; Mikawa, T.; Prévost, C.; Ishii, K.; Ito, K.; Uchiyama, S.; Oda, M.; Iwasaki, H.; Kim, S.K.; et al. RecA requires two molecules of Mg2+ ions for its optimal strand exchange activity in vitro. Nucleic Acids Res. 2018, 46, 2548–2559. [Google Scholar] [CrossRef]
- Kim, J.M.; Maraboeuf, F.; Kim, S.K.; Shinohara, A.; Takahashi, M. Effect of ions and nucleotides on the interactions of yeast Rad51 protein with single-stranded oligonucleotides. J Biochem 2001, 129, 469–475. [Google Scholar] [CrossRef]
- Lee, M.H.; Chang, Y.C.; Hong, E.L.; Grubb, J.; Chang, C.S.; Bishop, D.K.; Wang, T.F. Calcium ion promotes yeast Dmc1 activity via formation of long and fine helical filaments with single-stranded DNA. J. Biol. Chem. 2005, 280, 40980–40984. [Google Scholar] [CrossRef] [PubMed]
- Stasiak, A.; Egelman, E.H. Structure and function of RecA-DNA complexes. Experientia 1994, 50, 192–203. [Google Scholar] [CrossRef]
- Jegou, A.; Romet-Lemonne, G. The many implications of actin filament helicity. Semin. Cell Dev. Biol. 2020, 102, 65–72. [Google Scholar] [CrossRef]
- Boyer, B.; Ezelin, J.; Poulain, P.; Saladin, A.; Zacharias, M.; Robert, C.H.; Prévost, C. An integrative approach to the study of filamentous oligomeric assemblies, with application to RecA. PLoS ONE 2015, 10, e0116414. [Google Scholar] [CrossRef]
- Danilowicz, C.; Feinstein, E.; Conover, A.; Coljee, V.W.; Vlassakis, J.; Chan, Y.L.; Bishop, D.K.; Prentiss, M. RecA homology search is promoted by mechanical stress along the scanned duplex DNA. Nucleic Acids Res. 2012, 40, 1717–1727. [Google Scholar] [CrossRef]
- Molza, A.E.; Westermaier, Y.; Moutte, M.; Ducrot, P.; Danilowicz, C.; Godoy-Carter, V.; Prentiss, M.; Robert, C.H.; Baaden, M.; Prévost, C. Building Biological Relevance Into Integrative Modelling of Macromolecular Assemblies. Front. Mol. Biosci. 2022, 9, 826136. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
- Leach, A.R. Molecular Modelling: Principles and Applications; Pearson Education: London, UK, 2001. [Google Scholar]
- Reymer, A.; Babik, S.; Takahashi, M.; Nordén, B.; Beke-Somfai, T. ATP Hydrolysis in the RecA-DNA Filament Promotes Structural Changes at the Protein-DNA Interface. Biochemistry 2015, 54, 4579–4582. [Google Scholar] [CrossRef] [PubMed]
- Dodson, G.G.; Lane, D.P.; Verma, C.S. Molecular simulations of protein dynamics: New windows on mechanisms in biology. EMBO Rep. 2008, 9, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Guvench, O.; MacKerell, A.D. Comparison of protein force fields for molecular dynamics simulations. Methods Mol. Biol. 2008, 443, 63–88. [Google Scholar] [CrossRef] [PubMed]
- Lavery, R. Modelling the DNA double helix: Techniques and results. In Non-Linear Excitation in Biomolecules; Peyrard, M., Ed.; Centre de Physique des Houches; Springer-Verlag: Berlin, Germany; New York, NY USA, 1995; Volume 2. [Google Scholar]
- Kosikov, K.M.; Gorin, A.A.; Zhurkin, V.B.; Olson, W.K. DNA stretching and compression: Large-scale simulations of double helical structures. J. Mol. Biol. 1999, 289, 1301–1326. [Google Scholar] [CrossRef]
- Zacharias, M. Protein-protein docking with a reduced protein model accounting for side-chain flexibility. Protein Sci. 2003, 12, 1271–1282. [Google Scholar] [CrossRef]
- Sieradzan, A.K.; Giełdoń, A.; Yin, Y.; He, Y.; Scheraga, H.A.; Liwo, A. A new protein nucleic-acid coarse-grained force field based on the UNRES and NARES-2P force fields. J. Comput. Chem. 2018, 39, 2360–2370. [Google Scholar] [CrossRef]
- Halperin, I.; Ma, B.; Wolfson, H.; Nussinov, R. Principles of docking: An overview of search algorithms and a guide to scoring functions. Proteins 2002, 47, 409–443. [Google Scholar] [CrossRef]
- Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A.E.; Kolinski, A. Coarse-Grained Protein Models and Their Applications. Chem. Rev. 2016, 116, 7898–7936. [Google Scholar] [CrossRef] [PubMed]
- Vakser, I.A. Challenges in protein docking. Curr. Opin. Struct. Biol. 2020, 64, 160–165. [Google Scholar] [CrossRef]
- Saladin, A.; Amourda, C.; Poulain, P.; Férey, N.; Baaden, M.; Zacharias, M.; Delalande, O.; Prévost, C. Modeling the early stage of DNA sequence recognition within RecA nucleoprotein filaments. Nucleic Acids Res. 2010, 38, 6313–6323. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, G.; Pal, A.; Levy, Y. Mechanism of the formation of the RecA-ssDNA nucleoprotein filament structure: A coarse-grained approach. Mol. Biosyst. 2017, 13, 2697–2703. [Google Scholar] [CrossRef] [PubMed]
- McCammon, J.A.; Gelin, B.R.; Karplus, M. Dynamics of folded proteins. Nature 1977, 267, 585–590. [Google Scholar] [CrossRef] [PubMed]
- Ryckaert, J.P.; Ciccotti, G.; Berendsen, H.J. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- Karplus, M.; McCammon, J.A. Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 2002, 9, 646–652. [Google Scholar] [CrossRef]
- Adcock, S.A.; McCammon, J.A. Molecular dynamics: Survey of methods for simulating the activity of proteins. Chem. Rev. 2006, 106, 1589–1615. [Google Scholar] [CrossRef]
- Van Gunsteren, W.F.; Bakowies, D.; Baron, R.; Chandrasekhar, I.; Christen, M.; Daura, X.; Gee, P.; Geerke, D.P.; Glättli, A.; Hünenberger, P.H.; et al. Biomolecular modeling: Goals, problems, perspectives. Angew. Chem. Int. Ed. Engl. 2006, 45, 4064–4092. [Google Scholar] [CrossRef]
- Stocker, U.; van Gunsteren, W.F. Molecular dynamics simulation of hen egg white lysozyme: A test of the GROMOS96 force field against nuclear magnetic resonance data. Proteins 2000, 40, 145–153. [Google Scholar] [CrossRef]
- Karplus, M. Spinach on the ceiling: A theoretical chemist’s return to biology. Annu. Rev. Biophys. Biomol. Struct. 2006, 35, 1–47. [Google Scholar] [CrossRef]
- Karplus, M.; Lavery, R. Significance of Molecular Dynamics Simulations for Life Sciences. Isr. J. Chem. 2014, 54, 1042–1051. [Google Scholar] [CrossRef]
- Levitt, M. The birth of computational structural biology. Nat. Struct. Biol. 2001, 8, 392–393. [Google Scholar] [CrossRef]
- Warshel, A. Molecular dynamics simulations of biological reactions. Acc. Chem. Res. 2002, 35, 385–395. [Google Scholar] [CrossRef]
- Hénin, J.; Lelièvre, T.; Shirts, M.R.; Valsson, O.; Delemotte, L. Enhanced Sampling Methods for Molecular Dynamics Simulations [Article v1.0]. Living J. Comput. Mol. Sci. 2022, 4. [Google Scholar] [CrossRef]
- Harpole, T.J.; Delemotte, L. Conformational landscapes of membrane proteins delineated by enhanced sampling molecular dynamics simulations. Biochim. Biophys. Acta Biomembr. 2018, 1860, 909–926. [Google Scholar] [CrossRef] [PubMed]
- Doshi, U.; Hamelberg, D. Towards fast, rigorous and efficient conformational sampling of biomolecules: Advances in accelerated molecular dynamics. Biochim. Biophys. Acta 2015, 1850, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Boyer, B.; Danilowicz, C.; Prentiss, M.; Prévost, C. Weaving DNA strands: Structural insight on ATP hydrolysis in RecA-induced homologous recombination. Nucleic Acids Res. 2019, 47, 7798–7808. [Google Scholar] [CrossRef]
- Vlassakis, J.; Feinstein, E.; Yang, D.; Tilloy, A.; Weiller, D.; Kates-Harbeck, J.; Coljee, V.; Prentiss, M. Tension on dsDNA bound to ssDNA-RecA filaments may play an important role in driving efficient and accurate homology recognition and strand exchange. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 2013, 87, 032702. [Google Scholar] [CrossRef] [PubMed]
- Egelman, E.H.; Yu, X. The location of DNA in RecA-DNA helical filaments. Science 1989, 245, 404–407. [Google Scholar] [CrossRef]
- Kubista, M.; Takahashi, M.; Nordén, B. Stoichiometry, base orientation, and nuclease accessibility of RecA.DNA complexes seen by polarized light in flow-oriented solution. Implications for the mechanism of genetic recombination. J. Biol. Chem. 1990, 265, 18891–18897. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Maraboeuf, F.; Nordén, B. Locations of functional domains in the RecA protein. Overlap of domains and regulation of activities. Eur. J. Biochem. 1996, 242, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Rehrauer, W.M.; Kowalczykowski, S.C. The DNA binding site(s) of the Escherichia coli RecA protein. J. Biol. Chem. 1996, 271, 11996–12002. [Google Scholar] [CrossRef]
- Gumbs, O.H.; Shaner, S.L. Three mechanistic steps detected by FRET after presynaptic filament formation in homologous recombination. ATP hydrolysis required for release of oligonucleotide heteroduplex product from RecA. Biochemistry 1998, 37, 11692–11706. [Google Scholar] [CrossRef]
- Malkov, V.A.; Panyutin, I.G.; Neumann, R.D.; Zhurkin, V.B.; Camerini-Otero, R.D. Radioprobing of a RecA-three-stranded DNA complex with iodine 125: Evidence for recognition of homology in the major groove of the target duplex. J. Mol. Biol. 2000, 299, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Singleton, S.F.; Xiao, J. The stretched DNA geometry of recombination and repair nucleoprotein filaments. Biopolymers 2001, 61, 145–158. [Google Scholar] [CrossRef]
- Ristic, D.; Kanaar, R.; Wyman, C. Visualizing RAD51-mediated joint molecules: Implications for recombination mechanism and the effect of sequence heterology. Nucleic Acids Res. 2011, 39, 155–167. [Google Scholar] [CrossRef]
- Morimatsu, K.; Horii, T. DNA-binding surface of RecA protein photochemical cross-linking of the first DNA binding site on RecA filament. Eur. J. Biochem. 1995, 234, 695–705. [Google Scholar] [CrossRef]
- Wang, Y.; Adzuma, K. Differential proximity probing of two DNA binding sites in the Escherichia coli recA protein using photo-cross-linking methods. Biochemistry 1996, 35, 3563–3571. [Google Scholar] [CrossRef]
- Xiao, J.; Lee, A.M.; Singleton, S.F. Construction and evaluation of a kinetic scheme for RecA-mediated DNA strand exchange. Biopolymers 2006, 81, 473–496. [Google Scholar] [CrossRef]
- Cluzel, P.; Lebrun, A.; Heller, C.; Lavery, R.; Viovy, J.L.; Chatenay, D.; Caron, F. DNA: An extensible molecule. Science 1996, 271, 792–794. [Google Scholar] [CrossRef]
- Sarkar, A.; Léger, J.F.; Chatenay, D.; Marko, J.F. Structural transitions in DNA driven by external force and torque. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2001, 63, 051903. [Google Scholar] [CrossRef] [PubMed]
- Strick, T.; Allemand, J.; Croquette, V.; Bensimon, D. Twisting and stretching single DNA molecules. Prog. Biophys. Mol. Biol. 2000, 74, 115–140. [Google Scholar] [CrossRef] [PubMed]
- Strick, T.R.; Allemand, J.F.; Bensimon, D.; Croquette, V. Stress-induced structural transitions in DNA and proteins. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 523–543. [Google Scholar] [CrossRef] [PubMed]
- Allemand, J.F.; Bensimon, D.; Croquette, V. Stretching DNA and RNA to probe their interactions with proteins. Curr. Opin. Struct. Biol. 2003, 13, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, C.; Bryant, Z.; Smith, S.B. Ten years of tension: Single-molecule DNA mechanics. Nature 2003, 421, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, C.H.; Neuert, G.; Lugmaier, R.A.; Gaub, H.E. Molecular force balance measurements reveal that double-stranded DNA unbinds under force in rate-dependent pathways. Biophys. J. 2008, 94, 4766–4774. [Google Scholar] [CrossRef]
- Lebrun, A.; Lavery, R. Modelling extreme stretching of DNA. Nucleic Acids Res. 1996, 24, 2260–2267. [Google Scholar] [CrossRef]
- Danilowicz, C.; Limouse, C.; Hatch, K.; Conover, A.; Coljee, V.W.; Kleckner, N.; Prentiss, M. The structure of DNA overstretched from the 5’5’ ends differs from the structure of DNA overstretched from the 3’3’ ends. Proc. Nat. Acad. Sci. USA 2009, 106, 13196–13201. [Google Scholar] [CrossRef]
- Prévost, C.; Takahashi, M.; Lavery, R. Deforming DNA: From Physics to Biology. ChemPhysChem 2009, 10, 1399–1404. [Google Scholar] [CrossRef]
- Nordén, B.; Elvingson, C.; Kubista, M.; Sjöberg, B.; Ryberg, H.; Ryberg, M.; Mortensen, K.; Takahashi, M. Structure of RecA-DNA complexes studied by combination of linear dichroism and small-angle neutron scattering measurements on flow-oriented samples. J. Mol. Biol. 1992, 226, 1175–1191. [Google Scholar] [CrossRef] [PubMed]
- Nordén, B.; Wittung-Stafshede, P.; Ellouze, C.; Kim, H.K.; Mortensen, K.; Takahashi, M. Base orientation of second DNA in RecA.DNA filaments. Analysis by combination of linear dichroism and small angle neutron scattering in flow-oriented solution. J. Biol. Chem. 1998, 273, 15682–15686. [Google Scholar] [CrossRef] [PubMed]
- Prévost, C.; Takahashi, M. Geometry of the DNA strands within the RecA nucleofilament: Role in homologous recombination. Q. Rev. Biophys. 2003, 36, 429–453. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yang, H.; Pavletich, N.P. Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 2008, 453, 489–494. [Google Scholar] [CrossRef]
- Danilowicz, C.; Yang, D.; Kelley, C.; Prévost, C.; Prentiss, M. The poor homology stringency in the heteroduplex allows strand exchange to incorporate desirable mismatches without sacrificing recognition in vivo. Nucleic Acids Res. 2015, 43, 6473–6485. [Google Scholar] [CrossRef]
- Konrad, M.W.; Bolonick, J.I. Molecular Dynamics Simulation of DNA Stretching Is Consistent with the Tension Observed for Extension and Strand Separation and Predicts a Novel Ladder Structure. J. Am. Chem. Soc. 1996, 118, 10989–10994. [Google Scholar] [CrossRef]
- Harris, S.A.; Sands, Z.A.; Laughton, C.A. Molecular dynamics simulations of duplex stretching reveal the importance of entropy in determining the biomechanical properties of DNA. Biophys. J. 2005, 88, 1684–1691. [Google Scholar] [CrossRef]
- Li, H.; Gisler, T. Overstretching of a 30 bp DNA duplex studied with steered molecular dynamics simulation: Effects of structural defects on structure and force-extension relation. Eur. Phys. J. E. Soft. Matter. 2009, 30, 325–332. [Google Scholar] [CrossRef]
- Taghavi, A.; van der Schoot, P.; Berryman, J.T. DNA partitions into triplets under tension in the presence of organic cations, with sequence evolutionary age predicting the stability of the triplet phase. Q. Rev. Biophys. 2017, 50, e15. [Google Scholar] [CrossRef]
- Zacharias, M. Minor groove deformability of DNA: A molecular dynamics free energy simulation study. Biophys. J. 2006, 91, 882–891. [Google Scholar] [CrossRef]
- Elcock, A.H.; McCammon, J.A. The Low Dielectric Interior of Proteins is Sufficient To Cause Major Structural Changes in DNA on Association. J. Am. Chem. Soc. 1996, 118, 3787–3788. [Google Scholar] [CrossRef]
- Lee, J.Y.; Terakawa, T.; Qi, Z.; Steinfeld, J.B.; Redding, S.; Kwon, Y.; Gaines, W.A.; Zhao, W.; Sung, P.; Greene, E.C. Base triplet stepping by the Rad51/RecA family of recombinases. Science 2015, 349, 977–981. [Google Scholar] [CrossRef] [PubMed]
- Kates-Harbeck, J.; Tilloy, A.; Prentiss, M. Simplified biased random walk model for RecA-protein-mediated homology recognition offers rapid and accurate self-assembly of long linear arrays of binding sites. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 2013, 88, 012702. [Google Scholar] [CrossRef]
- Jiang, L.; Prentiss, M. RecA-mediated sequence homology recognition as an example of how searching speed in self-assembly systems can be optimized by balancing entropic and enthalpic barriers. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 2014, 90, 022704. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Boyer, B.; Prévost, C.; Danilowicz, C.; Prentiss, M. Integrating multi-scale data on homologous recombination into a new recognition mechanism based on simulations of the RecA-ssDNA/dsDNA structure. Nucleic Acids Res. 2015, 43, 10251–10263. [Google Scholar] [CrossRef] [PubMed]
- Egelman, E.H.; Stasiak, A. Structure of helical RecA-DNA complexes. Complexes formed in the presence of ATP-gamma-S or ATP. J. Mol. Biol. 1986, 191, 677–697. [Google Scholar] [CrossRef]
- Lebrun, A.; Shakked, Z.; Lavery, R. Local DNA stretching mimics the distortion caused by the TATA box-binding protein. Proc. Nat. Acad. Sci. USA 1997, 94, 2993–2998. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, C.; Dhar, A.; Pavletich, N.P. Mechanism of strand exchange from RecA-DNA synaptic and D-loop structures. Nature 2020, 586, 801–806. [Google Scholar] [CrossRef]
- Bortner, C.; Griffith, J. Three-stranded paranemic joints: Architecture, topological constraints and movement. J. Mol. Biol. 1990, 215, 623–634. [Google Scholar] [CrossRef]
- Howard-Flanders, P.; West, S.C.; Stasiak, A. Role of RecA protein spiral filaments in genetic recombination. Nature 1984, 309, 215–219. [Google Scholar] [CrossRef]
- Zhurkin, V.B.; Raghunathan, G.; Ulyanov, N.B.; Camerini-Otero, R.D.; Jernigan, R.L. A parallel DNA triplex as a model for the intermediate in homologous recombination. J. Mol. Biol. 1994, 239, 181–200. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.G.; Zhurkin, V.B.; Jernigan, R.L.; Camerini-Otero, R.D. Probing the structure of a putative intermediate in homologous recombination: The third strand in the parallel DNA triplex is in contact with the major groove of the duplex. J. Mol. Biol. 1995, 247, 874–889. [Google Scholar] [CrossRef] [PubMed]
- Bertucat, G.; Lavery, R.; Prévost, C. A molecular model for RecA-promoted strand exchange via parallel triple-stranded helices. Biophys. J. 1999, 77, 1562–1576. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.M.; Xiao, J.; Singleton, S.F. Origins of sequence selectivity in homologous genetic recombination: Insights from rapid kinetic probing of RecA-mediated DNA strand exchange. J. Mol. Biol. 2006, 360, 343–359. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Tang, Q.; Guo, S.; Lu, C.; Le, S.; Yan, J. Parallel triplex structure formed between stretched single-stranded DNA and homologous duplex DNA. Nucleic Acids Res. 2017, 45, 10032–10041. [Google Scholar] [CrossRef]
- Carra, C.; Cucinotta, F.A. Binding sites of the E. Coli DNA recombinase protein to the ssDNA: A computational study. J. Biomol. Struct. Dyn. 2010, 27, 407–428. [Google Scholar] [CrossRef]
- Carra, C.; Cucinotta, F.A. Binding selectivity of RecA to a single stranded DNA, a computational approach. J. Mol. Model. 2011, 17, 133–150. [Google Scholar] [CrossRef]
- Garmay, Y.; Shvetsov, A.; Karelov, D.; Lebedev, D.; Radulescu, A.; Petukhov, M.; Isaev-Ivanov, V. Correlated motion of protein subdomains and large-scale conformational flexibility of RecA protein filament. J. Physics: Conf. Ser. 2012, 340, 012094. [Google Scholar] [CrossRef]
- Pan, Y.; Xie, N.; Zhang, X.; Yang, S.; Lv, S. Computational Insights into the Dynamic Structural Features and Binding Characteristics of Recombinase UvsX Compared with RecA. Molecules 2023, 28, 3363. [Google Scholar] [CrossRef]
- Su, Z.Y.; Lee, W.J.; Su, W.S.; Wang, Y.T. Target molecular simulations of RecA family protein filaments. Int. J. Mol. Sci. 2012, 13, 7138–7148. [Google Scholar] [CrossRef]
- Lusetti, S.L.; Drees, J.C.; Stohl, E.A.; Seifert, H.S.; Cox, M.M. The DinI and RecX proteins are competing modulators of RecA function. J. Biol. Chem. 2004, 279, 55073–55079. [Google Scholar] [CrossRef] [PubMed]
- Sacquin-Mora, S.; Prévost, C. When Order Meets Disorder: Modeling and Function of the Protein Interface in Fuzzy Complexes. Biomolecules 2021, 11, 1529. [Google Scholar] [CrossRef] [PubMed]
- Kurumizaka, H.; Aihara, H.; Ikawa, S.; Kashima, T.; Bazemore, L.R.; Kawasaki, K.; Sarai, A.; Radding, C.M.; Shibata, T. A possible role of the C-terminal domain of the RecA protein. A gateway model for double-stranded DNA binding. J. Biol. Chem. 1996, 271, 33515–33524. [Google Scholar] [CrossRef]
- Brenner, S.L.; Zlotnick, A.; Griffith, J.D. RecA protein self-assembly. Multiple discrete aggregation states. J. Mol. Biol. 1988, 204, 959–972. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Egelman, E.H. The RecA hexamer is a structural homologue of ring helicases. Nat. Struct. Biol. 1997, 4, 101–104. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.X.; Larson, R.G. Atomic force microscopic study of aggregation of RecA-DNA nucleoprotein filaments into left-handed supercoiled bundles. Nano. Lett. 2005, 5, 2476–2481. [Google Scholar] [CrossRef] [PubMed]
- Ghodke, H.; Paudel, B.P.; Lewis, J.S.; Jergic, S.; Gopal, K.; Romero, Z.J.; Wood, E.A.; Woodgate, R.; Cox, M.M.; van Oijen, A.M. Spatial and temporal organization of RecA in the Escherichia coli DNA-damage response. Elife 2019, 8, e42761. [Google Scholar] [CrossRef]
- Ellouze, C.; Selmane, T.; Kim, H.K.; Tuite, E.; Nordén, B.; Mortensen, K.; Takahashi, M. Difference between active and inactive nucleotide cofactors in the effect on the DNA binding and the helical structure of RecA filament dissociation of RecA–DNA complex by inactive nucleotides. Eur. J. Biochem. 1999, 262, 88–94. [Google Scholar] [CrossRef]
- Yu, X.; Jacobs, S.A.; West, S.C.; Ogawa, T.; Egelman, E.H. Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA. Proc. Natl. Acad Sci. USA 2001, 98, 8419–8424. [Google Scholar] [CrossRef]
- Story, R.M.; Steitz, T.A. Structure of the recA protein-ADP complex. Nature 1992, 355, 374–376. [Google Scholar] [CrossRef]
- Yu, X.; Egelman, E.H. The LexA repressor binds within the deep helical groove of the activated RecA filament. J. Mol. Biol. 1993, 231, 29–40. [Google Scholar] [CrossRef] [PubMed]
- VanLoock, M.S.; Yu, X.; Yang, S.; Galkin, V.E.; Huang, H.; Rajan, S.S.; Anderson, W.F.; Stohl, E.A.; Seifert, H.S.; Egelman, E.H. Complexes of RecA with LexA and RecX differentiate between active and inactive RecA nucleoprotein filaments. J. Mol. Biol. 2003, 333, 345–354. [Google Scholar] [CrossRef]
- Chen, L.T.; Ko, T.P.; Chang, Y.C.; Lin, K.A.; Chang, C.S.; Wang, A.H.J.; Wang, T.F. Crystal structure of the left-handed archaeal RadA helical filament: Identification of a functional motif for controlling quaternary structures and enzymatic functions of RecA family proteins. Nucleic Acids Res. 2007, 35, 1787–1801. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.W.; Ko, T.P.; Lee, C.D.; Chang, Y.C.; Lin, K.A.; Chang, C.S.; Wang, A.H.J.; Wang, T.F. Three new structures of left-handed RADA helical filaments: Structural flexibility of N-terminal domain is critical for recombinase activity. PLoS ONE 2009, 4, e4890. [Google Scholar] [CrossRef]
- Manjunath, G.P.; Soni, N.; Vaddavalli, P.L.; Shewale, D.J.; Madhusudhan, M.S.; Muniyappa, K. Molecular Mechanism Underlying ATP-Induced Conformational Changes in the Nucleoprotein Filament of Mycobacterium smegmatis RecA. Biochemistry 2016, 55, 1850–1862. [Google Scholar] [CrossRef] [PubMed]
- Petukhov, M.; Lebedev, D.; Shalguev, V.; Islamov, A.; Kuklin, A.; Lanzov, V.; Isaev-Ivanov, V. Conformational flexibility of RecA protein filament: Transitions between compressed and stretched states. Proteins 2006, 65, 296–304. [Google Scholar] [CrossRef]
- Chang, Y.C.; Lo, Y.H.; Lee, M.H.; Leng, C.H.; Hu, S.M.; Chang, C.S.; Wang, T.F. Molecular visualization of the yeast Dmc1 protein ring and Dmc1-ssDNA nucleoprotein complex. Biochemistry 2005, 44, 6052–6058. [Google Scholar] [CrossRef]
- Cox, J.M.; Abbott, S.N.; Chitteni-Pattu, S.; Inman, R.B.; Cox, M.M. Complementation of one RecA protein point mutation by another. Evidence for trans catalysis of ATP hydrolysis. J. Biol. Chem. 2006, 281, 12968–12975. [Google Scholar] [CrossRef]
- Boyer, B.; Laurent, B.; Robert, C.H.; Prévost, C. Modeling Perturbations in Protein Filaments at the Micro and Meso Scale Using NAMD and PTools/Heligeom. Bio. Protoc. 2021, 11, e4097. [Google Scholar] [CrossRef]
- Maraboeuf, F.; Voloshin, O.; Camerini-Otero, R.D.; Takahashi, M. The central aromatic residue in loop L2 of RecA interacts with DNA. Quenching of the fluorescence of a tryptophan reporter inserted in L2 upon binding to DNA. J. Biol. Chem. 1995, 270, 30927–30932. [Google Scholar] [CrossRef]
- Sharma, A.; Kottur, J.; Narayanan, N.; Nair, D.T. A strategically located serine residue is critical for the mutator activity of DNA polymerase IV from Escherichia coli. Nucleic Acids Res. 2013, 41, 5104–5114. [Google Scholar] [CrossRef] [PubMed]
- Tashjian, T.F.; Danilowicz, C.; Molza, A.E.; Nguyen, B.H.; Prévost, C.; Prentiss, M.; Godoy, V.G. Residues in the fingers domain of the translesion DNA polymerase DinB enable its unique participation in error-prone double-strand break repair. J. Biol. Chem. 2019, 294, 7588–7600. [Google Scholar] [CrossRef]
- Symington, L.S. End resection at double-strand breaks: Mechanism and regulation. Cold Spring Harb. Perspect. Biol. 2014, 6. [Google Scholar] [CrossRef]
- Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018, 27, 112–128. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.; Tiwari, S.P.; Miyashita, O.; Tama, F. Integrative/Hybrid Modeling Approaches for Studying Biomolecules. J. Mol. Biol. 2020, 432, 2846–2860. [Google Scholar] [CrossRef]
- Mondal, A.; Lenz, S.; MacCallum, J.L.; Perez, A. Hybrid computational methods combining experimental information with molecular dynamics. Curr. Opin. Struct. Biol. 2023, 81, 102609. [Google Scholar] [CrossRef] [PubMed]
- Renzette, N.; Gumlaw, N.; Sandler, S.J. DinI and RecX modulate RecA-DNA structures in Escherichia coli K-12. Mol. Microbiol. 2007, 63, 103–115. [Google Scholar] [CrossRef]
- Saikusa, K.; Kuwabara, N.; Kokabu, Y.; Inoue, Y.; Sato, M.; Iwasaki, H.; Shimizu, T.; Ikeguchi, M.; Akashi, S. Characterisation of an intrinsically disordered protein complex of Swi5-Sfr1 by ion mobility mass spectrometry and small-angle X-ray scattering. Analyst 2013, 138, 1441–1449. [Google Scholar] [CrossRef]
- Shvetsov, A.V.; Lebedev, D.V.; Chervyakova, D.B.; Bakhlanova, I.V.; Yung, I.A.; Radulescu, A.; Kuklin, A.I.; Baitin, D.M.; Isaev-Ivanov, V.V. Structure of RecX protein complex with the presynaptic RecA filament: Molecular dynamics simulations and small angle neutron scattering. FEBS Lett. 2014, 588, 948–955. [Google Scholar] [CrossRef]
- Gao, B.; Liang, L.; Su, L.; Wen, A.; Zhou, C.; Feng, Y. Structural basis for regulation of SOS response in bacteria. Proc. Natl. Acad. Sci. USA 2023, 120, e2217493120. [Google Scholar] [CrossRef]
- Chattopadhyaya, R.; Pal, A. Improved model of a LexA repressor dimer bound to recA operator. J Biomol Struct Dyn 2004, 21, 681–689. [Google Scholar] [CrossRef]
- Adikesavan, A.K.; Katsonis, P.; Marciano, D.C.; Lua, R.; Herman, C.; Lichtarge, O. Separation of recombination and SOS response in Escherichia coli RecA suggests LexA interaction sites. PLoS Genet. 2011, 7, e1002244. [Google Scholar] [CrossRef] [PubMed]
- Van Zundert, G.C.P.; Bonvin, A.M.J.J. Modeling protein-protein complexes using the HADDOCK webserver "modeling protein complexes with HADDOCK". Methods Mol. Biol. 2014, 1137, 163–179. [Google Scholar] [CrossRef] [PubMed]
- Kovačič, L.; Paulič, N.; Leonardi, A.; Hodnik, V.; Anderluh, G.; Podlesek, Z.; Žgur-Bertok, D.; Križaj, I.; Butala, M. Structural insight into LexA-RecA* interaction. Nucleic Acids Res. 2013, 41, 9901–9910. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabei, A.; Prentiss, M.; Prévost, C. Modeling the Homologous Recombination Process: Methods, Successes and Challenges. Int. J. Mol. Sci. 2023, 24, 14896. https://doi.org/10.3390/ijms241914896
Sabei A, Prentiss M, Prévost C. Modeling the Homologous Recombination Process: Methods, Successes and Challenges. International Journal of Molecular Sciences. 2023; 24(19):14896. https://doi.org/10.3390/ijms241914896
Chicago/Turabian StyleSabei, Afra, Mara Prentiss, and Chantal Prévost. 2023. "Modeling the Homologous Recombination Process: Methods, Successes and Challenges" International Journal of Molecular Sciences 24, no. 19: 14896. https://doi.org/10.3390/ijms241914896
APA StyleSabei, A., Prentiss, M., & Prévost, C. (2023). Modeling the Homologous Recombination Process: Methods, Successes and Challenges. International Journal of Molecular Sciences, 24(19), 14896. https://doi.org/10.3390/ijms241914896